

Shear viscosity of refrigerants Experiments - Modelling

Guillaume Galliero Jean-Patrick Bazile, Jean-Luc Daridon Laboratoires des Fluides Complexes et leurs Réservoirs UMR 5150 TOTAL-CNRS-UPPA

Journées Fluides de travail pour la production de froid

Mercredi 15 mars 2017

CONTEXT AND ISSUES

Accurate thermophysical properties of refrigerants are crucial for the design of cold production systems

Shear viscosity is one of these required quantities : Exchanger design, refrigerant-lubricant, pressure drop ...

Various tools and some data are available for that purpose but most of them are limited when employed to deal with "new" systems, in particular when mixtures are involved

« Measuring » Shear viscosity

Two (shear) "viscosities" (+ one bulk): \checkmark Dynamic viscosity ($\mu = \tau/\dot{\gamma}$) in Pa.s \checkmark Kinematic viscosity ($\nu = \mu/\rho$) in m²/s

EXPERIMENTAL METHODOLOGY

. . .

Tube Type *Capillary Falling body* Wave Type Vibrating wire QCM

. . .

Rheological behavior

. . .

Absolute viscosity

Ubbelodhe capillary viscometer (P_{atm})

Similar methods under pressure are available

OPTION 1: FALLING BODY

Falling body viscometer (1 - 2000 bars)

Applicable to liquids, gas, live oils ...

Stokes law + Calibration (K)

0.3 to 500 mPa.s μ dev. +/- 3%

----- 🚺 🖤 🔿 🏅

$$\mu(T,P) = K(P,T) \ (\rho_{\text{solid}} - \rho_{\text{fluid}}) \Delta t$$

+ Anton Paar densimeter

Boned and co-workers

OPTION 2: QCR (1/2)

Quartz Crystal Resonator (1 - 2000 bars)

Viscosity affects: Resonant frequency Amplitude of the resonance

 $\Delta \tilde{f}_n = \Delta f_n + i \Delta \Gamma_n$

OPTION 2: QCR (2/2)

Quartz Crystal Resonator (1 - 2000 bars)

QCR allows measuring viscosity by two methods ✓ Resonance frequency : absolute but sensitive to pressure ✓ Dissipation : relative

Daridon and co-workers

EXPERIMENTAL MEASUREMENTS: DATA GENERATION

Not that much accurate viscosity data in particular on mixtures and "new" products E.g. HFO: R1234yf (<10), R1234ze(E)(<5)

Our apparatus + our experience could allow to obtain accurate data on various "new" refrigerants

U

NUMERICAL METHODOLOGY

COMPUTING SHEAR VISCOSITY FROM MD SIMULATIONS

11

MODELING SHEAR VISCOSITY

Correlations *Vogel Arhenius*

. . .

Corresp. states

Supertrapp Lennard-Jones Liquid theory Free volume Thermo. scaling

Most problems arise when dealing with mixtures !

MODELING VISCOSITY: TWO MODERN APPROACHES

In dense fluids it has been shown that (Dyre and coworkers):

 γ is a material property constant (can be deduced from fluctuations)

On a isomorph, ρ^{γ}/T , viscosity and entropy are constant ! $\mu^{r} = \alpha e^{-\beta S^{r}}$ (Rosenfeld, PRA, 1977)

This approach is applicable to many fluids including refrigerants (Galliero et al., Gross et al. ...) - 讷 🚳 🔿 🌠

MODELING VISCOSITY: SCALING

ss optropy scaling (Poll 2016)

Is interesting to check data consistency and to develop correlations Extension to mixtures in progress - 🕅 📾 🔿 🌠

Among required thermophysical properties to design cold production systems, viscosity should not be forgotten

Accurate data are scarce for « new » fluids, in particular on mixtures

Additionnal measurements are required (and feasible) ! Molecular simulations could be a viable alternative

Even if still largely correlative, new models are available to estimate shear viscosity of a large class of fluids

Thank you for your attention

