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Abstract - In this work, we develop a deep learning-based method aimed at reconstructing Thermal
Large Eddy Simulations (T-LES) data in flows with high temperature gradients, in a weakly supervised
manner. We compare our method with an already existing super-resolution method. We train our neural
network from filtered Direct Numerical Simulation (DNS) fields, and we make our network learn to
reconstruct the statistics of the flow, using two point correlations. The neural network is demonstrated
to reconstruct the statistics of the flow, including the two point correlation.

Nomenclature

T  temperature, K 6  neural network weights
large eddy simulation filter Index and exponent

C5 two point correlation f fine mesh

h  half height of the canal, m c coarse mesh

Greek symbols r reconstructed field

A; mesh length in the ¢ direction, m

1. Introduction

Gas-pressurized solar receivers used in concentrated solar power plants are characterized by
extremely high temperatures and heat fluxes, as well as intense turbulence and asymmetrical
heating. Modeling techniques for such flows include Direct Numerical Simulation (DNS), but
because of the difference in size between the receiver and the smallest scales of turbulence, this
modeling technique is prohibitively expensive. On the other hand, Thermal Large Eddy Simu-
lation (T-LES) is a good alternative. T-LES only simulates the large structures, and models the
effects of the small structures. Nevertheless, turbulence in solar receivers may be impacted by
the high heat fluxes, making the sub-grid models designed for isothermal or weakly anisother-
mal flows inaccurate for these conditions [1]. The proposed deep learning architecture is fully
convolutional. Some types of T-LES closure models use convolutions to filter local quantities
like the scale similarity Bardina et al. model [2]. Because T-LES does not simulate all turbulent
scales, it does not contain information to have a precise assessment of simulation quantities,
and is thus imprecise. It is crucial to enhance the accuracy of the filtered data by inverting
the T-LES filter and enabling the recovery of RMS temperature values, which are important
for understanding the thermal behavior of the system. Some Deep Learning (DL) approaches
exist, most notably Bode et al. [3], Fukami et al. [4], Kim et al. [5], all with different types
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of convolutional neural networks (CNN) architectures to reconstruct the small scales from LES
simulations, all with supervised algorithms. These techniques aim to be included in Com-
putational Fluid Dynamics solvers to better estimate simulation quantities like velocity fields,
or passive scalar quantities in reactive flows. In this work, we adopt a convolutional neural
network-based approach and extent the architecture proposed by Lapeyre et al. [6], adapting it
and learning to reconstruct unfiltered data, more specifically second order statistics, using a two
point correlation cost function. We will then compare the results of the neural network-based
reconstruction against the scale similarity method developed by Stolz and Adams [7].

2. Supporting data

This work uses a DNS database at a constant Prandtl number of Pr = 0.76. The flow defined
by its friction Reynolds number given as
U.h
Re., = : (1)

Vw

with h, the channel half-height, v, the wall kinematic viscosity in m? /sand U, = \/1,0U, /0y
the friction velocity in m/s. In our anisothermal channel flow, the two walls have different
friction Reynolds numbers. We define the mean friction Reynolds number at the hot and cold
sides as

1
Rey = 5 (Reruooa + Rerune). @

DNS data was produced by Dupuy et al. [8] for a channel flow at Re, = 180, with two periodic
directions () and (z) and boundary temperatures fixed at 7., = 293 K and T, = 586 K; a
representation of the geometry of the problem can be found in Figure 1. We filter the data using
a top-hat filter. The mesh is regular both in the streamwise (x) and spanwise (z) directions,
and grows in size according to a hyperbolic tangent law along the wall-normal direction. We
interpolate the data using a second order interpolation scheme, from the DNS mesh to the LES
one, so that the mesh size is reduced from 384 x 384 x 266 cells to 48 x 52 x 48 cells. The
number of mesh points is reduced to match the finest mesh used for T-LES in Dupuy et al. [9]. A
top-hat filter spreading over 3 cells in each direction is used. We summarize our data generating
algorithm by

Filtering =c

T. (3)
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For any quantity ¢, we define the top-hat filter as
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with v, + % being the coordinate of the cell face.
3. Reconstruction

To benchmark our algorithm, we use the already existing deconvolution method proposed
and developed by Adams et al. [7, 10, 11]. This method is based on the Van Cittert deconvolu-
tion. This method assumes that for any given LES filter G, if G is invertible, then there exists a



converging Neumann series such that the inverse G~ can be written as

Gl=(IZ—-(Z-aG)" 5)
p

= lim Y (T-a). (6)
1=0

We take a p = 6 approximation to this converging Neumann series (Stolz and Adams [7]
recommend p = 5).

The way of reconstructing using the Van Cittert deconvolution follows

Tf Coarsening TC Filtering> Tc Reconstruction method e

r- (7

4. Deep Learning method

Because it is easier to learn a residu than the reconstruction itself, we propose learning the
reconstruction residual fy (-, ) from

TT:T+ fNN(Tae)a (8)

with 0 the network weights. The architecture is similar to that of Lapeyre et al. [6], with a
different number of filters. In the first level of the U-Net architecture, we have 2 filters, the
second level has 4 filters, and the 3rd level has 8 filters. This reduces the number of overall
parameters to 5737 from an original 1.5 million.

4.1. Data acquisition

As detailed in Section 2, we have a DNS database at our disposal, with approximately 5000
time steps, regularly spaced by A = AU,/h = 1.2 x 1073, To minimize the correlation
between each time step, we sample our database with A" = 7.4 x 1072, We are thus left with
820 time steps, which we split into an 80%, 20% proportion for training and validation. All
results shown are for the validation dataset. These time steps are all sampled after full statistical
convergence of the flow.

4.2. Learning procedure

The learning procedure is only applied to 16 mesh points closest to the center of the canal to
simplify the learning procedure.

On this fixed height, at each step of the mini-batch training, we run an inference on 150 time
steps at the same time. This number of time steps was imposed by GPU memory limitations. We
then compute the two point correlation at each height in the chosen subdomain. This procedure
is done on the coarse mesh to have a similar structure as in process 7. The loss function is
defined as

MSE(Co(TN)), Co(T?))

L(T,T.,T) =
T D) = =y, =0l

+ CI( v (T))aztll2;

The term |[(T?),.: — (T)2 |2 corresponds to the Mean Squared value (MS), under the
Euclidean norm. (' corresponds to the two point correlation, which expresses as



02(T) <X7 Y, Z) = <T(l’, Y, =, t)T(ZE + X7 Y,z + Z? t)>$,21t - <T(l’, Y, =, t))i,z,t' )]
(5 is thus a 3D field, function of the shift in x, written X, y, and the shift in z, Z. The
operator (-), . corresponds to an averaging over z, z, and t, our periodic directions. The
component corresponding to ||(fxn(T))s.-¢|2 of the loss function is a known constraint, as
when writing a reconstruction of 7', we can write 7' = T + 1", with 7" corresponding to
random fluctuations, with constraint (7") = 0, we add a weighting C' = 10~ to this constraint,
as not weighting it results in neural network outputs that are of worse quality. This constant was
picked through trial and error, for 11 values ranging from 107% to 10~!, with a multiplicative
step of v/10. The superscript -(»*N) corresponds to the whole training data set, while the
superscript -* corresponds to the given batch of time steps.

The convolutional neural network learns using a stochastic gradient optimization technique
(ADAM, Kingma and Ba [12]) over 150 optimization cycles, called epochs with a learning rate
fixed at 1072 at the beginning and decreasing by 2% each epoch. These values are chosen by
taking values used in Lapeyre et al. [6], and adapting it through trial and error. This training
procedure requires a high volume of memory, thus requiring to change the size of the input in
the wall normal direction. We thus take no more than 16 mesh points in this direction, leaving
us with a 48 x 48 x 16 subdomain to reconstruct. We are not able to accommodate more than
150 time steps per epoch. The training takes approximately 30 minutes on an NVIDIA RTX
A6000.

5. Results
In the following section, we will compare temperature profiles, RMS profiles
(T?) = (T%) —(T)?,

where (-) is the spatial averaging over periodic directions (z) and (z), and time (), and two
point correlations C obtained by running the DNS, LES and reconstruction methods for our
validation dataset, giving us a better appreciation of the generalisation capabilities of the net-
work.

5.1. Scale similarity method

We now consider the literature reconstruction method as described in process 7. In Figure 6,
we can see the RMS quantities are very close to the DNS ones. Figure 4, the right most column
shows the two point correlation C, against the DNS and LES. It is clear that the Van Cittert
reconstruction method changes and improves upon the two point correlation of the LES. Finally,
in Figures 2 and 3, we observe the two point correlation C, at a fixed height, corresponding
to the center of the canal. We see this method lines up with the DNS very closely for the
streamwise, and spanwise directions, with a degradation in the streamwise direction.

5.2. Machine learning method

The result of the learning procedure described in Section 4.2 shows the neural network’s
loss converges around 150 epochs as seen in Figure 5. At the end of this learning process,
the network produces RMS values close to DNS ones, as can be seen in Figure 6. The net-
work also manages to reconstruct the two point correlation C'y as shown in Figure 4. Finally,



in Figures 2 and 3, we observe the network staying consistently close to the DNS two point
correlation, indicating its capacity to generalize at the task of reconstructing statistics. While
the neural network manages to correct the statistics of the reconstructed flow, it is important to
note that the network lacks the capacity to spatially reconstruct.

6. Conclusion

The present work demonstrates the ability of a deep learning based reconstruction method
to learn to correct the statistics of a priori LES. This method was also compared to the well
established Van Cittert method. The latter method showed excellent results when it comes to
reconstructing the RMS, with results close to the DNS, as well as the reconstruction of the two
point correlation, with slight degradations in the streamwise direction. On the other hand, the
CNN shows results close to the DNS when it comes to the reconstructing of the RMS, and very
close two point correlations, indicating this machine learning procedure is well suited to correct
flow statistics. Future work will consist in reconstructing a posteriori LES, using the Van Cittert
reconstruction as a baseline method.
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Figure 1: Configuration geometry
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Figure 2: Two point correlation at channel cen-
ter Co(T)(X,y = h,Z = 0) as a function of
the streamwise shift for the DNS, LES, the neu-
ral network, and the Van Cittert reconstruction
method
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Figure 3: Two point correlation at channel cen-
ter Co(T)(X =0,y = h, Z) as a function of the
spanwise shift for the DNS, LES, the neural net-
work, and the Van Cittert reconstruction method
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