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FOREWORD		
The	 8th	 edition	 of	 the	 Advanced	 Autumn	 school	 ‘Thermal	 Measurement	 and	
Inverse	 Techniques’	 is	 run	 by	 the	 METTI	 Group	 (MEsures	 en	Thermique	 et	Techniques	
Inverses)	that	constitutes	 a	 division	 of	 the	 Société	 Française	 de	 Thermique	 (SFT,	 French	
Heat	 Transfer	Society).	

*	*	*

Finding ‘causes’ from measured ‘consequences’ using a mathematical model linking the two is 
an inverse problem. This is met in different areas of physical sciences, especially in Heat 
Transfer. Techniques for solving inverse problems as well as their applications may seem 
quite obscure for newcomers to the field. Experimentalists desiring to go beyond traditional 
data processing techniques for estimating the parameters of a model with the maximum 
accuracy feel often ill prepared in front of inverse techniques. In order to avoid biases at 
different levels of this kind of involved task, it seems compulsory that specialists of 
measurement inversion techniques, modelling techniques and experimental techniques share 
a wide common culture and language. These exchanges are necessary to take into account the 
difficulties associated to all these fields. It is in this state of mind that this school is proposed. 
The METTI Group (Thermal Measurements and Inverse Techniques), which is a division of the 
French Heat Transfer Society (SFT), has already run or co- organized seven similar schools, in 
the Alps (Aussois, 1995 and 2005), in the Pyrenees (Bolquère-Odeillo, 1999), in Brasil (Rio de 
Janeiro, 2009), in Bretagne (Roscoff, 2011), in Pays Basque (Biarritz, 2015) and in 
Porquerolles island (Porquerolles 2019). For this eighth edition the school is again open to 
participants from the European Community with the support of the Eurotherm Committee.

*	*	*

Two	books	are	distributed	at	the	beginning	of	the	school.	Volume	1	contains	the	texts	used	as	
supports	for	the	lectures	and	Volume	2	contains	the	texts	used	as	supports	for	the	tutorials.	
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Lecture 1: Getting started with problematic inversions 
with three basic examples 

P. Le Masson1, O. Fudym2, J.-L. Gardarein3, D. Maillet4,

1 Université Bretagne Sud, IRDL UMR 6027 CNRS, Lorient, France 
E-mail: philippe.le-masson@univ-ubs.fr

2 IMT Mines Albi-Carmaux, RAPSODEE UMR 5302 CNRS, Albi, France 
E-mail: olivier.fudym@gmail.fr

3 Aix-Marseille Université, IUSTI UMR 7343 CNRS, Marseille, France 
E-mail: jean-laurent.gardarein@univ-amu.fr

4 Université de Lorraine, LEMTA UMR 7563 CNRS, Vandoeuvre-lès-Nancy, France 
E-mail: denis.maillet@univ-lorraine.fr

Abstract. Introduction to the inverse approach is made starting by simple
examples (solution of a linear system of equations, with noised right hand 
member, case of a slab, in steady state regime, with either flux or conductivity 
estimation). The inverse terminology, the pitfalls of inversion (noise 
amplification effect), as well as the corresponding methodological approach are 
highlighted. The objective is not to solve these problems but to pinpoint the main 
crucial points in inverse measurement problems. Other lectures (L3 & L7 to L10) 
will be used to show how to solve them, with the help of the points studied in the 
lectures in between. 

Introduction 

Inverse problems are part of our daily practice, even if we do not know they are inverse 
problems. We consider here a scientific field (heat transfer, mechanical or chemical 
engineering, physics...) where a quantitative model is available, that is a mathematical 
procedure which is able to simulate, with a good enough precision (the model can sometimes 
be reduced and therefore offset with respect to the physical problem), the phenomena at stake. 
The inverse use of this model gives rise to an inverse problem. Instead of introducing the 
different notions associated to such problems, which will be progressively dealt with in the 
following lectures of this advanced school, we will present examples that correspond to the 
inverse use of a model, as well as the specific problems that appear concomitantly. These 
examples will correspond to exact matching between measurements (noted y or Y further on) 

and model outputs (noted ymo or T or T futher on), with no use of a least square approach. 
The term “exact matching” means that inversion is made through solving an equation where 
both model outputs and measurements are equal, which is only possible when the number of 
unknowns is equal to the number of measurements. Consequently, the least square sum is 
not only minimum but equal to zero.  

2. Example 1: square system of linear equations

Let us suppose we have a linear model that allows to get m output values mmomomo y...,,y,y 21

for any values of the input values
mx...,,x,x 21

. Note that we assume here that both numbers 
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of input and output values are the same and that the output values are subscripted by the index 
“mo” to remind us that it is only a model. It is very convenient to use here column vectors to 
represent this linear relationship under the form: 

xSy =mo (1.1) 

where moy and x are both (m, 1) matrices (column vectors) composed of the moy ’s and of the 

x’s and S a square (m, m) matrix, which is called a « sensitivity matrix » in the inverse problem 
terminology. 

In the direct problem input x is known and moy , the output of the model, is calculated. 

The example that will be studied here corresponds to the m = 2 case, with: 









==





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
==
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exact
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exact xSyxxS (1.2) 

We have supposed here that, in the given problem, we know the exact value 
exactx of the input 

vector x. 

Conversely, if that is moy which is known, solution of system (1.2), or inversion of matrix S,

provides the true value of the input: 

mo

exact ySx 1−= (1.3)

We have therefore solved the inverse problem using exact data x.

Let us now assume that the output, that is the data, corresponds to some measurements of

moy which are corrupted by an additive noise  T
.. 3010 −=ε . Superscript T designates the 

transpose of a matrix here. Each component of this noise represents about 1%, in relative 

value, of the corresponding component of the exact output moy : 






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
=+=
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19

,

,
mo εyy (1.4) 

The natural idea for retrieving an approximate solution of the inverse problem is to replace the 

exact model output moy  by its measured value y in (1.4), or to solve linear system (1.1) 

yxS = with this noised right hand member: 
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to recover an estimated value of the input 





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ˆ exact

xexx (1.6) 
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xe designates the error on the x̂ estimate. 

This means that an error of 53 % has been made for 1x (1.40 instead of 3) and of 77% for 2x

(0.233 instead of 1). This phenomenon is illustrated in figure 1: two far away values of x, exactx

the exact value and x̂  the solution of (1.4), yield approximately the same values, within ε , in 

the y1 - y2 plane. In this case, the determinant of matrix S is not very close to zero: its value is 
9. 

Let us note that, in this particular case, this solution x̂  of system yxS =  is also an ordinary 

least squares solution of model (1.1) with noisy data y. 

In order to analyse the possibly "pathological" character of the solution of yxS = , two global 

criteria, the amplification coefficients of the absolute and relative errors, ak and rk , 

respectively can be introduced. Their values can be calculated, using the Euclidian norm L2: 
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(1.7) 

Figure 1 shows the amplification effect of the measurement noise in the above example. 

Figure 1 – Effect of the measurement error on parameter estimation through inverse mapping

Criteria (1.7), which measure the amplification effect of the measurement noise ε allow to 

quantify the unstable character of the solution. In practice, calculation of these criteria, which 

requires a prior knowledge of the exact value exactx  of the unknown, is not possible. In order 
to analyze this stability problem, a condition number of matrix S shall be introduced, here for 
a square matrix. 
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Remark 1 
 

In figure 1, the exact exactx  and estimated x̂  values of parameter vector x are shown in 
the left hand side, in the two-dimension vector space of the parameters X (also called 

input space), where an orthonormal basis that corresponds to the components )( 21 x,x  

of these vectors has been chosen. In the right hand side, the output moy  of the model, 

and measurements y  are shown in the observation space Y where a corresponding 

orthonormal coordinates system )( 21 y,y  has been selected. The two norms present in 

the definition of ak  are the lengths of the vectors of the estimation error 
exactˆ xxex −=

and of the measurement noise moyyε −= . The other extra norms present in the 

definition of rk  are the lengths of the vectors representing the exact values 
exactx  (model 

input) and moy  (model output). 
 

Remark 2 
 

The norms used in (1.7) are not necessarily the same in spaces X and Y.  For example, 

coordinates )( 21 x,x  can be expressed in W.m-2, if the unknowns are fluxes and 

coordinates )( 21 y,y  can be temperatures (Kelvin). However, in order to define such 

norms in each space, 1x and 2x should have the same units as well as 1y and 2y . If it is 

not the case a scaling has to be implemented in both domains. 
 

Remark 3 
 

Coefficient rk does not depend on the physical dimensions in X and Y: it explains the 

transformation of the noise/signal ratio mo/ yε  into a relative estimation error

exact/ xex . The inverse process, where one starts from the measurement domain Y 

to get a value of the input in the parameters domain X, corresponds to the inverse linear 

mapping 1−S . Passage from Y space into X space is associated with a high amplification 

of the error: this problem is therefore ill-conditioned. 
 

Remark 4 
 

The high value 65.8)( =εrk
 

of the relative amplification coefficient is not the highest 

possible here: things can become even worse. This maximum value of this coefficient 
is the condition number (see lecture L2) of S, that can be reached for a specific value of 
noise ε : 
 

958)(cond)( = Sεrk     (1.8) 

 
3. Example 2: Different inverse problems for steady state 1D heat transfer through a wall 
 
3.1 Case of exact locations 
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The problem of one-dimension heat transfer through a homogeneous plane wall is considered 

now. Exact temperature eT  of the x = e rear face is assumed to be known while a sensor 

located at a depth sx  inside the wall allows the measurement of a temperature y. 
 

Using these two informations and the knowledge of the exact values of the conductivity  and 
of the thickness e of the wall, three quantities can be looked for, see figure 2a: 
 

- the temperature 0T , of the other face (x = 0); 

- the internal temperature distribution; 
- the heat flux density q that flows through the wall.  

 

One temperature is observed:  
 

), ,  ; ( 01  TqxT ss =       (1.9) 
 

However, its measurement y by the sensor is supposed to be corrupted by an additive noise   

of zero mean and of standard deviation  : 
  

+= sTy        (1.10) 
 

The observed temperature eT  can be considered as a particular output of the model 1  of 

temperature distribution, at location x = e: 
 

 /xqTTqxTx −= 001 ), , ;(      (1.11) 

 
In the parameter estimation terminology: 
 

- xT is the dependent or output variable, 

- x is the explanatory or independent variable,  

- 0 , Tq  and   are the parameters,  

- and function )  ; (1 .... is the model structure. 
 

Parameters 0 , Tq have a special status: they are also called input variables (or solicitations), 

because if they are both equal to zero, the wall temperature field is equal to zero. They 
correspond respectively to the right hand members of the two boundary conditions of the 
second and first kinds for the heat equation whose model (1.11) is the solution of what is called 
a direct problem: 
 

eex
x

TTq
x

T

x

T
==−=

=
=

and
d

d
with0

d

d

0
2

2

  (1.12) 

 
We will see later on that this direct problem, whose solution (1.11) is the internal temperature 
field in between the two boundaries (x = 0 and x = e), is a well-posed problem. 
The wall conductivity   is called a structural parameter: if its value changes, the material 

system also changes. 
 

As a consequence of model (1.11), the known value of the rear face temperature verifies: 
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/eqTTe −= 0      (1.13) 
 

Elimination of q between the two equations (1.11) and (1.13) yields a second model 2  for the 

output of the sensor located in sx : 
 

e
ss

ess T
e

x
T

e

x
TTexT +








== 002 -1),,/(    (1.12) 

 

Inversion of this second model is straightforward, replacing sT  by its measured value y: 

 

e/xxT
x

x
y

x
T̂ sse

s

s

s

*
*

*

*
=

−
−

−
= with

11

1
0    (1.13) 

 

The hat superscript ̂  over a  quantity designates here either an estimator of , in the 

statistical sense, that is a random variable whose realization is an approximate value of the 

exact value of , or its estimated (observed) value. 
  

This allows the calculation of the estimation error for 0T , 000 TT̂eT −= , which is a random 

variable proportional to , of zero mean (symbol E (.) is used here for the mathematical 

expectancy of a random variable), with its own standard deviation 0 : 
 

)1(da0 )(E)1( 000
**
sTsT x/nex/e −==−=    (1.14) 

 

 
 

Figure 2a – Estimation of temperature/flux in a wall 
Noised temperature measurement 
Exact sensor location 
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A direct consequence of (1.14) is that estimation of 0T  is unbiased, 00 )(E TT̂ = , and its 

standard deviation )1(00
*
sT x/ −==   is an increasing function of the relative depth 

*
sx  

of the sensor inside the wall. 
  
An obvious property of the linear extrapolation related to the straight line model (1.12) can be 
highlighted: 
 

- error on 0T , measured by its standard deviation 0 , becomes infinite if the sensor 

is located at x = e (rear face). It reaches a minimal value for a measurement at the 
x = 0 face;  

 

The estimated temperature distribution that derives from 0T̂ , also called recalculated 

distribution, is given by ),,( 02 eTT̂e/x : 

 

e/xxT
x

xx
y

x

x
T̂TT̂xxT *

e*

s

*

s

*

*

s

*

xe

* =
−

−
+

−

−
=== with

11

1
),,()( 02recalce       (1.15) 

 

The random error xxTx TT̂e −=  for temperature xT  at any depth x, can be assessed by the 

same type of derivation, as well as its standard deviation Tx :  

  

*

*

1

-1
wit

s

TxTx
x

x
KhKKe

−
===    (1.16) 

 
Two regions can be distinguished inside the wall (see figure 2a):  
 

- the external layer, between sx and e, that is the layer whose points 2x  are located in 

between boundaries where temperature boundary conditions (1rst kind) are either 

approximately (y) or exactly ( eT ) known: going from y to xT̂ corresponds to a  graphical 

interpolation with a reduction of the estimation error with respect to the noise ( 1K ). 

The inverse temperature xT  estimation problem is well-posed in this region. 

 

- layer in between 0 et cx , with external points 1x , where the same operation consists 

in making an extrapolation. This corresponds therefore to an amplification of the 
measurement noise ( 1K ) : the inverse problem of estimation of temperature xT  is  ill-

posed in this region.  
 
Remark 5: 
 

This partition of the space domain into two zones, an internal one located between limits 
where noised boundary conditions are available, and an external one, beyond these 
limits, leads to ill-posed problems as soon as the temperature field, or its derivative, is 
looked for in the external zone. This is true not only in this 1D steady state type of diffusion 
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problem, but also in transient regime, whatever the space dimension (1 to 3D) of the 
geometrical domain. 

 

An estimation q̂  of heat flux q can be given here, as well as an assessment of its error qe  and 

of its standard deviation q  (a statistical quantification of what is called « absolute » error) and 

of its relative standard deviation q  /q (a statistical quantification of what is called « absolute » 

error):    
 

SNRx
q/

xexe
e

xe

Ty
q̂

*

s

q

s

q

s

q

s

e 1

1

1

−
=

−
=

−
=

−

−
= 





  

  (1.16a, b, c, d) 
 
Let us note that the relative standard deviation of the estimated flux (1.16d) depends on the 

temperature signal/noise ratio )/( 0 eTTSNR −=  and on the relative depth *
sx  of the 

sensor. 
 
We consider a numerical example here. The wall is 0.2 m thick with a thermal conductivity 
equal to 1 W.m-1.K-1, with a 30°C temperature difference between its faces and a 0.3 °C value 

for the standard deviation of the temperature noise for a measurement in m180.xs = :  

 

q = l
T0 - Te

e
= 1

30

0.2
= 150 W.m-2

   and   1003030)/( 0 ==−= ./TTSNR e      (1.17) 

 

This yields a 10 % error (relative standard deviation) for q̂ (see equation 1.16d). A mid-slab 

measurement ( m10.xs = ) would have given a 2 % error for this flux: the location of the 

measurement is therefore a key parameter. 
 
 

3.2 Case of imprecise sensor locations and errors for parameters "assumed to be 
known" 
 
Measurement noise is not the only cause of the estimation error: in numerous practical 
experimental situations, where a sensor has to be embedded in a material, the precise location 
of its active element (the hot junction of a thermocouple, for example) is not precisely known. 
So a different type of error has to be taken care of. 
 
Let us assume that, in the above example, the objective is the same (estimation of the front 

face temperature 0T , of the inner temperature distribution xT  and of the heat flux q), but the 

sensor which was thought to be positioned at a nominal location nom
sx  is actually located at 

depth sx , with: 

 

+= s
nom
s xx      (1.18) 
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see figure 2b. So, the noised output y of the sensor stems from the error  in its depth, see 
figure 2b: 
 

 +−=+=+= )/e(with),() ,( 00202 ee

nom

ses TT''TT,e/xTT,e/xy

 (1.19) 
 
 

 
 

Figure 2b - Estimation of temperature/flux in a wall 
      Noised temperature measurement 
      Noised sensor location 

 
 

If one assumes here that this position error  is also a random variable, which is independent 

of temperature noise ,  of zero mean ( 0)(E =  ) and of standard deviation pos , we find the 

same type of error as in section 3.1, simply replacing  by a standard deviation ' : 

 

( ) ( ) pospos

2

pos

222

pos

2

0

22 with1e/)()(  /eRR/SNRTT'var' e =+=−+==

(1.20) 
 
Contribution in '  of this position error may become important as well as in all the standard 

deviations of the subsequent estimation errors ( 0T , Tx  an q ) considered in section 3.1, 

as soon as the signal/position error posR  ratio becomes low with respect to the 

signal/temperature noise ratio SNR .  

 
Let us go back to the numerical application (1.17), with the additional assumption of a position 
error of standard deviation 2 mm. These two ratios become:  
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1002200pospos === //eR   and 1003030)/( ==−= ./TTSNR ec      (1.21) 

 
So, in this case, the presence of the position error is equivalent to a 41 % increase of the 

temperature measurement noise ( 2= /'  here). The consequence would be a 14.1 % 

error for the estimated flux (for m180.xs = ). 

 
This problem of error in the dependent variable in parameter estimation problems can be 
solved using total least squares [1, 2] or Bayesian estimation techniques. The interested reader 
can also refer to [3, 4, 5]. 
 

Let us note that this type of error belongs to a broader class of errors not directly linked to the 
measurement noise: it concerns the 'parameters supposed to be known' (but not estimated 
generally) in a parameter estimation problem.  
 
Such a problem arises if, in the preceding example, thermal conductivity   is not precisely 

known. We can assume than a 'nominal' value nom  is known, but it differs from the exact value 
exact by an error e : 

 

 eexactnom +=      (1.22) 

 
If we refer to the derivations made in section 3.2, this conductivity error will not have any 

additional effect on the errors on 0T  and xT . However estimation (1.16) of flux q has to be 

revisited: 
 

( ) 










−
+








+

−

−
=+−

−

+
=

−

−
=

es
exact

s

es
exact

es

s

exact

s

enom

TT

e

xe

TT
TT

xe

e

xe

Ty
q̂









  11

)(
  (1.23a) 

 

In the case of a small relative error exact/e  for the conductivity and for large signal over noise 

ratio SNR , the preceding equation can be linearized, which yields the relative error 
exact

q q/e

for the estimated flux: 
 












)-(1

1
1

*
s

exactexact

q

es
exact

exact
q

exact

xSNR

e

q

e

TT

e
qeq +=











−
+++    (1.23b) 

 

To go further on, it is necessary to assume that exact is a random variable of mean equal to 
nom and of standard deviation  . Taking the variance of equation (1.21b) yields: 

 

( )

21

222

2

)-(1

1
/

*

s
exactexact

q

xSNRq 












+




    (1.23c) 
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If we consider the case given by (1.17) in section 3.1, with 0pos =R  (no position error, with 

m180.xs = ) , and an error of 10 % for the conductivity, that is e  of zero mean around 

 nom =1 W.m-1.K-1, with a standard deviation  = 0.1 W.m-1.K-1) the error q  /qexact becomes 

equal to 14.1 % instead of 10 % for an exact conductivity. This error caused by the supposed 
to be known conductivity can even become dominant error if the sensor is better located (

m100.xs = ).  

 
The interested reader can refer to lecture L3 in this school to gain a deeper insight onto the 
effects of the errors on the parameters that cannot be estimated thanks to temperature 
measurements and that are 'supposed to be known' in thermophysical characterization 
problems. 
 

4. Example 3: Inverse problem for unsteady state 1D heat transfer through a wall 

4.1 Presentation of the direct problem: 

 
We consider a semi-infinite 1D material with constant thermal properties ( = 43 W.m-1.K-1, a 
= 1,18.10-5 m2.s-1) submitted to a heat flux depending on time. We can compute the 
temperature for several depths in the material (z = 0, 1, 1.5, 5, 10mm) by a direct calculation 
(Finite Element Method, thermal quadrupoles, analytical solution).  
 

 
 

Figure 3a - Heat flux applied to the semi-infinite medium, for several temperature sensor positions 
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Figure 3b - Corresponding temperature responses for several positions 

4.2  Deconvolution procedure, description: 

The material is modelled by a linear system subjected to a prescribed heat flux Q (z = 0, t) 
(noted Q (t) here) having for effect the temperature rise T (z, t). The linear system theory allows 
to write the temperature T (z, t) as the convolution of Q (t) with the pulse response h (z, t) of 
the system, (i.e. the material temperature response to a delta function, that is a Dirac 
distribution, of power density applied to the surface). We assume that the initial temperature 
distribution in the material (at t = 0) is uniform.  

Figure 4 - Linear System Figure 5 - Impulse response in the bulk

The temperature response T at time t and depth z is: 

 d)-()()0()(*)()0()(
0

thQtz,TthtQtz,Ttz,T
t

+==+==  (1.24) 

The pulse response h (z, t) of the system is the first time derivative of its step response u(z,t). 
So, we approximate (1.25) by finite differences which leads to the expression of the 
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temperature at each time step F in matrix form: where X is a triangular lower square matrix (of 

order F) assembled with the components ( , ) ( , ) ( , 1)u z F u z F u z FD = - -  [6]:   

  

 

( ,1) ( ,1) 0 0 ( 0,1)

( , 2) ( , 2) ( ,1) 0 ( 0,2)

( ,3) ( , 2) . . 0
 . 

.

.

( , ) ( , ) ( , 1) . ( ,1) ( 0, )

T z u z Q z

T z u z u z Q z

u z u z

T z F u z F u z F u z Q z F

D D =é ù é ù é ù
ê ú ê ú ê ú
D D D =

ê ú ê ú ê ú
ê ú ê ú ê úD D

=ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú
ê ú ê ú ê ú
D D D - D =ë û ë û ë û

… … …

… … …

… …

          (1.25) 

  
 QXT .=Δ                                                                  (1.26) 

 
A noise is added to the numerical signal in order to obtain more realistic data, the new signal 
can be written (at a given time): 
 

Y = T + ε                                                             (1.27) 
 

Y is the new signal. T is the output of model (1.25), already plotted in figure 3. ε is a centered 
zero mean, Gaussian noise with a standard deviation of 0.1 K (it is supposed to be 
independent). All three preceding quantities are written here in a column-vector form of size (F 
x 1). The deconvolution procedure consists in inverting Eq.(1.26), i.e. expressing surface heat 
fluxes with measured surface heating:  
 

 YXQ 1−=                                                          (1.28) 

 
In the case of the deconvolution of infrared surface temperature (z = 0), the inverse problem 
is stable and the inversion of matrix X  does not cause any problem (see Fig. 6a).  
 

  

Figure 6a – Estimated heat flux, starting from 
noisy measurements at z = 0 

Figure 6b – Estimated heat flux, starting from 
noisy measurements at z = 1 mm 
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Figure 6c - Estimated heat flux, starting from noisy measurements at z = 1.5 mm 
 
However, in the case of the deconvolution of the temperature measured by a thermocouple, 
the inverse problem becomes difficult to solve with a good precision because the conditioning 
of X gets worse. The deeper the thermocouple is located, the more unstable the problem 
becomes. Clearly, it means that matrix X becomes difficult to invert because of the presence 
of very small coefficients (in absolute value) in its diagonal: the result does not respect the 
stability criterion because the noise in Y is amplified. In figure 6b the heat flux estimated with 
the temperature at z = 1 mm is plotted. The inversion is possible, but the estimated heat flux 
is very noisy. The heat flux estimated using the temperature at z = 1.5 mm (see Fig. 6c), is too 
noisy to be exploited: a regularization procedure is needed to find a more stable “quasi 
solution”.  

4.3 Regularization procedure  

 
The solution vector Q̂ , is very sensitive to measurement errors contained in the vector of 

temperature measurements Y. In order to obtain a stable solution, we use a regularization 
procedure. For example, we can use the Tikhonov regularization operator [7]. The regularized 
solution becomes: 
                                           

YXRRXXQ ttt
reg
ˆ 1-)( +=

                                                
(1.29) 

 

- regQ̂  is the regularized solution (an estimation of Q)  

-  is the regularization parameter  
- R is the regularization matrix depending on the type of information that we want to impose. 
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In our case, we want a solution with a minimal norm of the solution (0 order) ˆ
regQ , so we will 

take R = Id.  An optimal value of the regularization parameter can be found using the “L curve” 
technique [8]. This type of representation allows to choose the best compromise - which is 
situated at the bending point of the ‘L-curve’ - between a stable solution, with a low value of 

regQ̂R  and an accurate solution, with low residuals regQ̂XY − . Another possibility is to 

use the “discrepancy principle”, that is to choose  such as the root mean square of the 
residuals gets the same order of magnitude as the measurement noise, that is 

mˆ
reg − QXY , m being the number of measurement times. 

 
Considering the case of the temperature deconvolution at z = 1.5mm (with noise): 
  

- For low values of  (Fig. 7a.), the solution is unstable with low residuals 

- For strong values of  (Fig. 7b.), the solution is stable but departs from the exact 
solution.  

- For the best compromise of the  value (Fig. 8) the heat flux is stable and can be 
used.  

 

  

Figure 7a - Heat flux estimation with a low  Figure 7b - Heat flux estimation with a large . 
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Figure 8 - Heat flux estimation with the best compromise of =5.10-13  K2.m4.W-2. 
 

One can note that the value  depends on the level of the noise, the time resolution and the 
depth of the measurement.  
 
 

5. Conclusions 
 
The first example presented in this short lecture has been used to precise the notion of an ill-
posed problem: under certain circumstances, a small error in the right hand member of a linear 
system of equations, which can correspond to noised measurements, can yield a very large 
error in the solution.  
 

Study of the condition number of the corresponding matrix allows to assess the severity of this 
effect. The reader can refer here to the Singular Value Decomposition of this matrix, on which 
the condition number relies (see further lectures). 
  
In the second example, the inverse 1D steady state input problem has been considered. The 
very important effect of the location of the temperature sensor on the estimation of the 
temperature distribution and of the flux through a wall has been highlighted. It has been shown 
that the temperature noise is not the unique source of error in the estimates. 
 
Errors on the location of the sensor, as well as more generally the effect of the parameters 
'supposed to be known', have also to be studied with great care in order to get reliable 
estimations. 
 
In the third example, the temperature of an “in depth” measurement can be used for a heat flux 
estimation (an inverse problem of function estimation) depending on time. With a regularization 
procedure, a quasi solution can be obtained using a regularization parameter depending on 
the depth of the measurement, the noise, and the time resolution. One can note that the 
transfer function of the material can be modelled, computed or measured. 
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Abstract. The main objective of this lecture is to make the end users aware of the various physical 

phenomena and especially of the errors frequently met during temperature and heat flow 

measurement. The lecture is divided in two main parts dealing with thermal measurement at the 

macroscale and micro and nanoscales respectively. In Part 1, phenomena that occur in thermometry 

with contact (thermoelectric effects, thermoresistance) will be presented. For thermometry with 

contact, the analysis of systematic errors related to the local disturbance of field temperature due to 

the introduction of sensors will be emphasized. Indeed intrusive effects due to sensors are usually 

ignored and can be reduced using know-how as will be shown through analytical modeling. 

Otherwise, the interest in using semi-intrinsic thermocouples will be discussed. The specificities of 

temperature measurement in fluid flow will be detailed. Finally, heat flow measurement using direct 

methods (gradient, enthalpic, electric dissipation …) or inverse methods (heat flow sensors with a 

network of thermocouples) will be reminded.  

1. Introduction: General notions about temperature sensors 

Mediums are in interaction with the environment, the interaction can be of several types: thermal, electrical, 

magnetic, liquid or vapor mass transfer, chemical reaction, corrosion … The installation of sensor on or 

inside the mediums should not modify these interactions.  The choice of the sensor is performed so that 

these interactions do not have an effect on the measurement and on the lifespan of the sensor. For example, 

a sensor on a surface can modify heat transfer by conduction, convection or radiation. Otherwise, the deposit 

of a liquid film or a coating modifies emissivity and therefore the radiative heat exchanges. The main 

consequence is that the temperature provided by the sensor can be very different from the one to measure. 

One important thing to keep in mind is that temperature measurement is accompanied by parasitic effects 

which must be well-known. 

According to the type of interaction between sensor and medium, one can classify the methods of 

measurement in three categories:  

1. Methods with direct contact sensor-medium: in this type of method, the sensor tends to locally 

equilibrate itself with the medium. If there is perfect adiabaticity of the sensor with the 

environment, its temperature is equal to that of the medium. However, in thermometric devices, 

this adiabaticity is usually not perfect.  

2.  Methods with contact without physical connection with the environment: in some cases, the 

temperature readings are carried out using an optical mean therefore no physical connection exists 

between the sensor and the environment. In this category, we can find surface temperature 
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measurement with deposited thermosensitive material such as liquid crystals or photoluminescent 

salts.  

3. Methods without contact: in this method, sensors are far from the medium. Despite there is still 

interactions between them, the sensor is no more in equilibrium with the medium. Such methods 

are essentially based on radiative heat transfer. 

In this lecture, one will discuss temperature measurement with contact. A focus on the main methods 

(thermoelectric, thermoresistance) will be performed. First of all temperature measurement using 

thermoelectric effects will be analyzed in various situations (temperature measurement in fluids, in semi-

transparent medium, and in opaque medium). The recent progress in thermal measurement at micro and 

nanoscales using Scanning Thermal Microscopy methods will be presented.  

 

2. Phenomena and sensors for temperature measurement   

 

2.1. Thermoresistances  

 

 2.1.1. Metallic probes 

They are commonly called Resistance Temperature Detectors (RTD). The thermosensitive parameter in 

these sensors is the electrical resistance. This one changes according to empirical law such as:  

 

R = R0 [1 +  (T – T0) +  (T – T0)
2]                (2.1) 

 

Their respective sensitivities, , are about 10-3 K-1 which is rather weak, but their accuracy is rather large 

and higher than that of the thermocouples (Table 2.1.). In the specified temperature range, their stability 

is good. The resistor probes have an almost linear answer. A resistance measurement device or a power 

supply with a low voltage voltmeter has to be used to induce a current of about a few mA through the 

thermoresistive probes. One has to take care of self-heating or the Joule effect in order to limit temperature 

bias. For practical applications, the thermoresistive probes are composed of a metallic layer deposited on 

a flat electrical insulating substrate (epoxy resin, ceramic, mica…) or cylindrical (glass, pyrex….). The 

size and shape of these thermoresistive probes make them useful for average temperature measurement. 

In addition, their time constant is much larger than that of thermocouples due to their insulating substrate. 

Therefore, they will be used preferentially for temperature measurement in stationary mode. 

Table 2.1. Characteristics of the main thermoresistive metallic probes  

Metal Sensitivity  (K-1) Temperature range (°C) 

Platinum 4 10-3 -200 à +1000 

nickel  6 10-3 -190 à +350* 

Copper 4 10-3 -190 à +150** 

* : 358°C=Curie point for  Nickel (magnetic transformation) 

** : risk of oxidation for copper 

 

2.1.2. Thermistors  

The thermistors which are probes with semiconducting material are much more sensitive than the metallic 

probes (sensitivity 10 times larger), but they are less stable and their calibration curve is strongly nonlinear: 

 

R = R0 exp [B (1/T-1/T0)]                    (2.2) 

 

The thermistors are presented in several shapes: pearl, disc or rod. The pearls are made of semiconducting 

material dropped on two connecting wires. Their diameter is about 0.15 to 2.5mm. They can be coated with 

glass. The flat discs are of more important size (2 to 25 mm in diameter and 0.5 to 12 mm thick). The rods 
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are metalized at their extremity for the contact with the connecting wires. Their time constant ranges from 

a few seconds to several tens of seconds and the temperature range for thermistors goes usually from -50°C 

to 500°C. 

 

2.2. Thermoelectric effects: theory and practice  

 The thermocouple is the most widely electrical sensor in thermometry and it appears to be the simplest 

of electrical transducers. Thermocouples are inexpensive, small in size, rugged, and remarkably accurate 

when used with an understanding of their peculiarities. Accurate temperature measurements are typically 

important in many scientific fields for the control, the performance and the operation of many engineering 

processes. A simple thermocouple is a device which converts thermal energy to electric energy. Its 

operation is based upon the findings of Seebeck [1]. When two different metals A and B form a closed 

electric circuit and their junctions are kept at different temperatures T1 and T2 (Figure 2.1), a small electric 

current appears.  

 

 

 

 

 

 

 

Figure 2.1. Thermocouple circuit. 

 

 The electromotive force, emf, produced under these conditions is called the Seebeck emf. The amount 

of electric energy produced is used to measure temperature. The electromotive force depends on the 

materials used in the couple and the temperature difference T1-T2. The Seebeck effect is actually the 

combined result of two other phenomena, the Peltier effect [2] and the Thomson effect [3]. Peltier 

discovered that temperature gradients along conductors in a circuit generate an emf. Thomson observed the 

existence of an emf due to the contact of two dissimilar metals and related to the junction temperature. The 

Thomson effect is normally much smaller in magnitude than the Peltier effect and can be minimized and 

disregarded with proper thermocouple design.  

 

a)  Peltier effect 

 A Peltier electromotive force M NV V−  is created at the junction of two different materials (wire or film)  

A and B, at the same temperature T, depending on the material and the temperature T (Figure 2.2.): 

 T

M N ABV V− =                         (2.3) 

AB is the Peltier coefficient at temperature T. 

 

 

 

 

 

 

 

Figure 2.2. Peltier effect without current flow.      Figure 2.3. Peltier effect with current flow. 

 

When a current I flows through a thermocouple junction (Figure 2.3.), heat, QP, is either absorbed or 

dissipated depending on the direction of the current. This effect is independent of Joule heating. 
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 T

P M N ABdQ (V V )Idt Idt= − =                     (2.4) 

 

Qp is the heat quantity exchanged with the external environment to maintain the junction at the constant 

temperature T.  

The phenomena are reversible, depending on the direction of the current flow and:   

 

 T T

AB BA = −                         (2.5) 

 

b)  Volta’s law 

 In an isothermal circuit composed by different materials, the sum of the Peltier EMFs is null (Figure 

2.4.) and: 

 

 

 AB + BC +CD +DA = 0                       (2.6) 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Volta’s law with four materials. 

c)  Thomson effect 

 Thomson EMF’s corresponds to the tension 
1 2Ae (T ,T ) between two points M and N of the same 

conductor, submitted to a temperature gradient, depending only on the nature of the conductor (Figure 2.5.):  

 
2

1
1 2

T

A A
T

e (T ,T ) dT=                        (2.7) 

Where A is the Thomson coefficient of the material A. 

 

 

 

 
 

 

 

 

   Figure 2.5. Thomson effect without current flow.       Figure 2.6. Thomson effect with current flow. 

 

When a current I flows through a conductor within a thermal gradient (T1 – T2), heat QT, is either absorbed 

or dissipated (Figure 2.6.):    
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d)  Seebeck effect 

 When a circuit is formed by a junction of two different metals A and B and the junctions are held at two 

different temperatures, T1 and T2, a current I flows in the circuit caused by the difference in temperature 

between the two junctions (Figure 2.7.). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. Seebeck effect.                                Figure 2.8. Seebeck Voltage. 

 

The sum of the different Peltier and Thomson EMF for the circuit corresponds to the Seebeck EMF: 
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             (2.9)  

 

Then, the Seebeck EMF becomes: 

 

 
1 2 1 2AB ABE (T ,T ) (T T )= −                    (2.10) 

 

AB is the Seebeck coefficient for the A and B metals of the couple (µV.°C-1 or µV.K-1). This coefficient 

corresponds to a constant of proportionnality between the Seebeck voltage and the temperature difference. 

If the circuit is open at the center  of the circuit (Figure 2.8), the net open voltage is a function of the junction 

temperature and the composition of the two metals. 

 

The thermoelectric power, or sensitivity, of a thermocouple is given by Table 2.2: 

 

 AB
AB

dE

dT
=                         (2.11) 
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Table 2.2. Seebeck coefficients of various thermocouple materials relative to 

platinum at 0°C [4] 

 

Material Seebeck coefficient 

(µV°C-1) 

 Material Seebeck 

coefficient 

(µV°C-1) 

Bismuth -72  Silver 6.5 

Constantan -35  Copper 6.5 

Alumel -17.3  Gold 6.5 

Nickel -15  Tungsten 7.5 

Potassium -9  Cadmium 7.5 

Sodium -2  Iron 18.5 

Platinum 0  Chromel 21.7 

Mercury 0.6  Nichrome 25 

Carbon 3  Antimony 47 

Aluminium 3.5  Germanium 300 

Lead 4  Silicium 440 

Tantalum 4.5  Tellurium 500 

Rhodium 6  Selenium 900 

 

 

Thermocouples are made by the association of dissimilar materials producing the biggest possible Seebeck. 

In industrial processes, the common thermocouples are presented in Table 2.3. 
 

 

3. Temperature measurement in fluids  

 

3.1. Mathematical modelling  

Transient phenomena appear in many industrial processes and many researchers and engineers have been 

paying attention to the measurement of temperature fluctuations in turbulent reacting flows, compressible 

flows, boiling, cryogenic apparatus, fire environments, under the condition of simultaneous periodical 

variations of velocity, flow density, viscosity and thermal conduction in gas [7-14]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.3. Thermocouple Types [5] 
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Type Metal A (+) Metal B (-) 
Temperature 

range 

Seebeck 

coefficient 

α (µV/°C) at T°C 

Standard 

error 

Minimal 

error 

Comments 

B 
Platinum- 

30% Rhodium 
Platinum- 

6% Platinum 

0°C to 

1820°C 

5.96 µV at 

600°C 
0.5% 0.25% 

Idem R type (glass 

industry) 

E 
Nickel 

10% Chromium 

Copper-Nickel 

alloy 

(Constantan) 

-270°C  to 

1000°C 
58.67 µV at 0°C 

1.7% 

to 

0,5% 

1% to 

0.4% 
Interesting sensitivity 

J Iron 

Copper-Nickel 

alloy 

(Constantan) 

-210°C  to 

1200°C 
50.38 µV at 0°C 

2.2% 

to 

0.75% 

1.1% 

to 

0.4% 

For atmosphere reduced 

(plastic industry) 

K 

Nickel-

Chromium alloy 

(Chromel) 

Nickel-

Aluminium alloy 

(Alumel) 

-270°C  to 

1372°C 
39.45 µV at 0°C 

2.2% 

to 

0.75% 

1.1% 

to 

0.2% 

The most widely used 

because of its wide 

temperature range, supports 

an oxidizing atmosphere 

N 

Nickel-

Chromium-

Silicium alloy 

(Nicrosil) 

Nickel-Silicium 

alloy (Nisil) 

-270°C  to 

1300°C 
25.93 µV at 0°C 

2.2% 

to 

0.75% 

1.1% 

to 

0.4% 

New combination very 

stable 

R 
Platinum- 

13% Rhodium Platinum 
-50°C  to 

1768°C 

11.36 µV at 

600°C 

1.5% 

to 

0.25% 

0.6% 

to 

0,1% 

High temperature 

applications, resists 

oxidation 

S 
Platinum- 

10% Rhodium 
Platinum 

-50°C  to 

1768°C 
10.21 µV at 

600°C 

1.5% 

to 

0.25% 

0.6% 

to 

0.1% 

Idem R type 

T Copper 

Copper-Nickel 

alloy 

(Constantan) 

-270°C  to 

400°C 
38.75 µV at 0°C 

1% to 

0.75% 

0.5% 

to 

0.4% 

Cryogenic applications 

W Tungsten 
Tungsten-         

26% Rhenium 

+20°C to 

+2300°C 
   

Sensitive to oxidizing 

atmospheres, linear 

response and good 

performance in high 

temperature 

W3 
Tungsten-            

3% Rhenium 

Tungsten-          

25% Rhenium  

+20°C to 

+2000°C    Idem W type 

W5 
Tungsten-            

5% Rhenium 

Tungsten-          

26% Rhenium  

+20°C to 

+2300°C 
   Idem W type 

 

There has been considerable progress in recent years in transient thermometry techniques. Some of these 

techniques are applicable for both solid material characterization while others are suitable only for fluids 

thermometry. This chapter deals only with temperature thermocouples measurements in fluids (gases and 

liquids). Many concepts involved in the temperature measurements in fluids are common to both types and 

they are discussed here. The techniques for temperature measurement in a fluid consist in inserting a 

thermocouple, allowing it to come to thermal equilibrium, and measuring the generated electrical signal. 

When a thermocouple is submitted to a rapid temperature change, it will take some time to respond. If the 

sensor response time is slow in comparison with the rate of change of the measured temperature, then the 

thermocouple will not be able to faithfully represent the dynamic response of the temperature fluctuations. 

Then, the problem is to measure the true temperature of the fluid because a thermocouple gives its own 
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temperature only. The temperature differences between the fluid and the sensor are also influenced by 

thermal transport processes taking place between the fluid to be measured, the temperature sensor, the 

environment, and the location of the thermocouple. Consequently, the measured temperature values must 

be corrected. Whereas in steady conditions only the contributions of the conductive, convective, and 

radiative heat exchanges with the external medium occur, unsteady behavior introduces another parameter 

that becomes predominant: the junction thermal lag which is strongly related to its heat capacity and thermal 

conductivity. The corrections generally decrease with the thermocouple diameters, and both temporal and 

spatial resolutions are improved. However, while spatial resolution is fairly directly connected with the 

thermocouple dimensions, the temporal resolution doesn’t only depend on the dimensions and the 

thermocouple's physical characteristics, but also on the rather complex heat balance of the whole 

thermocouple. To obtain the dynamic characteristics of any temperature probe, we analyze its response to 

an excitation step from which the corresponding first time constant  can be defined as : 

c V

h A
=


                               (2.12) 

 is the time constant,  the density, c the specific heat, V the volume of the thermocouple and A the area 

of the fluid film surrounding the thermocouple while h is the heat transfer coefficient.  

 

The goal of this work consists in calculating or measuring time constants of thermocouples and 

comparing their behavior according to different dynamical external heating like convective, radiative and 

pseudo-conductive excitations.  

 

An accurate calibration method is an essential element of any quantitative thermometry technique and 

the goal of any measurement is to correctly evaluate the difference between the “true” temperature and the 

sensor temperature. Figure 2.9. shows the energy balance performed at the butt-welded junction of a 

thermocouple for a junction element dx resulting from the thermal balance between the rate of heat stored 

by the junction thdQ and heat transfer caused by:  

- convection in the boundary layer around the thermocouple cvdQ  

- conduction along the wires cddQ  

- radiation between the wires and the external medium raddQ  

- contribution of another source of heat power (a laser source in this example) extdQ . 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9. Heat balance for the probe 
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During a transient period, because of its thermal capacity, the thermocouple temperature will lag behind 

any gas temperature variation. This leads to an error from which a thermocouple time constant can be 

defined. The general heat balance for a junction of length dx is expressed as :  

 

 th cv cd rad extdQ dQ dQ dQ dQ= + + +                 (2.13) 

  

The thermoelectric junction stores the heat by unit time thdQ :  

 
2

4

th
th th th

Td
dQ c dx

t
=





                   (2.14) 

 where th, cth and Tth are the density, the specific heat and the temperature of the junction respectively.  

The junction is approximated by a cylinder whose diameter equals the wire diameter d. This does not 

exactly fit reality but remains currently used in numerical calculations [15-21]. Moreover, if the wires are 

uniformly curved, the observation near the junction confirms the previous assumption (Figures 3.20 and 

3.21). The Newton’s law of cooling is: 

 

 ( )cv g g thdQ dx Nu T T= −                   (2.15)  

where g and Tg  are the thermal conductivity and the static temperature of the gas. The difficulty is to 

obtain an accurate relation between the Nusselt number Nu and the flow characteristics around the junction 

assumed as a cylinder [17, 22-25].  

  

Indeed, such a thermocouple is surrounded by both a thermal and aerodynamic gradient which acts as a 

thermal resistance that is estimated from empiric approaches. A purely convective heat transfer coefficient 

h is generally deduced from correlations about the Nusselt number that is generally expressed as a 

combination of other dimensionless numbers, such as Eckert, Reynolds, Prandtl or Grashof numbers. 

However, if many cases have been investigated, the example of thin cylinders cooling process is still an 

open question. Table 2.4 gives a list of the main Nusselt correlations in this particular case. 

 

 

 Conduction heat transfer cddQ that occurs along the wires to the thermocouple supports has the 

following general expression:  

 
22

24

th
cd th

Td
dQ dx

x
=





                   (2.16)  

  

 However, different studies and experiments have shown that conduction dissipation effects along 

cylindrical wires can be neglected when the aspect ratio between the length and the diameter is large enough 

[6, 26-32]. Indeed, practical cases of anemometry and thermometry have led to fixing a condition such as: 

  

 

 L/d > 100                        (2.17) 

  

 Hence, the temperature gradient can be considered null in the axial direction of the thermocouple wire. 

The thermocouple is placed in an enclosure at temperature Tw. The enclosure dimensions are assumed to be 

large with respect to the probe dimensions. Then, the influence of the radiative heat transfer can be 

expressed in the simplified form: 
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Table 2.4 Heat transfer laws – These laws describe the heat transfer from a cylinder of infinite length. The film 

temperature Tfilm is defined as the mean value between the fluid temperature Tf and the thermocouple temperature 

Tth [16-18, 20-25, 29-33] 

 

Author 
Temperature 

for ,  and  
Correlation 

Reynolds number 

domain 

Andrews Tf 0 450 34 0 65 .Nu . . Re= +  0 015 0 20. Re .   

Bradley and Mathews Tf 0 25 0 33 0 520 435 0 53. . .Nu . Pr . Pr Re= +  
0 006 0 05. Re .   

0 7 1. Pr   

Churchill et Brier Tf ( )
0 120 500 535
..

f thNu . Re T / T=  300 2300Re   

Collis and Williams Tfilm ( )( )
0 170 450 24 0 56
..

film gazNu . . Re T / T= +  0 02 44. Re   

Collis an Williams Tfilm ( )( )
0 170 450 48
..

film gazNu . Re T / T=  44 140Re   

Davies and Fisher Tf ( ) 0 332 6 .Nu . Re=   0 01 50. Re   

Eckert and Soehngen 
/ 0 50 43 0 48 .Nu . . Re= +  1 4000Re   

Glawe and Johnson Tf 
0 500 428 .Nu . Re=  400 3000Re   

King Tfilm 
0 50 318 0 69 .Nu . . Re= +  0 55 55. Re   

Kramers Tfilm 0 2 0 33 0 50 42 0 57. . .Nu . Pr . Pr Re= +  
0 01 10000. Re     

0 7 1000. Pr   

McAdams  
Tfilm and 

Tf  for  
0 520 32 0 43 .Nu . . Re= +  40 4000Re   

Olivari  and Carbonaro Tfilm 
0 450 34 0 65 .Nu . . Re= +  

0 015 20. Re   

40L / d   

Parnas Tf ( )
0 0850 50 823
..

th fNu . Re T / T=  10 60Re   

Richardson / 
0 5 0 660 3737 0 37 0 056. .Nu . . Re . Re= + +  51 10Re   

Scadron and Warshawski Tf 
0 500 431 .Nu . Re=  250 3000Re   

Van den Hegge Zijnen  Tfilm ( )0 2 0 5 0 330 38 0 56 0 01. . .Nu . Pr . Re . Re Pr= + +  40 01 10. Re   
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 ( )4 4

rad th th w raydQ (T ) T T dS= − −                   (2.18)  

  is the Stefan Boltzmann constant and (Tth) the emissivity of the wire at the temperature Tth. The 

exchange surface of the radiative heat transfer 
raddS d dx=   nearly equals the surface exposed to the 

convective heat flux. This supposes that the radiative heat transfer between the sensor and the walls is 

greater than between the gas and the sensor. Here, the assumption is that the gas is transparent, however it 

is not satisfied in several practical applications like temperature measurements in flames. 

 

 In section 3.2.b we will consider a radiative calibration so that the thermocouple junction is submitted 

to an external heat contribution extdQ  produced by a laser beam [27].  

 
( ) 2

2

12
2

2
ext L

R d x
dQ P erf exp dx

a aa

−   
= −  

   
            (2.19)  

 PL is the laser beam power, R  the mean reflection coefficient of the thermocouple junction surface, d the 

diameter of the junction and a the laser beam radius (this value corresponds to the diameter for which one 

has 99 % of the power of the laser beam).  

 

The total heat balance of the thermocouple may be written as follows  

 

( )

( )
( )

22 2

2

2
4 4

2

4 4

12
2

2

th th
th th g g th th

th th w L

T Td d
c Nu T T

t x

R d x
(T ) T T d P erf exp

a aa

 
= − +

 

−   
− − + −  

   

 
   

  


       (2.20) 

  

The expression of the gas temperature Tg is deduced from equation (2.20): 

 

( )

( )

2
4 4

2

2

2 2

4

14 2
2

2

th th th th
th w

th th th th

g th cv

L

th th

T T (T )
T T

t c x c d
T T

R d x
P erf exp

c d a aa

 
− + − 

 
= +  −    − −       

   

  

 

         (2.21)  

 

Equation 2.21 represents a general expression of the thermocouple dynamic behavior including each of the 

heat transfer modes. In this expression, the time constant cv of the thermocouple junction is defined by: 

 

2

4 4

th th th th
cv

g

c d c d

Nu h
= =

 



                   (2.22)  

   If the radiation, the conduction and the external heat supply are neglected, the gas temperature simplifies 

to: 

 th
g th cv

T
T T

t
= +




                       (2.23)  

The time-response of a temperature sensor is then characterized by a simple first order equation. This is a 

common but erroneous way. For a step change in temperature, equation (2.23) reduces to: 

 
g th

g i cv

T T t
exp

T T

−  
= − 

−  
                     (2.24) 

 where Ti is the initial temperature. 
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Conventionally, the time constant cv is defined as the duration required for the sensor to exhibit a 63%, 

(= 1-e-1) change from an external temperature step, in the case of a single-order equation. Actually, the fact 

that different kinds of heat transfers are involved should lead to a global time-constant in which the different 

phenomena contributions are included [16, 29]. As a consequence, the ability of a thermocouple to follow 

any modification of its thermal equilibrium is resulting from a multi-ordered time response where the most 

accessible experimental parameter remains the global time constant. The multi-ordered temperature 

response of a thermocouple can be represented by the general relation: 

 

 1 2

1 2

g th

n

g i n

T T t t t
K exp K exp K exp

T T

−     
= − − − − − −    

−        
         (2.25)  

 

Ti is the initial temperature, Tg is the fluid temperature. The value of the constants K1, K2, … , Kn as well as 

the time constants 1, 2, …, n, depend on the heat flow pattern between the thermocouple and the 

surrounding fluid. 

 

 If experiments have shown that most configurations involve nearly first-order behaviors, the measured 

time-constant does not allow to isolate each of the different contribution modes.  

Therefore, the remaining problem of experiments is to relate this global time-constant to the different 

implied heat transfer modes. Then, our contribution in this section will be to show the influence of the heat 

transfer condition on the measured time constant value through three different methods of dynamic 

calibration.  

Classical testing of thermocouples often involves plunging them into a water or oil bath and for 

providing some information only about the response of the thermocouple under those particular conditions. 

It does not provide information about the sensor response under process operating conditions where the 

sensor is used. In order to improve thermocouple transient measurements, a better understanding of the 

dynamic characteristics of the sensor capability is necessary.  

 

3.2. Dynamic calibration 

The calibration methods consist of a series of heating and cooling histories performed by submitting the 

thermocouple to different excitation modes. Then, the resulting exponential rise and decay times of the 

thermocouple signals allow to estimate the time constant . The thermocouple signal is amplified with a 

low-noise amplifier having a –3 dB bandwidth of 25 kHz (Gain = 1000). The output voltage is finally 

recorded by a digital oscilloscope. 

 

a) Convective calibration 

Figure 2.10. illustrates the convective experimental device. The thermocouple junction is exposed 

continuously to a constant cold air-stream at constant temperature TMIN. A second hot air flow excites 

periodically the thermocouple and creates a temperature fluctuation of frequency f [33].  

The response of a thermocouple submitted to successive steps of heating or cooling is close to a classical 

exponential first order response from which the time constant can be determined (Figure 2.11.). It can be 

deduced from the measurement of four temperatures: TMAX, TMIN, Tth max  and  Tth min. 

 

For the heating period th, we define the temperature differences 1h and 2h: 

 
1h MAX thminT T= −  and 

2h MAX thmaxT T= −              (2.26), (2.27)  

 

For the cooling period tc, the temperature differences 1c and 2c by: 

 
1c thmax MINT T= −  and 

2c thmin MINT T= −              (2.28), (2.29) 
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Figure 2.10. Convective characterization setup     Figure 2.11. Convective characterization results 

 

Then, the two convective time constants are defined while the thermocouple is heating (h) and cooling (c). 

If we consider a first order response of the sensor we obtain the expressions: 

 
( )1 2

h
h

h h

t

ln
=

 
and 

( )1 2

c
c

c c

t

ln
=

 
              (2.30), (2.31)  

 

Then the period of the thermocouple response is: 

 resp = tc + th                       (2.32) 

 

Figure 2.11 presents temperature histories for a 12.7 m K type thermocouple. The excitation frequency is 

37 Hz. The velocities of hot and cold air are both 13 m.s-1 at the outlet of the air flow tubes. In any case, 

the measured time constants are longer during the heating phase than during the cooling one. This 

phenomenon corresponds to a greater magnitude of the convection coefficient (h). Table 2.5 presents 

convective time constants for the different thermocouple diameters, resulting from heating periods only and 

for two air flow velocities (13 m.s-1 and 23 m s-1) and for a 5 to 72 Hz explored frequency bandwidth.  

 

Table 2.5 Convective time constant cv (ms) and bandwidth f (Hz) versus 

junction diameters. The thermocouple mechanical resistance is not sufficient for 

the flows with 13 ms-1 and 23 ms-1 air velocities 

 

 

 

 

 

 

 

 

 

 

 

 

 

Junction diameter Air velocity : 13 m.s-1 Air velocity : 23 m.s-1 

d (m) cv (ms) f (Hz) cv (ms) f (Hz) 

 0.5 – – – – 

S 1.27 – – – – 

 5 2.9 55 2.2 72 

 12.7 15.2 10.5 8.5 18.7 

K 25 20 8 17 9.4 

 250 32 5 25 6.4 

31/332



 

 

 

 

   METTI 8 Advanced School:             Ile d’Oléron, France 

Thermal Measurements and Inverse Techniques      Sept. 24th-Sept 29th, 2023 

Lecture 2: Measurements with contact in heat transfer:  page 14/27 

One can notice that time constants decrease when increasing the flow velocity because of a larger surface 

over volume ratio exposed to the flow. Finally, even if the repeatability is good, such a calibration method 

remains however quite difficult to perform because the fragility of the sensor increases when the wires 

dimension decreases and the fluid flow increases.  

 

b) Radiative calibration 

This calibration method is based on a radiative excitation produced by a continuous argon laser [34, 35]. A 

set of two spherical lenses allows to locate the beam waist on the junction and an optical chopper generates 

a periodic modulation of the continuous laser beam. In order to avoid parasitic turbulences around the 

junction, the sensor is placed in a transparent enclosure (Figure 2.12.).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12. Radiative characterization setup 

 

The signal obtained is close to a first order response which gives immediately the sensors dynamic 

performances. Time constants decreases as diameter and heat transfer (the laser power) increase (Figure 

2.13.). This is consistent with the effect of an increasing value of the power density or a decreasing of the 

beam radius that both acts on the power to heated mass ratio. Table 2.6 presents the radiative time constant 

for all the thermocouple junction diameters and the explored frequency bandwidth is ranged from 5 to 

2274 Hz. 

 

 
 

Figure 2.13. 
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Table 2.6 Radiative time constant rad (ms) and bandwidth f (Hz) 

versus junction diameters 
 

 

 

 

 

 

 

 

3.3. Microthermocouple designs  

 

Different methods are used to design a thermocouple probe. It consists of a sensing element assembly, 

a protecting tube and terminations. Two dissimilar wires are joined at one end to form the measuring 

junction which can be a bare thermocouple element twisted and welded or butt welded. The protecting tube 

protects the sensing element assembly from the external atmosphere by a non ceramic insulation, a hard 

fired ceramic insulator or a sheeted compact ceramic insulator. 

The thermocouple probe consists of two wires inserted in a ceramic double bore tube with length and 

external diameter depending on the experimentation. The wires are cut with a razor blade to produce a flat 

edge perpendicular to the axis. To realize the junction the thermocouple wires are connected to a bank of 

condensers (Figure 2.14.).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.14. Thermocouple welding apparatus      Figure 2.15. Thermocouple junction and probe 

  

 

The two extremities are approached together in the same time and the beaded junctions are made by a 

sparking method. The energy release produced by the couple voltage-capacitance is sufficient to weld 

together the wires.  One advantage of this technique is that the resulting junction diameter is not 

significantly greater than the wires one (Figure 2.15.). Except low mass and specific heat, another 

consequence is that the cross-sectional area of the wire itself can be used to calculate time constants. A drop 

of glue can deposited at the tube extremity and pushed down around both wires to minimize the probe 

fragility. 
 

 
 

 

 

Junction diameter Radiative time constant Bandwidth 

d  (m) rad (ms) f (Hz) 

 0.5 0.07 2274 

S 1.27 0.18 884 

 5 1.3 123 

 12.7 8.5 19 

K 25 34 5 

 50 64.5 2.5 

1) Ba
nk 

of 

co

nd

en

se

rs 

Wire A 

Wire B 
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4. Error introduced by the disturbance of the local temperature using thermocouples  

 

4.1. Introduction 

Whatever the selected measurement method, it is accompanied by parasitic effects which must be well-

known. The resulting errors can be classified in two categories:  

- the ones that are directly related to the thermometric phenomenon, they correspond to the  inaccuracy 

on the measurement of  thermometric quantities and to the parasitic effects attached to this 

phenomenon. It is not here the main topic, but they are not less important. We will quote simply for 

memory: singularities met in the laws of variation of electrical resistance due to structure modifications 

(allotropic transformations….), with chemical attacks… and for the thermoelectric circuits, the many 

parasitic effects such as e.m.f. induced, modifications of the thermoelectric force due to 

heterogeneities, modifications of structure, junctions nonspecific and not isotherms.  

- the others, independently of the selected sensor are related to the fact that the  interaction between 

thermometer, medium and environment  causes a local disturbance of the temperature  field therefore 

the local temperature  is no more the one  that exists before thermometric sensor settling. 

In the following, we will present an error analysis and models to describe the local disturbance due to the 

presence of the sensors. These results come from various works performed at Laboratoire de 

Thermocinétique, Nantes (Bardon [36], Cassagne [37, 38]) 

 

4.2 Error analysis and model 

 

4.2.1 Surface temperature measurement 

The surface heat exchanges are modified by the presence of the sensor which does not have the same 

thermophysical and radiative properties and the same convective heat transfer as the medium to which it 

is applied. Therefore, a parasitic heat flow is transferred from the medium towards the sensor then from 

the sensor towards the environment as illustrated in figure 2.18. for surface temperature measurement.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.18. Surface temperature measurement 

 

A heat generation or absorption closed to the sensor or to its connection can also occur. All these transfers 

induce, at the measurement location, a local temperature  disturbance which can be either positive or 

negative according to the heat direction (going in or out). The temperature is no more T but Tp. Moreover, 

the sensor temperature is not usually equal to Tp because the imperfect contact conditions between sensor 

and medium involves a temperature discrepancy Tp-Tc which increases as the thermal contact resistance 

or the heat flux increases. 

 

For an opaque medium, the following three effects are combined:  
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1. the  effect of convergence of  heat flux lines towards the sensor (macroconstriction effect ),  

2. the effect of thermal contact resistance which involves a temperature jump at the sensor/medium 

interface, and 

3. the fin effect which corresponds to the heat transfer towards the outside (over the sensor and 

along its connection wires).  

 

The measurement error is then:  

(t) = T(t) - Tc (t)                       (2.33) 

 

4.2.2. Temperature measurement within a volume 

For temperature measurement within a volume, the analysis is similar to the previous one. The error 

independently of the chosen sensor depends on the fact that the sensor temperature almost never coincides 

with that of the small element which it replaces. The thermophysical characteristics of the sensors (, , 

c)  and its radiative properties are different from those of the medium.  

 

 

 

 

 

 

 

 

 

 

Figure 2.19. Temperature measurement within a volume 

 

Heat transfer within the medium is  modified by the presence of the sensor and similarly to surface 

temperature measurement, a local disturbance of the temperature field appears due to the heat transfer 

from the medium to the outside through the sensor.  One still finds the three effects of: 1) convergence of 

the heat flux lines towards the sensor. 2) the thermal contact resistance effect  3) the fin effect. In addition 

the error is still : (t) = T(t) - Tc (t) 

 

4.2.3. Error model 

The study of the error related to the disturbance of the local temperature requires the solution of a 

muldidimensional heat transfer problem with various possible configurations and boundary conditions. In 

this section, one will use relatively simple but very typical models that will clearly show the respective role 

of conduction within the medium, of non perfect contact between sensor and medium and finally the heat 

exchanges towards the environment. Most of the conclusions could be extended to numerous others 

configurations.  

We will suppose that the heat exchanges of the medium or of  the thermometric connection with the 

environment can be represented by the heat transfer coefficient, h, and the outside equivalent temperature, 

TE. It is known, for example, that for a surface that absorbs a heat flow F (radiation coming from a high-

temperature heat source) which exchanges by convection with a fluid at Tf temperature and by radiation 

with walls at temperature T0, one has: 

 
 

= +c rh h h                        (2.34) 

Measurement 

 Convection + radiation 

dV Radiation 

Conduction 
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0+
=

c f r

E

h T h T F
T

h
                     (2.35) 

where hc is the convection heat transfer coefficient, 
34 mr TAh = the radiation coefficient (A is a coefficient 

which depends on the emissivity and of the relative location  of surfaces between which the radiative heat 

exchange occurs, Tm is an intermediate temperature between T0 and that of the surface). 
 

4.2.3.1. Steady state surface temperature measurement of an opaque medium  

 

One will investigate surface temperature measurement on an opaque medium of thermal conductivity  

with a simplified sensor having the shape of a rod perpendicular to the surface (figure 2.20.). Far from the 

sensor, the medium is at the constant temperature T.  The surface of the medium is assumed adiabatic 

except at the contact area S with the sensor. 

 

 

 

 

 

 

 

 

 

 

Figure 2.20. Steady state configuration 

 

The three following effects occur due to heat leakage through the sensor towards the outside : 

a) The convergence effect : it results from  the relation between true temperature and disturbed temperature:  

T - Tp = rM                        (2.36) 

where rM is a macroconstriction resistance and  the parasitic heat flux . With 3D heat transfer calculation, 

one can show that 
s

4789,0
rM


   and for  a circular surface of radius  :

o
M

4

1
r =  .  

It is also shown that 96% of the  T - Tp  temperature drop is within an hemisphere of center 0 and radius  10 

  or 5,7 s  . 
 

b) The contact resistance effect : responsible for the Tp - Tc  temperature drop, it is expressed by :  

Tp - Tc = rc                        (.37) 

 

 where rc represents the thermal contact  resistance for the surface S (if Rc is the  resistance per unit of 

surface:  rc=Rc/S). This effect is related to the imperfection of the contact which results from the 

irregularities of surfaces. The contact between two solid media is carried out only in some areas (~ 1% of 

the apparent surface) between which remains an interstitial medium. 

 

c) The fin effect: It is responsible for the heat transfer between the connection of the sensor and the 

environment. Whatever the assumed  shape of the connection (rods with uniform or variable section) the 

heat flux   transfered from  the face at  x = 0  to the environment is linked to the temperature difference  

(between  Tc  at x = 0 and the equivalent outside temperature TE )defined by:  

Tc - TE = RE                         (2.38) 
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where Tc  is the temperature at x = 0 , TE  the equivalent outside temperature and  RE the total thermal 

resistance between the face x = 0 and the environment. It depends in particular on the geometry, the heat 

transfer coefficient and  the thermal conductivity E of this external connection : 

 RE = 1/(yE EEE yh2   ) for a thermocouple assumed as a rod of radius yE . From relations (2.36, 2.37 

and 2.38),  one can deduce the heat flux: 
EcM

E

rrr

TT

++

−
=  and the measurement error :  

 T =K (T - TE)                            (2.39) 

with  

Mc

E

rr

r
1

1
K

+
+

=                          (2.40) 

 

 The error is thus proportional to the measured and equivalent outside temperatures difference (T-TE) , the 

“error coefficient ” K is all the more small as the sum of resistances of macro-constriction rM and contact rc 

will be small compared to the external resistance rE . Therefore, it results that: 

• For measurements on a high thermal conductivity medium (metal) , rM << rc, the thermal contact 

conditions determines the errors  

• For measurements on a low dielectric material, rM >>rc, the effect of macroconstriction determines 

the error. 

•  The roles of rE and TE are finally very important. One needs the largest possible rE and TE nearest 

to T (probe with heat flux compensation). It is worth to focus one’s attention to the heat flux  E 

generated on the surface of the connection wire. If TE can becomes much higher than T, the error 

is changed by sign and is of great amplitude: it is necessary to avoid the external radiation of source 

on the connection. These conclusions, found for the temperature measurement on an opaque 

medium and for a simplified configuration of a sensor having the shape of a rod perpendicular to 

surface, remain valid with slight differences for real configurations. 

 

4.2.3.2 Transient surface temperature measurement of an opaque medium 

For a fast sudden contact between an opaque medium and a sensor assumed as a rod  and perpendicular 

to its  surface, the error becomes function of time: (t) = K(t) [T(t) - TE]. It remains proportional to the 

temperature difference: T(t) - TE 

The coefficient K(t) is maximum for t→ 0  and decreases for higher t values. For t → , one have:   

K(T) → K() which is obtained for a steady state. The contact conditions between sensor and medium  are 

of great importance : 

 

• If rc  0, K(0)=1, the error is about 100% at t=0 and decreases all the more the contact between 

sensor and medium is good. 

• If rc =0 (perfect contact), the initial error is smaller: 

0 1=
+

( ) <
E

b
K

b b
 where =b c   and =E E E Eb c   are the medium and connection 

effusivities  

 

One can characterize the thermal inertia by the time response x %, such as (figure 2.21.): 
0

− 
=

− 

xK( t ) K( )
x

K( ) K( )
 

 

 

37/332



 

 

 

 

   METTI 8 Advanced School:             Ile d’Oléron, France 

Thermal Measurements and Inverse Techniques      Sept. 24th-Sept 29th, 2023 

Lecture 2: Measurements with contact in heat transfer:  page 20/27 

 

 

 

 

 

 

 

Figure 2.21. 

 

For the same sensor tx depends strongly on the characteristics of the medium and of the connection 

medium/sensor/environment. For a conducting medium,  tx depends strongly on rc which appears as the 

main factor that determines the sensor inertia.  tx decreases when rc decreases. It is the same thing if the 

diameter of the connections is reduced. 

 

For fast transient evolutions, it is worth to weld wires on the surface, so that rc→ 0 , and to use  wires as 

thin as possible. In this case (rc ~ 0), the thermal inertia tx is primarily determined by the establishment 

time t* of the macro-constriction phenomena within the medium. In practice, this phenomenon remains 

extremely localized within the immediate vicinity of the sensor (hemisphere of radius 10y), one can deduce 

an order of magnitude for t* by considering the characteristic time t* 100y2/a associated to this 

hemisphere. %. One can consider that, at this time t*, constriction is established at  97%. One can thus 

consider that txt*100y2/a . For temperature with insulating mediums, rc does not have any effect but tx 

is much higher. For a transient evolution with a characteristic time tc it is worth to choose a sensor for 

which tx<< tc. In this case, as soon as t > tx , the error will reach, at every moment, its minimal asymptotic 

value and the steady error model (K) could be applied. 

 

4.2.3.3. Temperature measurement within a volume  

In this case, the connection wires usually do not follow an isothermal path on a sufficient length, 

therefore heat leakage through the sensors occurs. Measurements within a volume are in general much 

easier than on a surface and errors are usually smaller. However their analysis is more difficult to carry 

out especially because of the interaction between the connection wire and the medium. In addition, a cavity 

has to be realized for sensor introduction.  

 

 

 

 

 

 

 

 

 

 

Figure 2.22. Temperature measurement with a cylindrical sensor inside the medium 

 

Therefore, the cavity and sensors don’t match exactly, so there exists, between them, some residual 

space filled with air, grease, glue… which introduces a thermal resistance between sensor and medium. 

The measurement errors introduced by these phenomena are qualitatively rather similar to those described 

for surface temperature measurements. Lastly, for long enough isothermal path, heat transfer between 

sensor and environment is negligible, the differences between thermophysical characteristics 

(conductivity, heat capacity) of the medium, of the probe or the wire of connection or residual space, 
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introduce a localized disturbance of the thermal field, and a measurement error remains, but this one is 

much smaller. An example is provided in figure 2.22. 

 

With this configuration the previous error model (2.39 and 2.40) is still valid, the value of rc and rM being 

different. If we consider that the sensitive element of the sensor with a length L, and a radius y, which 

recovers its surface S, is isothermal and that it temperature is Tc (figure 2.22.). The contact between the 

probe and the medium is supposed to be imperfect, therefore for the whole surface of the sensor, the 

thermal contact resistance rc is : rc = Rc/S with S=2yL. If TE  T, a heat flux occurs between the medium 

and the environment. The temperature field is modified. In this case the thermal constriction resistance is 

expressed by:

 y

2
 Log 

2

1
rM




=      if   >> y 

4.3. Practical consequence and examples, semi intrinsic thermocouples 

 

4.3.1. Practical consequences 

The steady state error model for the simple configuration allows some important features, most of them 

being valid for other configurations: 

 

1) first of all even for perfect contact rc = 0 there is an error which depends on the ratio rM /rE. 

2) if the medium is a high thermal conductivity material, the macro-constriction rM will be usually 

small relatively to rc and the error will be especially determined by rc. Thus, one must take care 

that rc is small and remains stable. The contact pressure will have to be high and constant, surface 

will have to be plane without waviness, the interstitial medium with the highest possible thermal 

conductivity (welding, grease…). In addition, one should avoid oxide films as well as mechanical 

shocks and vibrations which can modify considerably rc and consequently the measurement error.  

3)  For measurements on an insulator, rM is large, usually much higher than rc. Thus, the macro-

convergence effect is the main factor in the measurement error and one can reduce it by increasing 

the radius of the sensitive element without increasing the section of the connections (figure 2.23.).  

A contact disc of high thermal conductivity material will be used. 

 

 

 

 

 

 

Figure 2.23. 

 

4) Whatever the type of measurement, the fin resistance rE should be as high as possible. The 

transversal area, the conductivity, the heat transfer coefficient have to be chosen the smallest 

possible. One also should have low emissivity surface, connection protected from high temperature 

fluids movements or radiation, TE being modified in those situations.  One should note that having 

an insulating layer on the metallic wire of the thermocouple can increase the side heat transfer and 

therefore the measurement error. 

5) Finally, the error is all the more small as TE is close to the temperature to measure T. It changes 

with TE. At the price of a technological complication, one can add an external heat source on the 

connection so that its temperature TE is controlled in order to stay a close as possible as T. In this 

case, one reduces considerably the heat transfer and consequently the error of measurement. This 

principle is well known as “compensated heat flux sensors”. However for correct measurement, 

the thermal resistance rE should stay high in order to prevent the compensation heating from 

disturbing the temperature field in the medium. 

y 



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4.3.2. Application -for steady state temperature measurement for a thermocouple with and without a 

contact disc 

The two thermocouple wires are considered as a unique rod with a radius yB = 0.5 mm, an infinite length, 

an average thermal conductivity B = 15 W.m-1.K-1 and a heat transfer coefficient  
hB = 5 W.m-2K-1.  

The fin thermal resistance is:   
BBBB

B
yh2y

1
r


=  (rod approximation) 

Thus, the connection resistance is:  

• rE = rB  without  contact disc, 

• rE  rB + 
DBy4

1


  with contact disc  

(

DBy4

1



is the resistance due to heat flux convergence from y to yB inside the sensor). 

Table 2.9.  provides the values of rM , rc , rE and K and for various  D  with and without disc (y=yB= 10 

mm, D = B) and for different values of  Rc per unit of area: 

 

Table 2.9. Effect of medium  thermal conductivity and of the disc on rM, rc, rE and K 

 Low thermal conductivity 

=10-1 W.m-1.K-1 

High thermal conductivity 

=100 W.m-1.K-1 

 without disc  with disc  without disc with disc  

rM (K.W-1) 5000 250 5 0.25 

Rc (K.W-1m2) 10-3 10-3 10-4 10-4 

rc(K.W-1) 1270 3,18 125 0,31 

rE (K.W-1) 1700 1733 1700 1733 

K 0.786 0.127 0.072 0.0003 

 

 

5. Temperature measurement with semi intrinsic thermocouple 

In this device, one uses the medium M itself (presumately electrically conducting) as one item of the 

thermocouple (figure 2.24.). Compared to a traditional sensor, this device has several advantages: 

• it has only one connection wire instead of two, thus heat leakage is reduced and the thermal 

resistance rE is twice larger.  

• the measured temperature T is intermediate between Tp and Tc (figure 2.24.)  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.24. Semi intrinsic thermocouple 
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For times t >tc (time constant), T  is such that: 
M

A

c

p

TT

TT








=

−

−
        (2.41) 

The error i = T - T is thus lower and the contact resistance effect is partly cancelled. For steady state, 

the error is such that: 

 

( )= −i i EK T T                      (2.42) 

With 
EcM

MA

A
cM

i
rrr

rr

K
++

+
+

=




                   (2.43)

 
 

This error is considerably lower than with a traditional thermocouple (2 to 5 times) and this as much more 

as the wire thermal conductivity A is small compared to M. In transient mode, error and thermal inertia 

are greatly reduced (Bardon [36], Cassagne [37]). However, the calibration of the semi intrinsic 

thermocouple is almost always required. It is usually performed by comparison with a traditional 

thermocouple. 

 

6. Heat flux measurement: direct and in direct methods 

 

6.1. Direct measurement  

 

6.1.1. Heat flux sensor with gradient (Ravaltera [39]) 

The principle of this heat flux measurement consists in directly applying the Fourier’s law by measuring a 

temperature difference within the wall itself (intrinsic method) or by covering it with  an additional wall 

(heat flux sensor-HFS-). The surface characteristics of this HFS should be close to those of the wall. The 

wall of the HFS can be homogeneous (the temperature difference is measured between its two main faces 

-normal gradient heat flux sensor - figure 2.25.-) or it can be heterogeneous creating heterogeneous 

temperature that is measured (tangential gradient heat flux sensor – figure 2.26.-).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  2.25.            Figure  2.26. 

 

The installation of such HFS on a wall, more or less disturbs the heat flux which crosses it. All must be 

done so that internal and contact thermal resistances are minimal. In these devices, the measurement of the 

temperature difference is performed using several thin film thermocouples or thermoresistances. These HFS 

can work whatever the heat flux direction in steady state or for slowly variable temperature. 
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Table 2-10 shows a list of commercially available normal or tangential heat flux sensors  

 

Table 2-10 : Main characteristics of available commercial normal and tangential heat flux sensors 

Heat flux 

sensor 

N 

/T 

Dim 

[mm] 

Tmax 

[°C] 

Sensitivity 

[V/(W.m-2)] 

Thick 

[mm] 

Rth  x 103 

[m2K/W] 

Response 

time [s] 

Accuracy 

Heat flux 

[%] 

Hioki N 10 x10 150 13 0.28 1.4 
  

RdF/Omega N 11.93 x25.4 150 1.0 0.125 0.88 0.09 8-10 

RdF/omega N 11.93 x25.4 150 3.48 0.33 2.1 0.4 8-10 

Wuntronic 

FM120  

N 7.4 x10.7 150 2.64 1.5 4.75 3 5 (Fab) 

Flux Teq N 25.4 x25.4 120 0.8 0.38 0.65 0.6 
 

GreenTEG 

gskin 

N 10 x10 150 50 0.5 0.35 0.2/0.7 3 

Captec T 10 x10 120 3 à 5 
 

1 0.3 8-12 

N: normal; T: tangential  

 

6.1.2. Inertia heat flux sensor and heat flux sensor with electric dissipation (zero method)   

Inertia heat flux sensors works only for variable temperature and if the heat flux is received by the wall. 

The HFS replaces a piece of the wall and is isolated from this one. Its surface characteristics are identical 

to those of the wall. The temperature increase of the HFS  is proportional to the absorb heat flux  and 

inversely proportional to its capacity (figure 2.27.). The choice of this one is very important because it 

determines the measurement sensitivity. 

 

 

 

 

 

 

 

 

 

Figure 2.27.            Figure 2.28.  

 

The principle of this HFS with electric dissipation consists in substituting a piece of the wall at its surface 

with a small heating part insulated towards the wall (fig. 2.28.). The electric heating output is adjusted so 

that the surface temperature of the wall and of the heating part are equal (T=0). Thus, the dissipated 

electric flux is equal to the heat flux which leaves the wall in its immediate vicinity. This HFS works only 

for heat flux leaving the wall and for steady state or slowly variable temperature.  

 

6.1.3. Enthalpic heat flux sensor   

 They are used to measure the heat flux coming from the outside. The HFS replaces an element of surface 

of the wall and is insulated from this one (figure 2.29.). An initially temperature controlled fluid circulation 

is heated by the heat flux which induces an enthalpic flow rate. For a correct measurement, the fluid 

temperature must be adjusted so that wall and HFS temperatures are almost equal. This condition is not 

always realized and can be an important source of error. The choice of the heat-storage capacity of the fluid 

also is important..  
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Figure 2.29.                       Figure 2.30.  

 

 

6.1.4. Indirect measurement  

One can obtained the surface characteristics (temperature T, heat flux  ) from measurements realized  

within the medium and using inverse methods (figure 2.30.). This procedure involves solution of ill-posed 

problems. Indeed, one cannot insure a solution, its uniqueness or stability. To solve such difficulties, the 

technique consists in replacing the ill posed problem by a well posed approximate problem. The solution is 

found by minimizing a norm of least square type.  A heat transfer model (analytical or numerical) is required 

to solve the direct problem at each optimization step. These methods require significant developments 

(Beck [40], Alifanov [41], Ozisik [42], Jarny [43]). They will not be presented here. We will just underline 

that the solution of the inverse problem allows to compute the temperature residuals between final and 

measured temperatures. These residuals are of great importance because they allow to check the validity of 

the chosen heat transfer model. If no signature is observed (the residuals are purely random) the model is 

correct, otherwise the model should be improved. 

 With regard to the theoretical aspects of the instrumentation, Bourouga [44] has proposed criteria for 

correct locations of thermocouples to obtain unbiased results and also to  optimize the experiment for wall 

heat flux or temperature estimation. 

 

 

7. Conclusion 
Accurate temperature measurement is not an easy task. Errors depend on thermosensitive phenomena and 

also according to the sensors which can create local temperature disturbance and therefore bias. Very often, 

this latter error is ignored. In this lecture dedicated to contact temperature measurement, one have tried to 

provide to the readers the know-how in various situations (temperature measurement in fluids or opaque 

medium ) in order to perform the best temperature measurements as possible.  
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Lecture 3. Basics for linear estimation, the white box 
case  

 
 

F. Rigollet1, D. Maillet2 
 
1 Aix Marseille Université, IUSTI UMR CNRS 7343,  

5 rue Enrico Fermi,13453 Marseille cedex 13, France 
E-mail: fabrice.rigollet@ univ-amu.fr 
2 Université de Lorraine, LEMTA UMR CNRS 7563, 2 av. de la Forêt de     

Haye 
54504 Vandoeuvre cedex,  France 
E-mail: denis.maillet@univ-lorraine.fr  

Abstract. We present and illustrate the roadmap for a parameter estimation problem from 
experimental data using a forward model that links the data and the parameters. We focus 
on the case when the structure of the model is known ('white box case') and linear. The 
Ordinary Least Square case is considered to introduce all the useful tools (sensitivity 
coefficients, conditioning of sensitivity matrix, etc). We focus then on optimal ways to 
implement the best estimation through the study of the sensitivity matrix and other matrices 
depending on it. The propagation of bias on blocked parameter during the estimation of 
desired parameters is also studied. The design of optimal experiment (tuning of experiment 
control parameters) is also presented, based on criterion built on sensitivity matrix and 
covariance matrix of estimated parameters. 

 
1. Introduction 
 
In experimental heat transfer, we often have to process observed data (measured quantities : 
temperatures, electrical tensions, radiative flux etc) collected for different values of 
experimental control variables (time, space, frequencies, wavelength, etc) in order to deduce 
other quantities of interest (called here parameters : thermal diffusivities/effusivities, surface 
heat flux, internal heat source, emissivities or even temperatures). In parallel of the true 
experiment that provide the measured quantities (red branch of Figure 1), we suppose we 
are able to build a set of relations (physical equations, calibration functions) that link the 
parameters (inputs or causes) to the quantities that will be measured on the ground (output 
or effects). This model of the experiment (green branch of Figure 1) is then able to predict 
the effects for given causes: as it works in the same ‘natural’ sense causeseffects than the  
experimental process, it is called the forward model.  The problem we want to solve is called 
inverse measurement problem because we feed it with the measured quantities (observed 
data) and we expect it to provide the parameters of interest present in the model: it works in 
the sense effectscauses, inverse of the natural sense. The way it works is based on the 
comparison between the data measured with the true experiment and the data predicted by 
the forward model: the optimal estimated parameters will be those for which the data 
predicted by the model are closest to the measured ones (minimization of cost function on 
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the blue branch of Figure 1). The question that is finally posed deals with the confidence that 
can be associated to these estimated parameters: how far are they from the (unknown) exact 
parameters, is their estimated values highly or poorly affected by the random part (noise) of 
measurement? The last question we can ask ourselves is in fact a question that comes 
upstream, before the experiment is carried out: can we design the best experiment, that is 
the experiment that will enable the estimation of parameter with the best confidence 
(magenta branch of Figure 1, that uses the forward model to answer that question). 
 

 

Figure 1 : diagram summarizing the three components of an inverse measurement problem : 
carrying out an experiment on a true system (red branch), developing a model to simulate the 
experiment (green branch), and minimizing a cost between the two (blue branch) in order to 

estimate some parameters of the model, together with their confidence level. A fourth branch is 
also presented consisting in the design of optimal experiment, whose objective is to design the 

experiment that will provide the parameters with the best confidence. 

 
We will develop in the following sections all these concepts with the two strong assumptions: 

- The white box2 assumption: we suppose we have the right forward model (we have 
understood the physical phenomenon and the way the measurements are obtained), 
we do not search its structure, but only its input parameters. 

- The linear assumption: the model output is a linear function of its parameters see 
Lecture 7 for non-linear case) 

 
Other assumptions (on noise measurements) or choices (on cost function, on experimental 
control variables) will be detailed when needed. This rodmap for inverse parameter 
estimation in the linear case will be illustrated in different situations. 
 

 
2 In opposition to the black box assumption for which we do not know the structure of the relations between the 
input parameters and the output of the forward model 
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2. The roadmap for solving a linear parameter estimation problem: the Ordinary 
Least Square case 
 

2.1. Generate data: run the true experiment 
 

Let us suppose we have realised an experiment that provides m measurements  

for i =1, …, m at m discrete values of time t (the 'independent' variable). These 
measurements are the components of the vector (m × 1) of experimental measurements 

. Times of measurements are regularly spaced between  and  and 

are the components of the time vector (m × 1)  with , 

i=1, …, m. Let  be the (unknown) error associated to the measurement  (i=1, …, m), 

then the measurement errors vector (m × 1) is . Some assumptions have to 

be done on these measurement errors. They are detailed in Table 1.  

Number Assumption Explanation 

1 Additive errors  
2 Unbiased model  
3 Zero mean errors  
4 Constant variance  
5 Uncorrelated errors  for  
6 Normal probability distribution  
7 

Known parameters of the probability density 
distribution of errors 

 
8 No error in the Sij S is not a random matrix 

9 No prior information regarding the parameters   
Table 1 : Statistical assumptions regarding the measurement errors 

The first assumption on measurement errors is that they are purely additive :  

 (3.1) 

Here  represents the vector (m × 1) of (unknown) errorless measurements, which 

corresponds to the output of a model that is assumed to be perfect3. Moreover, 
measurement errors are assumed to be the realizations of a random variable with any 

distribution but with a zero mean, that is  (unbiased errors),  being the expected 

value operator (representing the mean of a large number of realizations of the random 

 
3 The objective of  'direct' modelisation is to give the best approximation of   
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variable). On its main diagonal, the covariance matrix (m × m) 

 of measurements errors contains the variance 

 of each measurement that is supposed constant for each time ,   i = 1, …, m. This 

variance may or may not be known. Finally, measurement errors are assumed uncorrelated 

(error at time  is independent of error at time  (  for )  and  consequently 

 is a diagonal matrix: 

 (3.2) 

These data (3.1) can come from a real experiment or can have been numerically created (for 
testing the parameter estimation method), using a mathematical model and adding a 
numerical random noise verifying the preceding assumptions (and called the Gaussian 
independent and identically distributed (i. i. d.) noise)). Now the model and its parameters will 
be presented.  

2.2. Build a model of the measured signal, define the parameters and first contact with the 
sensitivities 

The objective of such a model is to give a mathematical expression , noted 

 of the perfect measurements mentioned above. This model is a function of the 

independent variable (time) and of n parameters composing the parameters 

vector (n × 1) noted. The model vector (m × 1) is then given by 

, where is a column vector 

composed of the m times of measurements ti. For this example, we choose to analyse the 
classical two parameters estimation problem consisting in estimating simultaneously the 
slope and the intercept of a straight line; then the model is given, in a scalar writing, by: 

 (3.3) 

The model is linear with respect to its two parameters  and  because:  

 (3.4) 

 
Important remark: the following model: 

 (3.5) 

is also linear with respect to its two parameters  and , even if its time behavior is not 

linear. On the contrary, the following model: 
 

 (3.6) 
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is linear with respect to  but nonlinear with respect to  and is consequently nonlinear 

with respect to . 
 

Writing the m model values (3.3) for the m time values , the m resulting equations 
can be written in a matrix way as follows: 
 

  (3.7) 

or, in a more compact form: 

   whose ith component (i=1 to m) is  ymo,i(ti,x) = ∑ Sk(ti)xk
n
k=1  (3.8) 

The matrix S (m × n) is called the sensitivity (or Jacobian) matrix. Column k contains the m 

times values of the sensitivity coefficient of the model with respect to the parameter , 

given by : 

 , k=1, …, n (3.9) 

 
Equation (3.8) is only valid for a linear model. However, the sensitivity coefficient (3.9) can be 

defined for the discrete time values (i =1, …, m) to form a sensitivity matrix S defined 

for any linear or nonlinear model as: 
 

S(x) = �𝜵𝜵𝒙𝒙ymo
𝑡𝑡 �

𝑡𝑡
 (3.10a) 

or, more simply, in a symbolic way  

 (3.10b) 
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𝜵𝜵𝒙𝒙𝑧𝑧 =

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥1
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥2
⋮
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑛𝑛⎦

⎥
⎥
⎥
⎥
⎤

  if z is a scalar                                                              

𝜵𝜵𝒙𝒙𝒛𝒛 =
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⎢
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   if it is a row vector noted z of size 1 x m

  

(3.10c) 

 
 
 
 
 
 
 

(3.10d) 

Let us note here that, in terms of dimensions, the left product of the operator x∇  with another 

quantity (scalar or matrix), respects the same rule as a normal column vector. For example, 

the dimensions of x∇ z in equation (3.10d) is (n x 1 ) by (1 x m), that is (n x m). 

Important remark: if the model is linear with respect to its parameters (as in the cases (3.3) 
and (3.5)), then the sensitivity coefficients do not depend on the parameters, and the 
sensitivity matrix does not depend on x.  

For model (3.3), we have  and  then: 

  (3.11) 

A sensitivity coefficient is a measure of the “influence” of a given parameter  on the 

response of the model . If all the sensitivity coefficients are of “high” magnitude and 

“independent”, the simultaneous estimation of the parameters composing  will be possible. 
The meaning of “high” and “independent” will be developed later. 

 

2.3. Choose the objective (or “cost”) function 
 

The “white box assumption” considers that the model has the right form (or “right structure”, 
given for example by the resolution of the “right” partial differential equations describing the 
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“right” physical phenomena) then if it is calculated with the right values of parameters , 

we have  and Eq. (3.1) becomes 

 (3.12) 

Since the m measurement errors composing  are not known, the problem of finding the 

values of the n components of  given m measurements verifying Eq. (3.12) is 

underdetermined (m equations with n + m unknowns: n parameters  (k=1, …, n) and m 

noise values  (i = 1, …, m)). The problem consists in using the m measurements for 

estimating the n unknown parameters, with . Then the new problem to solve is a 
minimization problem. For a given value x of the parameter vector, a residual vector r (m × 1) 
is built in order to calculate the difference between measurement vector y  (m × 1) and the 

corresponding model output  (m x 1), each component of r being associated with one 

of the m instants of time where a measurement is available. 

 (3.13) 

This present definition of the residual vector  is an extension of the concept of residual 

vector which is usually defined as ,  where corresponds to the minimum of , see 

Eq. (3.18) further on. 

Then the norm of this residual vector  is calculated, it is a scalar value that will be 

minimized with respect to the different components of parameter x in order to estimate an 
'optimal' value for it. One has to choose the way of computing the norm of the residuals 

. Without any a priori information about the values of the parameters and given the 

above assumptions for measurements errors, the chosen norm is the Euclidian norm (or L2 
norm) given by: 

     (3. 14) 

In fact, the objective function that will be minimized is the square of that Euclidian norm, it is 
called the 'Ordinary Least Squares' (OLS) objective (or cost) function4 :  

 (3.15) 

 
4 it is here the most efficient, i.e. that will provide the estimation with the minimal variance if the noise 
is of zero mean, independent and identically distributed 
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In the particular case of a linear model,  and this OLS sum becomes: 

( ) (
2

2
2

1 1 1 1

( ) ( ) ( ) ( )
m m m n

OLS i i mo i i j i i
i i i j

J r y y t , y S t x
= = = =


= = − = − 


∑ ∑ ∑ ∑x x x  (3.16) 

With a matrix writing, (3.16) is equivalent to : 

 (3.17) 

The solution of this minimization will be called  here : 

( )( )arg min ( )OLS OLSˆ J=x x  (3.18) 

The hat ( ) superscript designates an estimator of the corresponding quantity, that is a 
random variable derived here from the random vector variable  (the measurement noise) 

and the subscript 'OLS' designates the specific minimized norm used here, the Ordinary 
Least Squares sum defined in Eq. (3.14). If the model is linear, this OLS estimator does 

not require the use of any iterative algorithm and is given in a simple explicit form that will be 
presented later. 

To summarize, the original question was:  

"what are the exact values  of parameter vector x for the model  when 

m corresponding noisy measurements  are available?" 

 
The answer is: 

"one possible approximation of  is the estimator , which minimizes the 

Ordinary Least Squares 'objective' function (sometimes also called 'criterion') 

 defined as the sum of the squares of the differences between the m model 

output and the corresponding measurements”.  
 

Or, in simpler words:  

"the natural numerical approximation of the parameters present in  is the one 
that enables the model to be the closest to the whole set of measurements. This 
Ordinary Least Squares method was first found by Carl Friedrich Gauss in 1795 and 
later published by Adrien-Marie Legendre (1805)”. 

  

The natural question that arises next is: "how far is this estimation from the exact value 

 and what can be done to reduce their difference?” These questions will be discussed 
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now within the linear assumption where an explicit expression for  will be given. 

Readers interested by non-linear estimation can refer to lecture 7 of this series. 

 

2.4. Solve the parameter estimation problem: minimize the objective function 

The OLS estimator  is defined as the value of parameter vector x that minimizes the 

scalar objective function . Then, for x= , the gradient of  must be zero : 

𝜵𝜵𝒙𝒙JOLS(x) = 0           (3.19) 

𝜵𝜵𝒙𝒙JOLS(x) = 2 �𝜵𝜵𝒙𝒙�y-ymo(x)�𝑡𝑡� �y-ymo(x)� = 0                   (3.20) 

 
This equation stems from the following property of the nabla operator 𝜵𝜵𝒙𝒙, applied to a scalar 
product of vectors, see (Beck and Arnold, 1977, page 221) in the reference list5: 
 

𝜵𝜵𝒙𝒙�ztz� = 2�𝜵𝜵𝒙𝒙zt�z  (3.21) 

 

where z is a column-vector of size (m x 1) then zt is a line-vector of size (1 x m). Reminding 

the linear model expression (3.8) , the definition of the sensitivity matrix (3.10a) 

and its transpose S𝒕𝒕 = 𝜵𝜵𝒙𝒙ymo
𝑡𝑡  and knowing that 𝜵𝜵𝒙𝒙y𝒕𝒕 = 𝟎𝟎 because measurements y do not 

depend on parameters x, we can write  
 

𝜵𝜵𝒙𝒙�y-ymo(x)�𝑡𝑡 = 𝜵𝜵𝒙𝒙y𝒕𝒕 - ∇xymo(x)𝑡𝑡 = 0 −  S𝒕𝒕                  (3.22) 

  
and Eq. (3.20) becomes: 
 

=0                       (3.23) 
 

Then  is solution of:  

 

 
(3.24) 

 
The n equations composing the linear system (3.24) are called the 'normal equations'. The 

solution is straightforward if the (n × n) matrix  is not singular, it is then possible to 

compute its inverse and obtain: 
 

 
5 it corresponds to the matrix formulation of the derivation rule for a composed function of x : 

�f(x)2�' =2f '(x)f(x) 

OLSx̂

OLSx̂
)(xOLSJ OLSx̂ )(xOLSJ
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 (3.25) 

 

Let us note that it is not necessary to invert matrix  in order to solve the system of 

normal equations (3.24). Equation (3.25) can be used further on to yield a symbolic explicit 
expression of the OLS solution. 
 

The (n × m) matrix  is called the Moore-Penrose matrix, also named as the pseudo-

inverse of S6. Obviously, a necessary condition for  not to be singular is that the 

sensitivity coefficients are independent, and have a non-zero norm. This condition also 
requires that the number of measurements m be equal or greater than the number of 
parameters n to be estimated.  
 

Eq. (3.24) gives an explicit expression for the ordinary least square estimator of x for 

any linear model  as a function of measurements y defined in Eq. (3.12). 

Since y is a random vector (because of noise ), such is also the case for . However, 

equation (3.24) has also another statistical meaning: once measurements are available, a 
realization of y (that is numerical values for its components) becomes available, and this 
equation provides the corresponding OLS estimation of x. 
 

2.5. Evaluate the confidence in estimations (variance and bias of estimator) 

2.5.1. First approach with stochastic simulations (Monte Carlo method) 

 
Before computing the statistical properties of the OLS estimator (expected value and 
covariance matrix), we present a graphical approach that helps to understand the meaning of 
such properties. This approach is possible in the case when two parameters are estimated 

because each estimation  can be plotted as a point in a 2D coordinates 

frame graduated in . The idea is then to simulate K=100 experiments with K different 

realizations of the random noise vector  generated by an independently distributed 

Gaussian process with the same statistical properties (see Table 1) to produce K samples of 
measurements vectors y according to (3.12). The exact output of the model (yperfect) as well 
as the time of measurements and the standard deviation of the noise used for each 
simulation is given in Table 2. This model structure with this set of associated experimental 
parameters is called the ‘reference case’. Figure 2 shows one of the simulated experiments 
(circles) and the corresponding recalculated model output corresponding to the OLS 

estimation  (red line). 

 

 
6 if there is as much measurements m than the number n of parameters to estimate, then S is square, 

its inverse S-1 exists and its pseudo-inverse is equal to S-1
, then the solution is simply xOLS=S-1y. In 

other words : least squares is a tool for (pseudo)inverting overdetermined problems (more data then 
more equations than parameters). 

[ ] ySSSx tt
OLSˆ 1−

=

SS t

[ ] tt SSS 1−

SS t

OLSx̂
xSxy =)(mo

ε OLSx̂

)ˆ,ˆ(ˆ
2,1, OLSOLSOLS xx=x
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(K/h) 5 

(K) 2 
Model structure , K  , Eq. (3.3) 
Number of measurements m 20 
Start of time range tmin , s 0.5 
Time step dt, s 0.1 

Noise standard deviation , K 0.5 

Table 2 : conditions of the K=100 simulated 'reference' experiments. 

 

 

Figure 2 : one of the K=100 experiments of the 'reference case', the corresponding exact model 
and the corresponding recalculated OLS model output. 

The K=100 OLS estimations  are then plotted in a scatter graph 

graduated in  in Figure 3. Because of a different random realization of noise for each 

of the 100 experiments, each corresponding OLS estimations  is 

different, showing immediately the consequence of noise measurement on the dispersion of 
estimations. In that figure the position (square) of the exact value 

 and the position (star) of the mean value of the K estimations 

 (the center of the scatter) are very 

close. 

exactx1

exactx2

),( xtymo 21 xtx +

εσ

)ˆ,ˆ(ˆ
2,1, OLSOLSOLS xx=x

),( 21 xx
)ˆ,ˆ(ˆ

2,1, OLSOLSOLS xx=x

)2,5( 21 === exactexactexact xxx
).x̂,.x̂ˆ OLS,OLS,mean 0192)(mean9944)((mean 21 ===x

57/332



 
 
 
 
METTI 8 Advanced School   Ile d’Oléron, France 
Thermal Measurements and Inverse Techniques             Sept. 24th – Sept 29th, 2023 
 
 

 Lecture 3: Basics for parameter estimation – page 12 / 38 

Another interesting way of looking at the estimation results is to plot them in a scatter graph 
with normalized coordinates indicating the distance of each estimation from the center of the 
scatter in %, see Figure 4: 

 

 (3.26) 

 (3.27) 

If we consider that  the quantities (3.26) and (3.27) that are the relative 

estimation errors in % of   and of . That plot enables to quantify in % the dispersion 

of the estimations of each parameter around its mean value. This dispersion is what one 
often wants to minimize. 

  

Figure 3 : dispersion of the 100 estimations 
around their central value (star) that is very 

close to the exact value (square) 

Figure 4 : relative estimation errors in % 
centred and scaled using the mean value of 

the scatter 

 
 

At this point, after having quantified the central value  of the K=100 

estimations and after having evaluated the dispersion of the majority of estimations 
around this central value (that indicates the confidence we associate to it), we can 
sum up the result of the estimation problem in the following way: 
  

"  is equal to  and 

  is equal to " 

 

But actually, we never realize 100 experiments with 100 estimations  in 

order to calculate the mean value . We generally do one single 

experiment and obtain only one of the 100 points of Figure 3 and Figure 4. We must keep in 
mind that this point can be one of the points 'far' from the exact value! Whatever the realized 

( ) 1111 100 ,mean,meani,,OLSi,,OLS x̂/x̂x̂e −=
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experiment among these 100, what we want to do is to associate a 'confidence region' to the 

particular estimation  (or 'confidence intervals' for each parameter) that 

has about the same dimension than the scatter we have just obtained with these 100 
simulated experiments. That is the objective of the following section. 

2.5.2. Calculation of statistical properties of the OLS estimator 
 

Here we become more general and we consider the case when not all the n parameters are 

estimated but only r, the (n-r) remaining parameters are supposed to be known and they are 

fixed during the estimation of the r unknown parameters. Usually a parameter is set to a 

supposed known values for two major reasons: i) the model is not sensitive enough to that 

parameters or ii) the sensitivity of the model to that parameter ‘looks like’ the sensitivity to 

another parameter (see Section 3.1.1). Unknown parameters are noted with subscript r and 

known parameters are noted with subscript c. We must consider that the fixed parameters 

have not been fixed to their exact value, and at the end of estimation of the r parameters, we 

have to evaluate the bias made on the estimations because of the error in the (n - r) 
parameters that are supposed to be known. 

We can split (3.8) into: 

 (3.28) 

The matrix  (n × r) is the sensitivity matrix to estimated parameters. It is a part of the 

“complete” sensitivity matrix , relative to all the parameters (unknown   (r × 1) and 

known  ((n-r) × 1)): 

 (3.29) 

The matrix  (n × r) is the sensitivity matrix to estimated parameters. It is a part of the 

“complete” sensitivity matrix , relative to all the parameters (estimated   (r × 1) and fixed 

 ((n-r) × 1)): 

The OLS solution (3.25) becomes:   

 (3.30) 
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Let   be the estimated parameters for a value of fixed parameters  different 

from their exact value . Let  be the vector (r × 1) of the estimation error (the 

difference between estimated rx̂  and exact  values of ) and let  be the 

deterministic error (the bias) for the fixed values of the parameters that are supposed to be 
known: 

 (3.31) 

 (3.32) 

One can write, with  the Moore-Penrose matrix: 

 (3.33) 

Eq. (3.12) can be developed: 

 (3.34) 

Combining Eq. (3.34) and (3.33), the estimation error (3.31) may then be approximated by: 

 (3.34)  

The first term  is the random contribution to the total error; it represents the error 

due to measurement errors  whose covariance matrix  is given by Eq. (3.2). The second 

term  is the non-random (deterministic) contribution to the total error vector 

due to the deterministic error on the fixed parameters . The expected value of  is: 

 (3. 35) 

meaning that no systematic bias is introduced by the random measurement errors.  

Remark: this explains that the mean  of the 100 scattered estimations in Figure 3 is 

very close to the exact value . 

The covariance matrix of  is given by: 

 (3.36) 
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The matrix 
1t

r r r

−
 =  P S S  may thus be seen as the matrix of “amplification” of measurement 

errors. The expected value of  is:  

E[er2] = -ArScec = -�Sr
tSr�

-1
Sr

tScec ≠ 0 (3.37) 

This expected value is different from zero, which means that estimation  is biased, if 

the error ec of the parameters supposed to be known is different from zero itself. This means 

that in the preceding stochastic simulation if only one part of had been estimated (with a 

non-zero error on the remaining part ) the scatter of 100 estimations would not have been 

centred on  (see example on Figure 20, section 4, page 34). This bias is computed 

using the corresponding sensitivity coefficients matrix . The covariance matrix ((n-r)×(n-r)) 
of  error is  because  is not a random error. Finally, the total bias 

associated to the estimation  is due to the biased value of  and its value is 

given by: 

E[er]=E[er2] = -�Sr
tSr�

-1
Sr

tScec (3.38) 

The matrix �Sr
tSr�

−1
Sr

tSc=PrSr
tSc (r × (n-r)) may thus be seen as the “amplification” of bias on 

the fixed parameters ec. For a fixed value of the supposed known parameters x�𝒄𝒄 , the 
covariance matrix  (size (r × r)) of estimation error is: 

 (3.39) 

The coefficients of the covariance matrix of the estimation error are defined by: 

=  (3.40) 

  

Its main diagonal elements is composed of the individual variances of the error associated to 

each component of the estimated vector  and its other coefficients are the covariance 

of crossed errors. Equation (3.40) shows that knowledge of the variance of measurement 

errors  is needed in order to compute the covariance matrix. If  is not measured 

before the experiment, an estimation of it may be obtained at the end of estimation thanks to 
the final value of the objective function :  
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 (3. 41) 

In fact, this estimation is based on the fact that, at the end of the estimation, the only 
difference that subsists between measurements and model (if its structure and its 
parameters are correct) must be the measurement errors. In fact, exact parameters are not 
exactly obtained, and the remaining differences between measurements and model are the 
residuals given by (3.13). If the estimated parameters are not too far from the exact 
parameters, the residuals should have some statistical properties close to those of 

measurement errors. That is why a non-biased estimation of  for the estimation of r 
parameters from the use of m measurements is thus given by: 

 (3. 42) 

 
This estimation is only valid for an independent and identically distributed (i.i.d.) noise and 

if there is no bias in the parameters supposed to be known, that is . Let us note 

that in the case of ‘exact matching’, where the number of measurements m is equal to the 
number r of parameters that are looked for, both numerator and denominator of equation (3. 
42) are equal to zero and, consequently, no information about the noise level can be brought 
by the calculation of the residuals. 
 
 

2.5.3. The correlation matrix  
 

The estimation error associated to  cannot be arbitrarily low independently of the 

corresponding error in ( )r ,OLSˆ jx   in the case where  cov ( , )r i r je e : r ix̂   and r jx̂  are said 

correlated through the link that exists between their errors. The correlation level between 

estimations  r ix̂  and r jx̂  is thus measured by the quantity: 

   for  i, j = 1,…, r (3.43) 

that lies between -1 and 1.  

One considers that two estimation errors are highly correlated when  (Beck et al., 

1977). This quantity is independent of the magnitude of measurement errors and 
corresponds only to the degree of collinearity of the sensitivity coefficients. In the example of 

Figure 4,  indicates that the error in the estimation of the slope ( ) is highly 

linked to the error in the estimation of the intercept  and that they will have the opposite 

sign or variation (if x1 is over-estimated (resp. under-estimated) then x2 will be under-

))(())(

1

2
cOLS

m

i
icOLS,rOLS

~ˆr~(ˆJ xxxx ∑
=

=

2
εσ

rm

~ˆJ
ˆ cOLS,rOLS

−
=

))((2 xx
εσ

ε
exact
cc

~ xx =

)(ˆ
, iOLSrx

jjriir

ijr

jjriir

ijr

ji

rjri
ij PP

P
CC

Cee

,,

,

,,

,),cov(
===

σσ
ρ

9.0≥ijρ

99012 .−=ρ 1x
2x

62/332



 
 
 
 
METTI 8 Advanced School   Ile d’Oléron, France 
Thermal Measurements and Inverse Techniques             Sept. 24th – Sept 29th, 2023 
 
 

 Lecture 3: Basics for parameter estimation – page 17 / 38 

estimated (resp. over-estimated) with a very high level of probability). However, this 
correlation coefficient does not bring any information about the level of these errors: this is 
brought by the calculation of their variances, the diagonal coefficients in Eq. (3.36). The high 
negative coefficient of correlation between the two parameters in our example explains why 
the scatter of the 100 estimations is contained inside a 'narrow'  and 'inclined' ellipse whose 
main axis has a negative slope in Figure 3. 

 

2.5.4. The confidence region and interval for OLS with Gaussian assumptions  

If the noise is Gaussian and i.i.d. the confidence region in the plane  plane in Figure 
3, for a given confidence level  is an ellipse (for n=2 parameters, see Figure 5). Its 

equation in coordinates centered on  is: 

 

 (3. 44) 

 is computed by the function chi2inv(1-alpha,2) in MATLAB® (or GNU-Octave) or 

LOI.KHIDEUX.INVERSE(1-alpha;2) in Excel® if we search for the confidence region at a 

95% level (α=0.05) for the estimation of 2 parameters.  

Typical values for classical confidence intervals are indicated in the Table 3. 

 

1-α ν=1 ν=2 ν=3 ν=4 
68.30% 1.00 2.30 3.53 4.72 
95.45% 4.00 6.17 8.02 9.72 
99.73% 9.00 11.83 14.16 16.25 

Table 3 : Chi-Square law for given confidence levels (1 - α) and ν degrees of freedom that will 
be used to compute the size of the ellipsoidal confidence regions. Square root of values in first 

column gives the classical rules ‘1σ, 2σ and 3σ’ 

 

 is the variance of noisy measurements. It is worth noting that the lengths of half axes  

and  in the principal directions of the ellipse are given by: 

 (3. 45) 

 and  are the eigenvalues of . The product of these two eigenvalues is equal to the 

determinant of . Finally, the area of the confidence region inside the ellipse is given by:  
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 (3. 46) 

 

Figure 5 : elliptical confidence region associated to the estimation of two parameters (with 
Gaussian i.i.d. measurement noise), at a confidence level 1-α=0.95. 

So, the product of eigenvalues of  gives information on the area of the confidence 

region, while the individual eigenvalues give information on the lengths of each principal 
direction of the ellipse : a 'long' ellipse in a direction corresponds to a low eigenvalue. The 

experiment that will maximize det(StS)=λ1λ2 in order to minimize the confidence region is 
called a ‘D-optimal’ experiment. 

In the case of estimation of r = n parameters, the n variances associated to each component 

of the estimated vector constitute the main diagonal of matrix C (Eq. 3.39). The square 

root of the ith diagonal component of  is then the standard deviation associated to the 

estimation  and can be expressed in %. Then, the half width of confidence interval  
at a level of confidence of , associated to the estimation  is now given by: 

, for i = 1,…,n (3.47) 

 

The quantity is the t-statistic for m - n degrees of freedom at the confidence 

level of  (function tinv(1-alpha/2,m-n) in MALTAB® or 

LOI.STUDENT.INVERSE.N(1–alpha/2;m-n) in Excel®). For example, for m = 20 
measurements, if n = 2 parameters are estimated, and if the 95% confidence is wanted, then 

 and . For a high number of measurements (>200), the t-statistic 

tends to the Gaussian statistic and we have . Finally, the result of the estimation 

process of the unknown exact parameter can be presented in the following way:  
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‘ has a 95% chance of being in the interval ’ 

or:  ‘  with 95% chance’ 

2.5.5. The residuals analysis 

When estimation is achieved, the graphical analysis of residuals given by Eq. (3.13)  
enables to detect some inconsistency of the result. Difference between measurements and 
model response with optimal parameters must ‘look like’ measurement noise , or in other 
words : ‘the right model with the right parameters must explain the measurements except its 
random part’. For a Gaussian noise with standard assumptions, the statistical properties of 
residuals must be close to the measurement error properties (zero mean and variance (m – 

n) ). If the residuals are signed, the problem may be due to an error in the statistical 

assumptions regarding the measurements or in the structure or parameters of the direct 
model. 

 

Figure 6 : graphical analysis of residuals at the end of the estimation 

 

3. Indicators for a successful estimation 
 
It has been shown above that matrix , also called the information matrix, is fundamental 

in the process of parameter estimation: 
 

- it has to be invertible (that is non-singular:  ) in order for the OLS 
estimation to be possible, according to Eq. (3.25), 

- it also has to be inverted to compute the covariance matrix according to Eq. 
(3.36) associated to the OLS estimation. The diagonal terms of this matrix are 

equal (within the factor and in case of an i.i.d. noise) to the variances of each 

estimation, and the off-diagonal terms enable to compute the correlation matrix. 

The inverse of  play the role of "noise amplification", 
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- the eigenvalues of , in the case of a Gaussian i.i.d. noise, enable the 

calculation of the lengths of the half principal axes of the elliptical confidence 
region, 

- the determinant of  enables the calculation of the area of the elliptical 
confidence region. 

 
The difficulty is clear :  has to be non-singular to be inverted and  has to be not 

'quasi-singular' in order to limit the noise amplification. This notion of non-singular character 

of the information matrix  makes sense only if all the parameters xj have the same 

physical units. Otherwise, one should study matrix where  is the reduced 

(sometimes called ‘scaled’) sensitivity matrix, see section Sections 3.1 and 3.3.  
 
We then have to find some indicators to evaluate the singularity and the quasi-singularity of 

. The first indication can be simply graphical. Indeed, the singularity would happen if a 

sensitivity coefficient S*i (t) was purely proportional to another S*j (t); in that case the rank of 

 is lower than n, and its determinant is zero. More difficult is to find a linear combination 

of more than two sensitivity coefficients for which the consequences would be the same. The 
quasi-singularity would happen if the sensitivity coefficients are linked for all values of the 

independent variable (time here). This case happens most of the time, the rank of  is 

not zero but its determinant is low and its condition number built with the ratio of extreme 
eigenvalues (see section : 
 

 cond�S*tS*�=
𝜆𝜆max�S

*tS*�

𝜆𝜆min�S
*tS*�

 (3. 48) 

 
takes high values.  
 
Another explanation stems from linear algebra arguments: one can consider that each 
sensitivity coefficient , that  forms a (m × 1) matrix,  a so-called  ‘colum-vector’, is the 

components of a real vector  in a m-dimensional space: the possible quasi-singularity of 

matrix S is caused by the fact that the vectors of the corresponding system of real vectors 
are ‘nearly’ dependent, which means that a non-zero set of n coefficients exists that makes 
the corresponding linear combination of these real vectors ‘nearly’ equal to zero (the 
interested reader can refer to lecture L7 of this series). Of course, the term ‘nearly’ needs to 
be quantified, that is that either all the sensitivity coefficients must have the same physical 
units or this analysis must be made using reduced sensitivity coefficients otherwise (see 
section 3.1 further down).    
 
‘Visual’ and ‘quantitative’ criteria will now be illustrated. We introduce first the reduced 
sensitivity matrix , that enables to compare the sensitivity coefficients between themselves 

and to compute a covariance matrix associated to relative estimations (and then to compute 
directly relative standard deviation associated to each parameter). 

3.1. The reduced sensitivity matrix  

It is given by: 
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with  

(3. 49) 

 
 

(3.50) 

It is built with the reduced sensitivity coefficients that are defined as: 

 

 
(3.51) 

Equation (3.51) shows that the reduced sensitivity  represents the absolute variation of 

model  due to a relative variation of parameter . They can be also 

considered as the sensitivity coefficients with respect to the natural logarithm of each 
parameter.  These reduced sensitivity coefficients have then the same unit as both model 

output  and standard deviation  of the measurement noise. If their magnitude is lower 

than the magnitude of the measurement noise , it means that the influence of the 

considered parameter on the model response will not be measurable with a correct accuracy. 
Consequently, the estimation of this parameter through the use of experimental 
measurements, if it is possible, will be highly inaccurate. Rapid information may then be 
given by comparing the magnitude of each reduced sensitivity coefficient to the magnitude of 
the measurement noise, with respect to the independent variable (here time). 

In the preceding example, we have then (with n = 2 parameters):  

 

 (3.52) 

Let us notice that all the coefficients defining x have to be chosen in order to calculate (and 
compare) the reduced sensitivity coefficients: contrary to the sensitivity coefficients of a linear 
model, they do depend on the value of the parameter vector x. That is why a ‘nominal’ value 
for this vector is used for this calculation, that is a value that is a priori expected to be close 
to its exact value in a parameter estimation problem. 

3.1.1. Graphical analysis of reduced sensitivity coefficients 

As said before, when nominal values of the parameters have been chosen, it could be very 

instructive to plot all the reduced sensitivity coefficients composing each column of in the 
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same graph in order to ‘visually’ detect some future ill-conditioning of matrices (and 

consequently of ) due to several factors: 

- One or more columns of have low values (in absolute value) with respect to both 

the other ones and to the noise level σε , indicating poor sensitivities of the model to 
some parameters. 

- Two or more column are linearly dependent, indicating correlations between some 
parameters that will prevent their simultaneous identification. The simplest 
dependence to check is the proportionality between two coefficients (see Figure 7 
and Figure 8 for favorable and unfavorable situations). Let us note that this linear 
dependence has to concern the whole time interval [tmin, tmax] in order to imply an ill-
conditioning of the inversion. 

 

Figure 7 : some situations 
where reduced sensitivity 
coefficients S*k and S*j are 
linearly independent 

** SS t

SS t

*S
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Figure 8 : some situations 
where reduced sensitivity 
coefficients S*k and S*j (and 
sometimes S*p) are linearly 
dependent, implying an ill- 
conditioning of the 

information matrix 
making it difficult, or 
impossible, to inverse it. 

 

3.1.2. The relative covariance matrix, and relative confidence intervals 

The relative variance-covariance matrix (size n × n for estimation of n parameters) is built 
the same way as the absolute variance-covariance matrix (see Eq. (3.36) and (3.39)) but 
the amplification matrix (inverse of the information matrix) is now built with the reduced 
sensitivity matrix S* instead of S: 
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 (3.53) 

Then, the C* matrix contains on its main diagonal the n relative variances associated to each 

component of the estimated vector . The square root of the ith diagonal component of 

 is then the relative standard deviation (dimensionless) associated to the estimation  

and can be expressed in %. 
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, for  i = 1,…,n (3.54) 

Last, the half width of relative confidence interval , at a level of confidence of 

, associated to the estimation  (and that was evaluated with 100 stochastic 

simulations in Section 3.5.1.) is now given by: 

 

, for i =1,…,n (3.55) 

 

Finally, the result of the estimation process of the unknown exact parameter can be 

presented as the following, with the relative confidence interval:  
 

‘ has 95% chance of being in the interval ’ 

or :  ‘  with 95% chance’ 

 

The elliptical relative confidence region corresponding to the scattering of estimations of 

Figure 4 can also be computed with the relative information matrix , the resulting 

equation expressed in the reduced coordinates is: 

 (3.56) 

‘Absolute’ and ‘relative’ ellipses are plotted respectively in Figure 10 and Figure 10 to show 
that they correctly predict the extent of the 100 estimations cloud. 

  

Figure 9 : 100 estimations cloud and 95% 
absolute confidence elliptical region around 

the cloud mean 
Figure 10 : 100 estimations cloud and 95% 

relative confidence elliptical region 
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3.2. Illustration, with a simple example, of different situations that modify the quality of 
estimation  

In this section, the influence of some experimental parameters on the quality of estimation 
are illustrated for the example described in Table 2. This quality is visualized by the extent of 
the confidence region and some of the quantitative indicators presented above are also 
observed. 

3.2.1. Influence of noise standard deviation  

The extension of the confidence region with respect to the standard deviation of noise 

measurement , without changing its orientation, is shown in Figure 11. This is conform to 

Eq. (3. 46) giving the ellipse area proportional to the square of . 

3.2.2. Influence of number of measurements m (in the same time range) 

The extension of the 95 % confidence region with respect to the number of measurements 
m, without changing its orientation, is shown in Figure 12. This is conform to Eq. (3. 46) 

giving the ellipse area inversely proportional to the square root  of , then area is 

inversely proportional to m. Then halving the noise level is better than doubling the number 
of measurements. This is quite obvious if one uses Eq. (3.40) and (3.43) to calculate the 

standard deviations and the correlation coefficient of the two OLS estimates  and : 

   (3.57) 

where:      (3.58) 

One clearly sees that the standard deviation of each parameter is proportional to the 
standard deviation of the noise and inversely proportional to the square root of the number of 

measurements, if the average t ̅and the standard deviation st
2 of the times of measurement 

(Eq. (3.58)) are not changed when their number is changed. 
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Figure 11 : Confidence ellipse extent as a 
function of noise level : in green (reference 

case) . 

Figure 12 : Confidence ellipse extent as a 
function of the number of measurements m : 

in green (reference case) m=20. 

3.2.3. Influence of time range (for m=20 measurements) 

The last tested experimental factor to be varied is the time range, with a constant number of 
measurements (m=20), see Figure 13. The results are presented in Figure 14 and in Table 
4. 

 

 

 

Figure 13: three time ranges are tested, 
giving three clouds of estimations on 

Figure 14.  

Figure 14: three clouds of estimations 
(corresponding to the three time ranges for 

the experiments) and relative 95% confidence 
ellipse. 

4 4.5 5 5.5 6 6.5
0

0.5

1

1.5

2

2.5

3

3.5

noise halfed

noise doubled

)(ˆ
2 Kx

)/(ˆ
1 hKx

)(ˆ
2 Kx

)/(ˆ
1 hKx

4 4.5 5 5.5 6 6.5
0

0.5

1

1.5

2

2.5

3

3.5

m doubled

m halfed

tmin and tmax fixed (dt adapted)

K5.0=εσ

0 5 10 15 200

20

40

60

80

100

t (h)

y 
(K

)

Measurements between

0.5 and 2.5 am

Measurements

between 5 and 7.5 am

Measurements between

15 and 17.5 pm

-15 -10 -5 0 5 10 15
-400

-300

-200

-100

0

100

200

300

400

1

11
ˆ

100
x

xx −
(%)

72/332



 
 
 
 
METTI 8 Advanced School   Ile d’Oléron, France 
Thermal Measurements and Inverse Techniques             Sept. 24th – Sept 29th, 2023 
 
 

 Lecture 3: Basics for parameter estimation – page 27 / 38 

Figure 14 shows that when experiments are done at ‘high’ time values, the confidence 
ellipse is growing, especially along the x2 axis: the estimation of x2 (intercept of the model x1 

t + x2) is more and more inaccurate when the measurements are realized at high time 
values (far from t = 0). This is confirmed by the reduced sensitivity plots on Figure 15 and 
Figure 16 (see comments in legends). 

 

Table 4 : results of estimations for three different time ranges, with m=20 measurements. 

 
 

Figure 15 : first time range (between 0.5h 
and 2.5h). Reduced sensitivities are of same 

order of magnitude, sensitivity to x1 is 
better than to x2 and is increasing with time. 

Figure 16 : third time range (between 15h and 
17.5h). Reduced sensitivity to x1 is far better 
than sensitivity to x2 that appears now very 

close to zero comparing to S*1. 
 
 
Last, Table 5 shows multiple indicators confirming that increasing the beginning of the time 
range for the estimation of x1 and x2 is degrading the conditioning and then the quality of 
estimation. 
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Table 5 : indicators values for the three experiments. In the first column, the arrows indicate if 
the indicator should be high (arrow up) or low (arrow down) to improve the conditioning. 

 

3.3. Singular Value Decomposition of a matrix and condition number 
 

3.3.1 Singular Value Decomposition (SVD) of a rectangular matrix 
 
Any rectangular matrix (called K here) with real coefficients and dimension (m, n) with m ≥ n, 
can be written under the form: 
 

,  that is   (3.59) 

 

 
Eq. (3.59) is sometimes called "lean" singular decomposition or "economical" SVD and 
involves: 
 
- U , an orthogonal matrix of dimensions (m, n) : its column vectors (the left singular vectors 

of K) have a unit norm and are orthogonal by pairs : , where  is the identity 

matrix of dimension n. Its columns are composed of the first n eigenvectors Uk, ordered 

according to decreasing values of the eigenvalues of matrix . Let us note that, in the 

general case, , 

 

- V , a square orthogonal matrix of dimensions (n, n), : . Its column vectors 

(the right singular vectors of K), are the n eigenvectors Vk, ordered according to decreasing 

eigenvalues, of matrix , 
 
- W , a square diagonal matrix of dimensions (n x n), that contains the n so-called singular 
values of matrix , ordered according to decreasing values : . The 
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singular values of matrix  are defined as the square roots of the eigenvalues of matrix 

. If matrix  is square and positive-definite, eigenvalues and singular values of K are 
the same. 
 
Another SVD form called "Full Singular Value Decomposition" is available for matrix K. In this 
equivalent definition, both matrices U and W are changed: the matrix replacing U is now 
square (size m x m) and the matrix replacing W is now diagonal but non square (size m x n). 
In the case m ≥ n , this can be written: 
 

 

(3.60) 
or: 
 

 (3.61) 

 
Matrix is composed of the (m - n) left singular column vectors not present in U. So, the 

concanated matrix verifies now: 

 

     (3.62) 
 

This singular value decomposition (3.61) can be implemented for any matrix ,  with real 

value coefficients, for .  

 

3.3.2 Interest of the Singular Value Decomposition in linear parameter estimation 
 
We have seen above that if all the n parameters in a parameter vector x are sought for a 

linear model , where m noised measurements  are available, and 

if noised  is i.i.d., that is , its OLS estimator can be written: 

 

 (3.63) 
 
The potential difficulty in its estimation may stem from the possible ill-conditioning of the 

square information matrix  whose inversion makes the standard deviations of its 

different parameters become very large with respect to their exact value, see Eq. (3.53). 
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So, a normalized criterion can be built in order to assess the quality of the estimation of the n 
parameters. 
  
This can be made through normalization of all the parameters xj present in parameter vector 
x by a a nominal value xnom, j  (which, in parameter estimation results from a prior knowledge 
of the order of magnitude of the corresponding parameter) to get a reduced parameter vector 

 without any physical unit:  
 

  (3.64) 

 
So the output of the linear model can be expressed in terms of the reduced sensitivity matrix 

S* already presented in Section 3.1 and of the reduced (or scaled) parameter vector : 
 

  (3.65) 
 
OLS estimation of this reduced parameter vector becomes, using Eq. (3.23): 
 

 (3.66) 

 
And its covariance can be easily derived: 
 

     (3.67) 
 
It is the same equation as Eq. (3.53). Since all the components of the reduced sensitivity 

matrix have the same unit as signal y, and because  is dimensionless, it is possible to 

consider  as a linear application from a vector space of dimension n into a vector space of 

dimension m. That was not possible for the original parameter column-vector x, which did not 
belong to a true mathematical vector space, because its coefficients had not the same units. 
 

So, it is now possible to write the lean SVD of , which uses the notion of Euclidian norm of 

different true vectors, see Eq. (3.59): 
 

      (3.68) 
 
One can also calculate the amplification coefficient of the relative error kr, see Eq. (1.7) in  
Lecture 1 of the same series: 
 

  (3.69) 
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Using the properties of matrices U and V described above, as well as Eq. (3.66), one can 
show: 
 
 

   (3.70) 

 
One can recognize in the right-hand term of the last inequality (3.70) the product of norms of 
two matrices. The second matrix is simply the SVD form of the reduced sensitivity matrix S* 
while the first one is just the pseudo inverse of S*, which is noted S*+ here. 
 
Let us remind that the norm of any matrix K (which has not to be square) is defined by: 
 

    (3.71) 

 

where  is the largest singular value of K. This singular value is simply the square root 

of the largest (positive) value of the reduced information matrix 𝜆𝜆max �S
*tS*�, see Eq. (3. 48). 

One can show that: 
 

   (3.72) 

 
So, it can be shown, using Eq. (3.69), (3.70) and (3.72) that the maximum value of the 
amplification coefficient of the relative error kr, that is the criterion that assesses the ill-posed 
character of the OLS parameter estimation problem is equal to the condition number, noted      
cond (.)  here, of the reduced sensitivity matrix: 
 

     (3.73) 

 
So, this condition number, defined here with the Euclidian L2 norm, is the pertinent criterion 
that can be used to measure the degree of ill-posedness of a linear parameter estimation 
problem, whatever the value of the noise level (for an i.i.d. noise). Since it requires the 
construction of the reduced sensitivity matrix, it depends on the nominal values of the 
parameters and can change strongly, depending on this choice, even if the problem is linear. 
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4. Illustration on a three parameters case 
 

4.1. All parameters are estimated or one of them is fixed 
 
Here are the characteristics of the new model and the experimental parameters: 
 

x1nom, [𝐾𝐾/√𝑠𝑠] 10 
x2nom, [/] 2 
x3nom, [𝐾𝐾√𝑠𝑠] 3 

Model structure , [K] 
1 2 3x t x erfc( t ) x / t+ +   

Number of measurements m 100 
Start of time range tmin [s] 0.02 
Time step dt, [s] 0.02 

Noise standard deviation , [K] 0.5 

 

Figure 17 : Three parameters example. Measurements (blue dot) and reduced sensitivities (at 
nominal values of parameters). 

Figure 18 and Figure 19 shows the 100 Monte Carlo estimations of the three parameters, 

perfectly centred on the exact values. The condition number of * t *S S here is 1325. 

),( xtymo

εσ
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Figure 18 : Unbiaised estimation of the three parameters: the clouds are centered on the exact 
value (the black square). Axes are scaled with the parameters units 

 

 

 

Figure 19 : Unbiaised estimation of the three parameters. Ellipses are the relative confidence 
region (at level 95%) of each parameter, in axes graduated in % of the nominal values. In the 

second line, axes are equally graduated between -50% and 50% to visually compare the relative 
variance associated to each estimated parameter (dispersion of points projected on each axe) 

and the correlation between errors (inclination of ellipses). 
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If x1 is fixed to a wrong value (11 instead of 10, bias equal to +10%), then estimation of x2 
and x3 is biased, see Figure 20 (blue right plot). In that case, error due to fixed parameter 
(bias) is even higher than error due to noise measurement (variance). The condition number 
is better (227) for the simultaneous estimation of only 2 parameters (x2 and x3) but care has 
to be taken on the fixed value of x1: this illustrates the ‘bias-variance trade-off’. 

 

Figure 20: One parameter is blocked to a wrong (‘biased’) value, the two other are estimated 
(Monte Carlo run with 100 experiments). In black : no bias, same figure than Figure 17. In red 
(center plot), the parameter x2 is blocked to a biased value (bias of +10%) and x1 and x3 are 

estimated and plotted in the x3 vs x1 plot. In blue (right plot), the parameter x1 is blocked to a 
biased value (bias of +10%) and x2 and x3 are estimated and plotted in the x3 vs x2 plot. Exact 

values of (x1, x2, x3) are (10, 2, 3). Centers of black, red and blue clouds are respectively (10.06, 
1.998, 3.0003), (10.02, (2.2), 2.95) and ((11), 4.1, 2,1) where values between (.) are blocked 

values. 

If x2 is fixed to a wrong value (2.2 instead of 2, bias equal to +10%), then estimation of x1 and 
x3 is biased, see Figure 20 (red center plot). But in that case, error due to fixed parameter 
(bias) is smaller than error due to noise measurement (variance). The condition number is 
small (equal to 9) for the simultaneous estimation of x1 and x3 and the amplification of bias 
(on x2), given by Eq. (3.38) is here acceptable. 

These behaviors can be related to the reduced sensitivities of Figure 17: the model is less 
sensitive to x2 than x1 during the chosen time range, then a bias on x2 is less amplified than a 

bias on x1. Last, according  to Eq. (3.38), because of the inner product between t
rS  and cS

that amplifies the bias on fixed parameters ce , one has interest to block parameters whose 
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sensitivity coefficient cS is the most ‘orthogonal’ possible to the sensitivity coefficient of 

estimated parameters t
rS , or in other words, the least ‘collinear’, or the least ‘similar’. 

4.2. Design of optimal experiment for a given nominal value of xnom 

In this section, we explore the choice of experimental control variables that enable to design 
the experiment. In that unsteady experiment, we can change m the number of time of 
measurements and the values of these times. We add the constraints of a regular time step 
dt between each point, and the first time of acquisition being at t=dt. Finally, we decide also 
to fix the number m (size of the y vector of measurements), then the only variable control 
variable (or design variable) is dt, the associated total duration of experiment tm being 
deducted by tm=m dt. The noise measurement is also fixed to We try then to answer the 
question: what is the best time step dt (and then the best duration of experiment tm) that will 
enable to estimate the parameters with the best confidence? The Figure 21 shows the 
difference of the reduced sensitivities behavior with time for a short experiment (left side, 
tm=0.5s) or a long experiment (right side, tm=4s). Some sensitivities increase with time while 
others decrease, it is a potential configuration for an optimum positioning of measurement 
times.  

 

Figure 21: Design of experiment. With a fixed number m=100 of regularly spaced time steps 
beginning at t1=dt, the design variable is the time step dt (an consequently the experiment 

duration tm=m dt). Short (left) versus long (right) experiment show different measurement and 
sensitivities evolution with times : long experiment are more sensitive to x1 but less sensitive 

to x3 and above all less sensitive to x2. 
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Figure 22: Design of experiment when the 3 parameters are estimated. Left : 2 plot of ‘global’ 
figures of merit : the conditioning of * t *S S to minimize (see Eq. (3. 48) and (3.73)) and the 

determinant of * t *S S to maximize (see sections 2.5.4 and 3.1.2). Right : 3 plot of ‘local’ figures 
of merit : the three relative standard deviation (in %) associated to each estimation. They are 

extracted from the relative covariance matrix shown in the center (Eq. (3.53)) 

The Figure 22 shows different way to answer the question of the best experiment if we want 
to estimate simultaneously the three parameters with the nominal values shown in Figure 17: 

- With global indicators of the elliptical confidence region : i) the most balanced 

lengths of the three main axes (obtained by minimizing cond(S*tS*) or ii) the 

minimum volume of the ellipse (obtained by maximizing det(S*tS*)). The two 
criterions are optimized for a time step around dt=0.01s (then a duration of 
experiment of tm=1s). 

- With local indicators of the confidence region: the 3 relative standard deviations 
(that must be minimized) associated to each parameter, extracted from the relative 
covariance matrix given by Eq. (3.53). It confirms that confidence in estimation of x2 
and x3 is decreasing for long experiments (and standard deviation associated to x2 
will never be better than 12% (for  dt=0.009s, tm=0.9s). On the contrary, confidence 
in estimation of x1 is increasing with long experiments, it is logical since model is 
more and more sensitive to x1 at long times (see the green curve on Figure 21).  
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If a specifical parameter is searched with a high confidence in % or if all the parameters are 
searched with the best confidence, the above local or global figures of merit can be 
considered. If the duration of experiment is a constraint and must be as short as possible, 
these criterions can also help to design the shortest experiment to estimate parameters with 
a given relative confidence in %. 

 

5. Conclusion 
 
The example of a linear model with respect to its two or three parameters is rich enough to 
introduce many tools useful in the field of parameter estimation : the sensitivity coefficients 
that compose the sensitivity matrix are one of these tools. This matrix has to be inverted (or 
the corresponding linear system of normal equations has to be solved) in the estimation 
problem. The variance-covariance matrix (sometimes called more simply the covariance 
matrix) that helps to qualify the quality of the estimation (variance of each estimation, 
correlation between them, size of the confidence region if the stochastic law of the 
measurement noise is known), uses also these coefficients. In the non linear case, the 
problem is often solved by assuming a local linear behaviour of the objective function to be 
minimized (see lecture L7 of this series). 
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Lecture 4. Measurements without contact in heat 
transfer: radiation thermometry 
 
Part A: principles, implementation and 
pitfalls 
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Abstract. The objective of this lecture is to present the main features of spectral and multispectral 
radiometry when applied for the purpose of temperature measurement, in particular pyrometry. The 
amount of thermal radiation emitted by a surface is only a fraction of the radiation emitted by a blackbody 
at the same temperature. The corresponding ratio is called emissivity. It is an additional unknown 
parameter which depends on material, wavelength, direction, and surface state. In passive radiation 
thermometry, whatever the number of considered wavelengths, we face an underdetermined problem, 
notwithstanding the fact that the atmosphere between the sensed surface and the sensor introduces 
itself additional unknown parameters. A series of solutions has been presented to solve the problem of 
emissivity and temperature separation in the field of multiwavelength pyrometry. Their performance and 
inherent difficulties are discussed. 
 

List of acronyms: 
• LSMWP Least-Squares Multi-Wavelength Pyrometry 

• MCMC Markov Chain Monte Carlo 

• MLE Maximum Likelihood Estimation 

• MWP Multi-Wavelength Pyrometry 

• OLS  Ordinary Least Squares 

• RMS Root Mean Squares 

• TES Temperature Emissivity Separation 
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problem (TES)  
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6. Conclusion 
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1. Introduction 
 
Matter spontaneously emits electromagnetic radiation in a broad spectrum encompassing UV, 
visible light, infrared (IR) and microwaves. The radiance emitted by a surface depends on 
wavelength, temperature, direction and on the considered matter. For a solid material it also 
depends on the surface state, e.g. roughness and possibly the presence of corrosion.  
Obviously, because the emitted radiance is quite sensitive to temperature, the measurement 
of the emitted power at a given wavelength could be used to infer the temperature. This idea 
is at the origin of pyrometry, thermography, and microwave radiometry. 
However, the spectral radiance emitted by a material not only depends on the temperature but 
also on its spectral emissivity, which has thus to be known or evaluated simultaneously with 
the temperature. On the other hand, before reaching a remote optical sensor, the emitted 
radiation has been attenuated by the atmosphere. In addition, it has been combined with the 
radiation emitted by the atmosphere itself and the environmental radiation reflected by the 
aimed surface. 
Evaluating the temperature from the at-sensor radiance is thus not an easy task. In this paper 
we present some methods that enable estimating the surface temperature. A particular 
emphasis is given to the temperature-emissivity separation problem. 
 

2. Basic relations for the measured thermal radiance 

2.1. Blackbody radiance 
 
The maximum radiance emitted at given wavelength and temperature is described by Planck’s 
law (blackbody radiance) [1]: 
 

𝐵(𝜆, 𝑇) =
𝐶1

𝜆5 [𝑒𝑥𝑝 (
𝐶2

𝜆𝑇
) − 1]

−1

 (1) 

 
The blackbody radiance 𝐵(𝜆, 𝑇) is expressed in W·m3·sr-1, wavelength 𝜆 is in m, temperature 

𝑇 in K, with the constants 𝐶1 = 1.191·10-16 W·m2 and 𝐶2 = 1.439·10-2 m·K (notice that the 
blackbody radiance does not depend on direction). The blackbody radiance, as expressed by 
Planck’s law, is described versus wavelength in Figure 1 for different temperature values 
(curves with a continuous line). The maximum emission is observed at a particular wavelength 
𝜆𝑚𝑎𝑥 such that 𝑒𝑥𝑝(𝑥𝑚𝑎𝑥) (5 − 𝑥𝑚𝑎𝑥) = 5, where 𝑥𝑚𝑎𝑥 ≡ 𝐶2 𝜆𝑚𝑎𝑥𝑇⁄ . The solution is 𝑥𝑚𝑎𝑥 ≈
4.965, which corresponds to 𝜆𝑚𝑎𝑥𝑇 ≈ 2898 µ𝑚 ∙ 𝐾 (Wien’s displacement law). Hence, the peak 
emissive intensity shifts to shorter wavelengths as temperature rises, in inverse proportion to 
𝑇. 
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Figure 1.  Blackbody radiance vs. wavelength for T = 300 K, 500 K, 700 K, 900 K and  
1 100 K (from bottom to top). Planck’s law: continuous lines, Wien’s law: dashed lines. 
 
A common approximation to Plank’s law is Wien’s law, which has been plotted in Figure 1 as 
well (in dashed lines): 
 

𝐵𝑊(𝜆, 𝑇) =
𝐶1

𝜆5
𝑒𝑥𝑝 (−

𝐶2

𝜆𝑇
) (2) 

 
When using Wien’s law, the approximation error increases with wavelength. Yet, Wien’s law 
can be considered quite accurate in the rising part of the radiance curve. As a matter of fact, 
at the apex of the curve, the error has reached 0.7 % only. Also, it is less than 1 % as long as 
the product 𝜆𝑇 is lower than 3124 µ𝑚 ∙ 𝐾. 
 
The sensitivity of the blackbody radiance to the temperature, when considering Planck’s law, 
is plotted in Figure 2. Figure 2-left refers to the absolute sensitivity 𝑆 = 𝜕𝐵 𝜕𝑇⁄ , whereas Figure 

2-right refers to the relative sensitivity 𝐵−1 𝜕𝐵 𝜕𝑇⁄ . The maximum of the absolute sensitivity is 
observed at a wavelength 𝜆𝑆𝑚𝑎𝑥 such that 𝑒𝑥𝑝(𝑥𝑆𝑚𝑎𝑥) (6 − 𝑥𝑆𝑚𝑎𝑥) = 6 + 𝑥𝑆𝑚𝑎𝑥 where 
𝑥𝑆𝑚𝑎𝑥 ≡ 𝐶2 𝜆𝑆𝑚𝑎𝑥𝑇⁄ . The solution is 𝑥𝑆𝑚𝑎𝑥 ≈ 5.969, which corresponds to  

𝜆𝑆𝑚𝑎𝑥𝑇 = 2410 µ𝑚 ∙ 𝐾. Notice that for a blackbody at 300 K, the maximum of radiance is 
observed at the wavelength 𝜆𝑚𝑎𝑥 = 9.65 µ𝑚 (see Figure 1); however, the maximum sensitivity 
to temperature variations is observed at a shorter wavelength, namely at  
𝜆𝑆𝑚𝑎𝑥 = 8.03 µ𝑚 (see Figure 2-left). On the other hand, the relative sensitivity is continuously 

decreasing (see Figure 2-right). The asymptotic evolution is actually like 1 𝜆⁄  at short 
wavelengths. The decreasing nature of the relative sensitivity would thus favor short 
wavelengths for temperature measurement. However, in the meantime, the radiance 
progressively decreases at short wavelengths (see Figure 1). Actually, several parameters 
should be considered when selecting a radiative sensor together with a spectral range for 
temperature measurement. One should evaluate the expected radiance in the temperature 
range of interest, its absolute and/or relative sensitivity, together with the spectral detectivity 
of the candidate sensors or the corresponding noise (see e.g. [2]). 
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Figure 2.  Absolute (left) and relative (right) sensitivity of the blackbody radiance to 
temperature for T = 300 K, 500 K, 700 K, 900 K and 1 100 K (resp., from bottom to top and top 
to bottom). 
 

2.2. Emissivity and related radiative parameters 
 
Consider a surface at temperature 𝑇 and a direction defined by the zenith and azimuthal angles 
(𝜃, 𝜙). The ratio between the radiance effectively emitted by the surface in this direction at 
wavelength 𝜆, namely 𝐿(𝜆, 𝑇, 𝜃, 𝜙), and the blackbody radiance 𝐵𝑃(𝜆, 𝑇) at same wavelength 
and same temperature is called emissivity: 
 

𝜀 = 𝐿(𝜆, 𝑇, 𝜃, 𝜙) 𝐵(𝜆, 𝑇)⁄ ;  𝜀 ≤ 1 (3) 
 
Since the emissivity generally depends on wavelength and direction and since it may also 
depend on the surface temperature, we write it as 𝜀 = 𝜀(𝜆, 𝑇, 𝜃, 𝜙). However, if the temperature 
of interest is quite narrow, we may drop the 𝑇 dependency for convenience and consider only 
𝜀 = 𝜀(𝜆, 𝜃, 𝜙). 
 
From the analysis of the radiation in an enclosure we can state the following relation between 
the emissivity and the hemispherical directional reflectance (assuming isotropic incoming 
radiance) [1]: 
 

𝜀(𝜆, 𝜃, 𝜙) + 𝜌∩′(𝜆, 𝜃, 𝜙) = 1 (4) 
 
Also, the energy conservation law for an opaque material tells that the energy that is not 
absorbed by the surface is reflected in all directions. It leads to the following relation between 
the absorptivity and the directional hemispherical reflectance: 
 

𝛼(𝜆, 𝜃, 𝜙) + 𝜌′ ∩(𝜆, 𝜃, 𝜙) = 1 (5) 
 
On the other side, the Helmholtz reciprocity principle leads to (for isotropic incoming radiance): 

𝜌∩′(𝜆, 𝜃, 𝜙) = 𝜌′ ∩(𝜆, 𝜃, 𝜙) (6) 
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which, from eqs. (4) and (5), leads itself to second Kirchhoff’s law, which states that the spectral 
emissivity in a given direction (𝜃, 𝜙) is equal to the spectral absorptivity in the same direction:  
 

𝜀(𝜆, 𝜃, 𝜙) = 𝛼(𝜆, 𝜃, 𝜙) (7) 
 

2.3. Expression of the measured radiance 
 
Assume now that an optical sensor is in the direction (𝜃, 𝜙) to perform a measurement of the 
surface temperature. The radiance of the radiation leaving the surface in this direction, namely 
𝐿(𝜆, 𝑇, 𝜃, 𝜙), is the sum of the radiance emitted by the surface and the contribution of the 

radiation of radiance 𝐿↓(𝜆, 𝜃𝑖, 𝜙𝑖) coming from the environment in all incident directions (𝜃𝑖, 𝜙𝑖) 
of the upper hemisphere and then reflected by the surface (in this course, without loss of 
generality, we generally consider that the surface is facing up): 
 

𝐿(𝜆, 𝑇, 𝜃, 𝜙) = 𝜀(𝜆, 𝜃, 𝜙)𝐵(𝜆, 𝑇) + ∫ 𝜌′ ′(𝜆, 𝜃, 𝜙, 𝜃𝑖, 𝜙𝑖)
2𝜋

𝐿↓(𝜆, 𝜃𝑖, 𝜙𝑖) 𝑐𝑜𝑠𝜃𝑖 𝑑 Ω𝑖 (8) 

 

where 𝜌′ ′(𝜆, 𝜃, 𝜙, 𝜃𝑖, 𝜙𝑖) is the bidirectional reflectance. 
 
The radiance received by the optical sensor, which is called 𝑳𝒔(𝝀, 𝑻, 𝜽, 𝝓), encompasses both 
the radiance leaving the aimed surface and attenuated along the optical path, namely 
𝝉(𝝀, 𝜽, 𝝓)𝑳(𝝀, 𝑻, 𝜽, 𝝓), where 𝝉(𝝀, 𝜽, 𝝓) is the transmission coefficient through the air, and the 

radiance 𝑳↑(𝝀, 𝜽, 𝝓) which is self-emitted by the atmosphere along this path: 
 

𝐿𝑠(𝜆, 𝑇, 𝜃, 𝜙) = 𝜏(𝜆, 𝜃, 𝜙)𝐿(𝜆, 𝑇, 𝜃, 𝜙) + 𝐿↑(𝜆, 𝜃, 𝜙) (9) 
 
The general radiation thermometry equation is finally: 
 

𝐿𝑠(𝜆, 𝑇, 𝜃, 𝜙) = 𝜏(𝜆, 𝜃, 𝜙) [𝜀(𝜆, 𝜃, 𝜙)𝐵(𝜆, 𝑇) + ∫ 𝜌′ ′(𝜆, 𝜃, 𝜙, 𝜃𝑖, 𝜙𝑖)
2𝜋

𝐿↓(𝜆, 𝜃𝑖, 𝜙𝑖) 𝑐𝑜𝑠𝜃𝑖 𝑑 𝛺𝑖]

+ 𝐿↑(𝜆, 𝜃, 𝜙) 

(10) 

 
The optical sensor integrates the radiance over a narrow spectral band of width 𝛥𝜆 centered 
at the wavelength 𝜆. It delivers an electrical signal and, thanks to a calibration performed with 
a blackbody brought close to the sensor, a relationship can be established between this signal 
and the radiance 𝐿𝑠(𝜆, 𝑇, 𝜃, 𝜙) integrated over the spectral band of width 𝛥𝜆. Since the 

bandwidth 𝛥𝜆 is small, the relationship is directly with the radiance at the wavelength 𝜆, namely 
𝐿𝑠(𝜆, 𝑇, 𝜃, 𝜙). After proper scaling of the signal 𝑆𝜆 we can consider that it is a clear 
representation of the incoming radiance 𝐿𝑠(𝜆, 𝑇, 𝜃, 𝜙), except it is affected by an experimental 

noise 𝑒𝜆 that for now we consider simply to be additive: 
 

𝑆𝜆 = 𝐿𝑠(𝜆, 𝑇, 𝜃, 𝜙) + 𝑒𝜆 (11) 
 
Notice that the calibration and the scaling should incorporate the contributions of the sensor 
optics (transmission and self-emission). Care should thus be taken that these contributions do 
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not change between the time interval separating the calibration process and the temperature 
measurements themselves. 
 

2.4. Simplification of the radiative equation 
 
The objective is to evaluate the surface temperature from the measurement of the radiance 
𝐿𝑠(𝜆, 𝑇, 𝜃, 𝜙) through the recording of the signal 𝑆𝜆 (see eq. (11)). At this point we have to deal 

with several unknowns: the transmission coefficient 𝜏(𝜆, 𝜃, 𝜙) and the self-emission of the 

atmosphere 𝐿↑(𝜆, 𝜃, 𝜙) along the line of sight, the hemispherical environmental radiance 

𝐿↓(𝜆, 𝜃𝑖, 𝜙𝑖), the bidirectional reflectance 𝜌′ ′(𝜆, 𝜃, 𝜙, 𝜃𝑖, 𝜙𝑖) for all incident directions (𝜃𝑖, 𝜙𝑖) and 
the directional emissivity 𝜀(𝜆, 𝜃, 𝜙). Only when all these parameters are determined can we 

expect evaluating the blackbody radiance 𝐵(𝜆, 𝑇) and then inferring the temperature. 
 
A common approximation is to consider that the surface is Lambertian, i.e. its optical properties 
are direction-independent. Eq. (10) is then simplified as follows: 
 

𝐿(𝜆, 𝑇) = 𝜀(𝜆)𝐵(𝜆, 𝑇) + (1 − 𝜀(𝜆))𝐿↓(𝜆) (12) 
 

where 𝐿↓(𝜆, 𝑇) is the mean environmental radiance (i.e. equivalent isotropic radiance) defined 
according to: 
 

𝐿↓(𝜆, 𝑇) =
1

𝜋
∫ 𝐿↓(𝜆, 𝜃𝑖, 𝜙𝑖) 𝑐𝑜𝑠𝜃𝑖 𝑑 𝛺𝑖

2𝜋

 (13) 

 
We then have access to the at-sensor spectral radiance: 
 

𝐿𝑠(𝜆, 𝑇, 𝜃, 𝜙) = 𝜏(𝜆, 𝜃, 𝜙)[𝜀(𝜆)𝐵(𝜆, 𝑇) + (1 − 𝜀(𝜆))𝐿↓(𝜆)] + 𝐿↑(𝜆, 𝜃, 𝜙) (14) 
 
Generally speaking, when dealing with temperature measurement based on thermal radiation, 
we face two problems: 

- first we have to correct the influence of the environment (reflections from nearby 
surfaces and from the atmosphere, along-the-path self-emission of the atmosphere and 
along-the-path attenuation); 

- then we have to separate emissivity and temperature. 
 
The atmosphere contribution through attenuation and self-emission is particularly relevant 
when the measurement is performed from large distances, as for example in airborne and 
satellite remote sensing. Specific methods for atmosphere correction have been developed for 
these applications. Emissivity and temperature separation methods that take advantage of the 
presence of the atmosphere where devised and we refer the reader to [3] for a review. 
For the remaining of this presentation, we assume that an atmosphere correction has already 
been applied. This means, in the case of remote sensing applications, that the upwelling 

radiance 𝐿↑(𝜆, 𝜃, 𝜙), the transmission coefficient 𝜏(𝜆, 𝜃, 𝜙), and the downwelling mean radiance 

𝐿↓(𝜆) have been evaluated through simulations with a computer program designed to model 
atmospheric propagation of electromagnetic radiation like MODTRAN [4] or MATISSE [5]. 
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Upon subtracting 𝐿↑(𝜆, 𝜃, 𝜙) from the signal and then dividing by 𝜏(𝜆, 𝜃, 𝜙) we obtain a 
transformed signal that is a representation of the surface-leaving radiance 𝐿(𝜆, 𝑇, 𝜃, 𝜙) as 
expressed in eq. (8): 
 

𝑆𝜆 = 𝜀(𝜆, 𝜃, 𝜑)𝐵(𝜆, 𝑇) + ∫ 𝜌′′(𝜆, 𝜃, 𝜑, 𝜃𝑖, 𝜑𝑖)𝐿↓(𝜆, 𝜃𝑖, 𝜑𝑖)𝑐𝑜𝑠(𝜃𝑖)𝑑Ω𝑖2𝜋
+ 𝑒𝜆  (15) 

 
where, although having been transformed, the same notations have been kept for the new 
signal 𝑆𝜆 and the corresponding noise 𝑒𝜆. 
 
In the case of Lambertian surfaces the new signal access to the surface-leaving radiance 
𝐿(𝜆, 𝑇) as expressed in eq. (12): 
 

𝑆𝜆 = 𝜀(𝜆)𝐵(𝜆, 𝑇) + [1 − 𝜀(𝜆)]𝐿↓(𝜆) + 𝑒𝜆 (16) 
 
Notice that eq. (16) can be modified into: 
 

𝑆𝜆 = 𝜀(𝜆)[𝐵(𝜆, 𝑇) − 𝐿↓(𝜆)] + 𝐿↓(𝜆) + 𝑒𝜆 (17) 
 

2.5. Reflection component 
 
There are different approaches for dealing with the reflection contribution, namely 

∫ 𝜌′ ′(𝜆, 𝜃, 𝜙, 𝜃𝑖, 𝜙𝑖)
2𝜋

𝐿↓(𝜆, 𝜃𝑖, 𝜙𝑖) 𝑐𝑜𝑠𝜃𝑖 𝑑 𝛺𝑖 in the general case or (1 − 𝜀(𝜆))𝐿↓(𝜆) for lambertian 

surfaces.  
 
In the case of small-scale laboratory experiments, active pyrometry with an additional heat 
source provides an efficient mean for getting rid of the reflection term. Photothermal pyrometry 
is an example where an additional radiative heat source is provided for the purpose of slightly 
heating the test material dynamically [4]-[9]. The source is either pulsed or modulated. Usually, 
the heat source is a laser beam aimed at the region of interest. A pyrometer is then used to 
measure the slight variations of the radiance (in a spectral band not including the wavelength 
of the radiative heat source). By considering only the variations of radiance, not the initial or 
DC level (as easily obtained in the modulated regime by applying lock-in detection), the 
contribution of the spurious reflections is eliminated since those are constant in time. Only 
remains a signal proportional to 𝜀(𝜆) 𝜕𝐵 𝜕𝑇⁄ (𝜆, 𝑇). Furthermore, by implementing two-color 

pyrometry at two wavelengths 𝜆1 and 𝜆2, we can get rid of the emissivity influence (in the same 
way as in the static regime, as described later in § 4), and obtain a signal that depends on both 
𝜕𝐵 𝜕𝑇⁄ (𝜆1, 𝑇) and 𝜕𝐵 𝜕𝑇⁄ (𝜆2, 𝑇) from which temperature is then easily inferred. 
 

In remote sensing, since the downwelling mean radiance 𝐿↓(𝜆) have already been computed 

with an atmospheric propagation model (in the same time as the upwelling radiance 𝐿↑(𝜆, 𝜃, 𝜙) 
and the transmission coefficient 𝜏(𝜆, 𝜃, 𝜙)), the obtained value is substituted in eq. (17). The 

remaining unknown parameters are then the emissivity 𝜀(𝜆) and the temperature 𝑇 appearing 
in the blackbody radiance 𝐵(𝜆, 𝑇). 
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2.6. Introduction to the problem of temperature-emissivity separation 
 
Whatever the configuration: active (see §2.5) or passive (see eqs. (15), (16), or (17)), radiative 
thermometry faces an ambiguity problem knowing that a decrease or an increase of the 
emissivity can be fully compensated by an increase, resp. a decrease, in temperature. 
Whatever the measurement wavelength, the observed signal may be explained by an infinite 
number of couples of emissivity values and temperature values. 
 
It is then clear that an evaluation of the emissivity is necessary to infer the temperature from 
the measurement of the emitted radiance. An indirect approach consists in measuring the 
directional hemispherical reflectance and using eqs. (4), (5), and (6) to infer the directional 
emissivity. This requires using an additional radiation source and bringing close to the 
characterized surface an integrating hemisphere to collect all the reflected radiation. This 
approach was used to build several databases, which give some hints on the emissivity range 
and spectral variations for specific materials (see for example [10], [11], [12]). 
 
The indirect reflectance approach is not dealt in this presentation. We rather review the 
approaches that consist in simultaneously evaluating the temperature and the emissivity, or 
that manage to get rid of the emissivity in the procedure of measurement of the temperature. 
Even though, some of the methods that are presented later can also be applied to the case 

described by eq. (16) or by eq. (17) in which the downwelling radiance 𝐿↓(𝜆) is known from 
independent measurements or from independent simulations. We focus in the sequel on the 
cases where the most important contribution to the sensed signal is the surface self-emitted 
radiation, whereas the reflection contribution can be neglected. Pyrometry of high temperature 
surfaces with (relatively) cold surrounding surfaces is a typical example. 
 
After a calibration of the optic instrument operating in a narrow spectral band around 
wavelength 𝜆, we have access to the emitted radiance 𝐿(𝜆, 𝑇) through the signal 𝑆𝜆 (albeit 

corrupted by a random noise 𝑒𝜆): 
 

𝑆𝜆 = 𝜀(𝜆)𝐵(𝜆, 𝑇) + 𝑒𝜆 (18) 
 
In the field of pyrometry, different methods are devised depending on the number of 
wavelengths (i.e. spectral bands) used for the measurement: monochromatic pyrometry (§ 3), 
bispectral pyrometry (§ 4), and multiwavelength pyrometry (§ 5). 
 

3. Single-color or monochromatic pyrometry 
 
Let us first consider that the monochromatic measurement described in eq. (18) is errorless: 
 

𝑆𝜆 = 𝜀(𝜆)𝐵(𝜆, 𝑇) (19) 
 
An estimation of the surface emissivity then allows inferring the surface temperature. This 
estimation can be based on prior reflectance measurements or it can be extracted from 
databases. The question is then: what is the consequence of an emissivity error on the 
temperature evaluation? 
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By differentiating eq. (20) we can evaluate the sensitivity of the temperature estimation to an 
error on the emissivity: 
 

𝑑𝑇

𝑇
= − (

𝑇

𝐵

𝑑𝐵

𝑑𝑇
)

−1 𝑑𝜀

𝜀
 (20) 

 

The amplification factor (
𝑇

𝐵

𝑑𝐵

𝑑𝑇
)

−1
can be easily deduced from the relative sensitivity 

1

𝐵

𝑑𝐵

𝑑𝑇
 drawn 

in Figure 2. Also, with Wien’s approximation, eq. (20) reduces to: 
 

𝑑𝑇

𝑇
= −

𝜆𝑇

𝐶2

𝑑𝜀

𝜀
 (21) 

 
The amplification factor is about 0.08 for a temperature of 1 100 K and at 1 µm. It reaches 
about 0.2 for a temperature of 300 K and at 10 µm. A 10 % underestimation of emissivity thus 
leads to a 0.8 % overestimation of temperature in the first case (i.e. 8 K) and a 2 % 
overestimation in the second case (i.e. 6 K). As seen in eq. (21) the error amplification is 
proportional to 𝜆. The advantage of working at short wavelength is thus evident. For this 
reason, some authors recommended to apply pyrometry in the visible spectrum or even in the 
UV spectrum (see for example [13], [14], [15]). However, although a given relative error on 
emissivity has a lower impact on the temperature estimation when applied at short wavelength, 
it should not occult the fact that a reasonable estimation of emissivity is anyway needed. The 
retrieved temperature is unavoidably affected by this (possibly rough) estimation of emissivity 
[16]. In addition, at short wavelength, both the signal and its absolute sensitivity to temperature 
decrease. The choice of the spectral range for pyrometry is thus always a compromise. 
 

4. Two-Color pyrometry 
 
By performing a measurement at another wavelength, we obtain new information, but 
unfortunately, we also introduce a new unknown, namely the spectral emissivity at this 
supplementary wavelength. We thus have at hand two signal values, 𝑆1 and 𝑆2, but three 

unknowns: temperature 𝑇 and the two emissivity values 𝜀(𝜆1) and 𝜀(𝜆2). Assuming errorless 
signals, we have: 
 

{
𝑆1 = 𝐿(𝜆1, 𝑇) = 𝜀(𝜆1)𝐵(𝜆1, 𝑇)

𝑆2 = 𝐿(𝜆2, 𝑇) = 𝜀(𝜆2)𝐵(𝜆2, 𝑇)
 (22) 

 
The most popular method consists in calculating the ratio of the two spectral signals (Ratio 
two-color pyrometry): 
 

𝑅12 =
𝑆1

𝑆2
=

𝜀(𝜆1)

𝜀(𝜆2)

𝐵(𝜆1, 𝑇)

𝐵(𝜆2, 𝑇)
=

𝜀(𝜆1)

𝜀(𝜆2)
(

𝜆2

𝜆1
)

5 𝑒𝑥𝑝(𝐶2 𝜆2𝑇⁄ ) − 1

𝑒𝑥𝑝(𝐶2 𝜆1𝑇⁄ ) − 1
 (23) 

 
which gives, with Wien’s approximation: 
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𝑅12 ≈
𝜀(𝜆1)

𝜀(𝜆2)
(

𝜆2

𝜆1
)

5

𝑒𝑥𝑝(−𝐶2 𝜆12𝑇⁄ ) =
𝜀(𝜆1)

𝜀(𝜆2)
(

𝜆2

𝜆1
𝜆12)

5 1

𝐶1
𝐵𝑊(𝜆12, 𝑇) (24) 

 
where the equivalent wavelength 𝜆12 of the two-color sensor is defined by: 
 

𝜆12
−1 = 𝜆1

−1 − 𝜆2
−1  ⇒  𝜆12 =

𝜆1𝜆2

𝜆2 − 𝜆1
 (25) 

 
Ratio two-color pyrometry thus requires knowing the emissivity ratio 𝜀(𝜆1) 𝜀(𝜆2)⁄  in order to 

infer temperature from the radiance ratio 𝑅12 according to eq. (23) or according to its 
approximation, eq. (24). A common assumption is that emissivity is equal at both wavelengths: 
𝜀(𝜆1) = 𝜀(𝜆2) (it is abusively called the greybody assumption even though only the two 
emissivity values at 𝜆1 and at 𝜆2 are required to be equal). 
 
Like for one-color pyrometry, it is easy to relate the temperature estimation error to the 
emissivity error made at each wavelength: 
 

𝑑𝑇

𝑇
= −

𝜆12𝑇

𝐶2
(

𝑑𝜀1

𝜀1
−

𝑑𝜀2

𝜀2
) (26) 

 
Let us consider these two examples defined by the triplets: [𝑇 = 1 100 K, 𝜆1 = 1 µm,  
𝜆2 = 1.5 µm] and [𝑇 = 300 K, 𝜆1 = 10 µm, 𝜆2 = 12 µm]. The amplification factor reaches 
respectively 0.22 and 1.2. These values are 3 and 6 times higher as compared to the examples 
related to single-color pyrometry in the previous paragraph. The sensitivity of temperature on 
an error on emissivity is thus far higher with two-color pyrometry than with single color 
pyrometry. 
 
The error on temperature can be lowered by reducing the equivalent wavelength 𝜆12, i.e. by 

increasing the difference between 𝜆2
−1 and 𝜆1

−1, as for example by increasing the higher 
wavelength 𝜆2 or decreasing the shorter one 𝜆1. In any case, the amplification factor will always 
be larger than the one obtained with single-color pyrometry performed at the shortest 
wavelength. 
 
A common idea is that by choosing very close wavelengths, the assumption that 𝜀(𝜆1) = 𝜀(𝜆2) 
is better justified. However, in doing so, the equivalent wavelength 𝜆12 increases and the 
sensitivity of the radiance ratio to temperature drops dramatically. These conflicting 
consequences can be solved in the following way. An alternative strategy is to broaden the 

spectral width, more precisely to increase the 𝜆1
−1 - 𝜆2

−1 difference, (i.e. to decrease 𝜆12). 
Accordingly, the emissivity ratio 𝜀(𝜆1) 𝜀(𝜆2)⁄  is then likely to be far from one. A prior knowledge 
of the ratio 𝜀(𝜆1) 𝜀(𝜆2)⁄  is thus required for evaluating 𝑇 from eq. (23) or eq. (24). If this prior 

estimation of the ratio 𝜀(𝜆1) 𝜀(𝜆2)⁄  is reliable, the overall benefit of this procedure is that the 
sensitivity of the radiance ratio to temperature is higher than before (since the equivalent 
wavelength 𝜆12 is lower). 
 
With single-color pyrometry performed at 𝜆1, the required prior knowledge is about 𝜀(𝜆1). With 
(ratio) two-color pyrometry performed at 𝜆1 and 𝜆2, the required prior knowledge is about the 

ratio 𝜀(𝜆1) 𝜀(𝜆2)⁄ . Obviously, we cannot escape the introduction of some knowledge about 
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emissivity. However, the advantage as compared to one-color pyrometry is that thanks to the 
signal ratioing, the method is insensitive to problems like a partial occultation of the line of 
sight, or an optical path transmission variation (provided that this transmission variation is the 
same in both spectral bands). 
 
To evaluate the emissivity ratio 𝜀(𝜆1) 𝜀(𝜆2)⁄  we could resort to pyroreflectometry [17]-[19]. 

Each emissivity is equal to 𝜀(𝜆, 𝜃, 𝜙) = 1 − 𝜌∩′(𝜆, 𝜃, 𝜙) = 1 − 𝜋𝜂𝜌′′(𝜆, 𝜃𝑖, 𝜙𝑖, 𝜃, 𝜙) where 

𝜌′′(𝜆, 𝜃𝑖, 𝜙𝑖, 𝜃, 𝜙) is the spectral bidirectional reflectance for incident direction (𝜃𝑖, 𝜙𝑖) and output 
direction (𝜃, 𝜙), and 𝜂 is a diffusion factor related to both directions. The bidirectional 

reflectance 𝜌′′(𝜆, 𝜃𝑖, 𝜙𝑖, 𝜃, 𝜙) is measured at both wavelengths with the use of an additional 
radiation source (as for example two laser beams at wavelengths 𝜆1 and 𝜆2). It is then assumed 
that the diffusion factor 𝜂 is wavelength independent. This remaining unknown parameter is 
finally adjusted until the color temperatures at both wavelengths (together eventually with the 
ratio temperature) are made coincident. This common temperature is the true one. 
 
In some circumstances, it may be possible to bring close to the object under study a highly 
reflecting surface (cold mirror). By properly choosing its shape, we obtain two benefits: first the 
spurious reflections from the environment are diminished, and then the apparent emissivity of 
the sensed surface is increased thanks to the multiple reflections of the emitted radiation 
between the surface and the mirror [19]. As a consequence, the temperature estimation error 
due to errors on emissivity now involves the ratio 𝜀̑(𝜆1) 𝜀̑(𝜆2)⁄  where 𝜀̑ is the apparent, actually 

amplified, emissivity (see eq. (24)). Since the ratio 𝜀̑(𝜆1) 𝜀̑(𝜆2)⁄  is closer to 1 the sensitivity of 
the temperature evaluation to the errors in emissivity estimation is therefore diminished. 
 
Instead of evaluating the temperature from the radiance ratio in eq. (23) or eq. (24), we could 
get it from a least-squares minimization between the measured radiances on one side, namely 
𝑆1 at 𝜆1 and 𝑆2 at 𝜆2 as described in eq. (18), and their theoretical counterparts on the other 
side. The cost function then expresses as: 
 

𝐽[𝑇, 𝜀(𝜆1), 𝜀(𝜆2)] = [𝑆1 − 𝜀(𝜆1)𝐵(𝜆1, 𝑇)]2 + [𝑆2 − 𝜀(𝜆2)𝐵(𝜆2, 𝑇)]2 (27) 
 
and we are looking for the temperature and emissivity values that minimize this cost function, 
i.e.: 
 

[𝑇, 𝜀(𝜆1), 𝜀(𝜆2)] = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑇,𝜀(𝜆1),𝜀(𝜆2)

𝐽[𝑇, 𝜀(𝜆1), 𝜀(𝜆2)] 
(28) 

 
This corresponds to the ordinary least squares (OLS) method, however here, the problem is 
underdetermined since, as said before, there are three unknown parameters: 𝑇, 𝜀(𝜆1) and 

𝜀(𝜆2) and only two observations: 𝑆1 and 𝑆2. One way to solve it is to introduce a functional 
relationship between the two emissivity values. With this new constraint, the number of 
unknowns is reduced by one. An example of such a relationship is obtained by specifying a 
value 𝛽 for their ratio: 
 

𝜀(𝜆1) 𝜀(𝜆2)⁄ = 𝛽 (29) 
 
This statement of constant emissivity-ratio is shared with the ratio method for pyrometry 
already invoked (see eq. (23)). We then have two methods for evaluating the temperature from 
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the two spectral signals 𝑆1 and 𝑆2: either from their ratio in eq. (23) of from the least squares 
equation in eqs. (27)-(28). The signals are actually corrupted by an additive random 
experimental noise and it is known that the expected value of the ratio is a biased estimator of 
the ratio of the expected values. It is thus better to use eqs. (27)-(28) for the temperature 
identification. 
 
Many other functional relationships could be used. Here are a few examples: 
 

𝜀(𝜆1) − 𝜀(𝜆2) = 𝛽 (30) 

1 𝜀(𝜆1)⁄ − 1 𝜀(𝜆2)⁄ = 𝛽 (31) 
 
where 𝛽 is a material-dependent constant whose value should be provided. 
 
The emissivity compensation methods of Foley [21], Watari [22], and Anderson [23] described 
in [24] can all be connected to the following general relationship (32), where again 𝛽 is a 
material-dependent constant (in [22] it was actually fixed to 𝜆1 𝜆2⁄ ). 
 

𝜀(𝜆1) = 𝜀(𝜆2)𝛽 (32) 
 
The crucial point with two-color pyrometry is to find out a functional relationship like those in 
eq. (29) to eq. (32) together with the value of the associated parameter  . It often happens 

that a good choice for a given material may lead to poor results for another material or for the 
same material in a different state (oxidation, ageing). The great difficulty, when dealing with 
different materials or materials of different states, consists in finding a general functional 
relation capable of representing all the observed spectral variations of the emissivity. 
 

5. Multiwavelength pyrometry  
 
We can proceed further by adding measurements performed at additional wavelengths. In the 
end, we come with 𝑚 values of spectral signal 𝑆𝑖, 𝑖 = 1, . . . , 𝑚, which correspond to 
experimental measurements of 𝑚 values of the spectral radiance 𝐿(𝜆𝑖, 𝑇), 𝑖 = 1, . . . , 𝑚. Each of 

these measurements is contaminated by a random error 𝑒𝑖, 𝑖 = 1, . . . , 𝑚: 
 

𝑆𝑖 = 𝜀𝑖𝐵(𝜆𝑖, 𝑇) + 𝑒𝑖      𝑖 = 1, . . . , 𝑚 (33) 
 
The problem still remains underdetermined since we have at hand 𝑚 equations (i.e. 𝑚 radiance 
measurements), but at the same time, we face 𝑛 = 𝑚 + 1 unknowns, namely the temperature 
𝑇 and 𝑚 values of spectral emissivity 𝜀𝑖 = 𝜀(𝜆𝑖), 𝑖 = 1, . . . , 𝑚. The vector of parameters is called 

𝜷 = (𝜀1 . . .  𝜀𝑚 𝑇)𝑇. 

 
Multiwavelength pyrometry has been a subject of controversy for several decades [16], [25]-
[52]. The experimental results showed various successes, sometimes with small temperature 
errors, other times with unacceptably high errors, depending on the material, on its surface 
state, and on the function chosen to approximate the emissivity spectrum. Even from the 
numerous theoretical works on this subject, it is hard to find a consensus about the advantage 
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or not of using many (or possibly a large number of) wavelengths [25], [26], [31], [33], [35], 
[36], [37], [44], [45], [48]-[53]. 
 
In the following we present few results which highlight the difficulty to obtain good and 
repeatable results with some multiwavelength approaches. A series of error mitigation 
processes are also described. 
 
In many cases, the problem is addressed by ignoring the presence of experimental errors. As 
such, the system of equations to solve is: 
 

𝑆𝑖 = 𝜀𝑖𝐵(𝜆𝑖, 𝑇),  𝑖 = 1, . . . , 𝑚 (34) 
 

Of course, the temperature 𝑇̂ and emissivity values 𝜀𝑖̂, 𝑖 = 1, . . . , 𝑚 obtained therefrom are 
different from the real values 𝑇 and 𝜀𝑖, 𝑖 = 1, . . . , 𝑚 that yielded the observed signals 𝑆𝑖,  
𝑖 = 1, . . . , 𝑚 (actually affected by experimental errors, see eq. (34)). This is discussed next. 
 
We see from eq. (33) that the problem is non-linear with respect to the parameters. However, 
when taking the logarithm to the signal and introducing Wien’s approximation to the blackbody 
radiance, the problem becomes linear with respect to the following transformed parameters 

𝜷 = [𝑙𝑛(𝜀1)  . . .  𝑙𝑛(𝜀𝑚)  𝑇𝑟𝑒𝑓 𝑇⁄ ]
𝑇
, where 𝑇𝑟𝑒𝑓 is an arbitrary reference temperature used for 

scaling the temperature. The new vector of observables is called 𝒀 = (𝑌1 . . .  𝑌𝑚)𝑇 and as a 
first approximation, we assume that the experimental error affecting the observables 𝑌𝑖 is 

additive as well (it is called 𝑒 ′
𝑖): 

 

𝑌𝑖 ≡ 𝑙𝑛 (𝑆𝑖

𝜆𝑖
5

𝐶1
) = 𝑙𝑛(𝜀𝑖) − 𝜇𝑖

𝑇𝑟𝑒𝑓

𝑇
+ 𝑒 ′𝑖,  𝑖 = 1, . . . , 𝑚 (35) 

 
where 𝜇𝑖 is a constant coefficient multiplying the unknown parameter 𝑇𝑟𝑒𝑓 𝑇⁄  and defined by: 

 

𝜇𝑖 ≡
𝐶2

𝜆𝑖𝑇𝑟𝑒𝑓
,  𝑖 = 1, . . . , 𝑚 (36) 

 

5.1. Interpolation-based methods 
 
To solve the underdetermined problem, a potential solution would be to reduce by just one the 
number of degrees of freedom related to the spectral emissivity data. In other words, instead 
of considering 𝑚 unknown free parameters 𝜀𝑖, 𝑖 = 1, . . . , 𝑚, the emissivity values 𝜀𝑖 should be 

described by a parametric function based on 𝑚 − 1 parameters only. Several such emissivity 
models were proposed in the past. A polynomial of degree 𝑚 − 2 has often been considered: 
 

𝜀𝑖 = ∑ 𝑎𝑗

𝑚−2

𝑗=0

𝜆𝑖
𝑗,  𝑖 = 1, . . . , 𝑚 (37) 
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The same could be done for the logarithm of emissivity when using the linearized version in 
eq. (35): 
 

𝑙𝑛(𝜀𝑖) = ∑ 𝑎𝑗

𝑚−2

𝑗=0

𝜆𝑖
𝑗 ,   𝑖 = 1, . . . , 𝑚 (38) 

 
In both cases, the remaining 𝑚 − 1 free parameters are the 𝑚 − 1 coefficients of the 
polynomial: 𝑎𝑗 𝑗 = 0, . . . , 𝑚 − 2. 

 
However, it was shown in [26], based on Wien’s approximation (eq. (35)) and a polynomial 
representation of 𝑙𝑛(𝜀𝑖) (eq. (38)) that this method can rapidly lead to unrealistic temperature 
values as 𝑚 increases. 
 
Let us first assume that there is no measurement error, i.e. 𝑒𝑖 ′ = 0, 𝑖 = 1, . . . , 𝑚 in eq. (35): 
 

𝑌𝑖 = 𝑙𝑛(𝜀𝑖) − 𝜇𝑖

𝑇𝑟𝑒𝑓

𝑇
,  𝑖 = 1, . . . , 𝑚 (39) 

 
Upon considering the polynomial representation of degree 𝑚 − 2 for 𝑙𝑛(𝜀𝑖) in eq. (38), the 
system of 𝑚 equations is now based on 𝑚 unknowns only. However, the introduction of the 

emissivity model has the consequence that the estimated temperature 𝑇̂ obtained by solving 
the linear system of equations is different from the real temperature 𝑇. The estimated 

temperature 𝑇̂ satisfies: 
 

𝑌𝑖 = ∑ 𝑎𝑗

𝑚−2

𝑗=0

𝜆𝑖
𝑗 − 𝜇𝑖

𝑇𝑟𝑒𝑓

𝑇̂
,  𝑖 = 1, . . . , 𝑚 (40) 

 
By multiplying eq. (40) by 𝜆𝑖, we obtain: 
 

𝜆𝑖𝑌𝑖 = ∑ 𝑎𝑗

𝑚−1

𝑗=1

𝜆𝑖
𝑗 −

𝐶2

𝑇̂
,  𝑖 = 1, . . . , 𝑚 (41) 

 

which shows that − 𝐶2 𝑇̂⁄  corresponds to the constant parameter of the polynomial of degree 
𝑚 − 1 interpolating the 𝑚 values 𝜆𝑖𝑌𝑖. 
 
We can also notice (by subtracting eq. (41) from eq. (39) multiplied by 𝜆𝑖) that the temperature 

error expressed through 𝐶2(1 𝑇⁄ − 1 𝑇̂⁄ ) (it has also been called “temperature correction”) 

corresponds to the constant parameter of the polynomial of degree 𝑚 − 1 interpolating the 𝑚 

values 𝜆𝑖 𝑙𝑛(𝜀𝑖): 
 

𝜆𝑖 𝑙𝑛(𝜀𝑖) = ∑ 𝑎𝑗

𝑚−1

𝑗=1

𝜆𝑖
𝑗 + 𝐶2 (

1

𝑇
−

1

𝑇̂
)   𝑖 = 1, . . . , 𝑚 (42) 
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As a consequence, the temperature correction for single color, bicolor, and tricolor pyrometry 
(𝑚 = 1, 2, 3) is expressed by [16], [34]: 
 

𝑚 = 1  𝐶2 (
1

𝑇
−

1

𝑇̂
) = 𝜆1 𝑙𝑛(𝜀1)

𝑚 = 2  𝐶2 (
1

𝑇
−

1

𝑇̂
) =

𝜆1𝜆2

𝜆1 − 𝜆2
𝑙𝑛 (

𝜀2

𝜀1
)

𝑚 = 3  𝐶2 (
1

𝑇
−

1

𝑇̂
) =

𝜆1𝜆2𝜆3

(𝜆2 − 𝜆1)(𝜆3 − 𝜆1)(𝜆3 − 𝜆2)
[𝜆1 𝑙𝑛 (

𝜀2

𝜀3
) + 𝜆2 𝑙𝑛 (

𝜀3

𝜀1
) + 𝜆3 𝑙𝑛 (

𝜀1

𝜀2
)]

 (43) 

 
The temperature correction involves the ratio 𝜀1 𝜀2⁄  for 𝑚 = 2. With equidistant wavelengths, it 

involves the ratio 𝜀1𝜀3 𝜀2
2⁄  for 𝑚 = 3 and the ratio 𝜀1𝜀3

2 𝜀2
2𝜀4⁄  for 𝑚 = 4 [34]. These ratios are 

of course to estimate beforehand. Assigning arbitrarily a value of 1 to the emissivity ratio for a 
series of metals had the consequence that the temperature estimation error increased very 
rapidly with the number of wavelengths [34].   
 
It can be shown that the temperature correction limit for wavelength intervals decreasing to 0 

is equal to (−1)𝑚−1 𝜆𝑚 (𝑚 − 1) !⁄ 𝑑𝑚−1 𝑙𝑛[𝜀(𝜆)] 𝑑⁄ 𝜆𝑚−1 [31]. 
   
We can also recognize in eq. (42) that the temperature correction corresponds to the 
extrapolation at 𝜆 = 0 of the polynomial of degree 𝑚 − 1 used to interpolate the 𝑚 values 
𝜆𝑖 𝑙𝑛(𝜀𝑖). This finding can now be developed a little more. If, by chance, a polynomial of degree 

𝑚 − 2 could be found passing exactly through the 𝑚 values 𝑙𝑛(𝜀𝑖), the polynomial of degree 
𝑚 − 1 passing through the 𝑚 values 𝜆𝑖 𝑙𝑛(𝜀𝑖) would then correspond to the previous polynomial 
function multiplied by 𝜆. The constant parameter (i.e. the temperature correction term) would 
thus be equal to 0. As a consequence, the estimated temperature would be the exact one. 
However, in reality, that a polynomial of degree 𝑚 − 2 could be found passing exactly through 

the 𝑚 values 𝑙𝑛(𝜀𝑖) is highly improbable. Therefore, in practice, there is an unavoidable error 
regarding temperature. In addition, the error magnitude is tightly dependent on the properties 
of polynomial extrapolation. Unfortunately, it is well-known that using a polynomial interpolation 
to perform an extrapolation leads to increasingly high errors as the polynomial degree rises. 
Furthermore, things get progressively worse as the extrapolation is done far from the 
interpolation interval. Since the aforementioned extrapolation is done at 𝜆 = 0, this last point 
would actually advocate expanding the spectral range to the shortest possible wavelength 
(whose consequence would be to bring the extrapolation point closer to the interpolation 
interval), but this is only a desperate remedy.  
 
The potentially catastrophic errors described just before are actually systematic errors, namely 
method errors. They are obtained even when assuming errorless spectral signals. To analyze 
the influence of the measurement errors, we can state, for ease, that the measurement error 
in channel i has the same impact as a corresponding uncertainty of the emissivity in the same 
channel, namely 𝑑𝜀𝑖. Then, the interpolation of the transformed values 𝜆𝑖 𝑙𝑛[𝜀𝑖 + 𝑑𝜀𝑖] leads to 
the same nature of extrapolation errors as described before. Finally, both extrapolation errors 
add together. The calculated temperature is thus more and more sensitive to measurement 
errors as the number of spectral bands increases. 
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The poor success of the interpolation based method originates from what has been called an 
over-fitting of the experimental data. It was finally recognized that the interpolation based 
method could be considered but only for the simpler pyrometers, actually with two or three 
wavelengths at most [26]. 
 

5.2. Regularization by using a low-order emissivity model 

5.2.1. Emissivity models 
 
The shortcomings of the over-fitting previously described can be mitigated by reducing the 
number of unknowns used to describe the emissivity spectrum. 
 
Different models were tested in the past: 
 

𝜀𝑖 = ∑ 𝑎𝑗
𝑘
𝑗=0 𝜆𝑖

𝑗   ;   𝑖 = 1, . . . , 𝑚  ;   𝑘 < 𝑚 − 2   (generally k = 1 or 2) (44) 

𝑙𝑛(𝜀𝑖) = ∑ 𝑎𝑗
𝑘
𝑗=0 𝜆𝑖

𝑗  ;   𝑖 = 1, . . . , 𝑚  ;  𝑘 < 𝑚 − 2   (generally k  = 1 or 2) (45) 

𝜀𝑖 = 1 (1 + 𝑎0𝜆𝑖
2)⁄  ;    𝑖 = 1, . . . , 𝑚 (46) 

 

Besides that, models of 𝑙𝑛(𝜀𝑖) based on polynomials of the variable 𝜆𝑖
1 2⁄

 or 𝜆𝑖
−1 2⁄

 and models 
involving the brightness temperature were considered in [44], [45]. A sinusoidal function of 𝜆𝑖 
in [25], and other more “physical” models like Maxwell, Hagen-Rubens, and Edwards models 
were presented in [16], [38], [48]. 
 
Since the aim is merely to parameterize the 𝑚 spectral values of emissivity with the help of 

only 𝑚𝑝 parameters with 𝑚𝑝< 𝑚 − 1, there is no limit to the fertility of ideas spawned by 

“pyrometrists” to find new models. Indeed, new “analytical” model are constantly being 
published (see e.g. [41]-[52]), without the results being up to expectations, and for good 
reasons, as shown later. 
 
On the other side, the grey-band model consists in splitting the spectrum into a small number 
of bands 𝑚𝑏, with 𝑚𝑏 < 𝑚, and assigning the same emissivity value to all wavelengths 𝜆𝑖 

belonging to a given band [33]. In this way, the number of unknowns is reduced from 1+m  to 

𝑚𝑏 + 1. The bands can be narrowed to contain only three or two spectral channels as 
suggested in [76]. We can go even further by squeezing some bands to merely one spectral 
channel. The extreme limit consists in 𝑚 − 1 single-channel bands plus one dual-channel 
band. In that case we face a problem with 𝑚 measurements and 𝑚 unknowns which is thus, 
in principle, invertible. We will see that it is actually very badly conditioned. 
 
The concept of grey-band can be generalized by allowing that the channels that are chosen to 
share a common emissivity value are not necessarily close together: an iterative process is 
described in [50] where these wavelengths are each time reshuffled according to the pseudo-
continuous emissivity spectrum, i.e. the one defined over the 𝑚 wavelengths 𝜆𝑖 according to: 
 

101/332



 
 
 
 
 
METTI 8 Advanced School Île d’Oléron, France 

Thermal Measurements and Inverse Techniques Sept. 24th – Sept. 29th, 2023. 
 
 
 

 Lecture 4 – Part A. Radiative Thermometry: principles and pitfalls – page 18 / 45 

 
 
  

𝜀̂(𝜆𝑖, 𝑇̂) =
𝐿(𝜆𝑖, 𝑇)

𝐵(𝜆𝑖, 𝑇̂)
  𝑖 = 1, . . . , 𝑚 (47) 

 

where 𝑇̂ is the most recent temperature estimation. 𝜀̂(𝜆𝑖, 𝑇̂) is sorted from lower to higher 

values and the 𝑚𝑏 bands of equal emissivity values are defined by splitting the 𝜀̂(𝜆𝑖, 𝑇̂) vector 

into 𝑚𝑏 parts. 
 
The unknown parameters of the emissivity function, together with temperature, are finally 
evaluated by least squares minimization. The simplest way consists in introducing Wien 
approximation to express the blackbody radiance and considering the observable  

𝑌𝑖 = 𝑙𝑛[𝑆𝑖 𝜆𝑖
5 𝐶1⁄ ] (see eq. (35)). The logarithm of the emissivity values and the inverse of 

temperature (or 𝑇𝑟𝑒𝑓 𝑇⁄ ) act as parameters of the linear model. Then, by introducing a 

polynomial approximation for 𝑙𝑛(𝜀𝑖) (see eq. (38)) but of degree 𝑘 < 𝑚 − 2, we come to a 
system of 𝑚 equations: 
 

𝑌𝑖 = ∑ 𝑎𝑗

𝑘

𝑗=0

𝜆𝑖
𝑗 − 𝜇𝑖

𝑇𝑟𝑒𝑓

𝑇
+ 𝑒 ′𝑖,  𝑖 = 1, . . . , 𝑚 (48) 

 
and the problem now reduces to an estimation of the linear parameters 𝑎𝑗, 𝑗 = 0, . . . , 𝑘 and 

𝑇𝑟𝑒𝑓 𝑇⁄ . This was done by a linear least squares method in [25], [30], [42], [43]. 

 
Otherwise, when taking for the observable the spectral signal 𝑆𝑖 itself, we face a non-linear 
least squares problem ([27], [29], [32], [33], [35]-[41], [43]-[48], [51], [53]). 
 
Let us add that by rearranging the 𝑚 equations as described in eq. (35), we could get rid of 
one parameter, either a constant parameter or the temperature ([25], [30], [43]). However, it is 
believed that no advantage in accuracy is expected by manipulating the data to present the 
same information in a different form [25]. As a matter of fact, in the case of linear fitting, such 
a manipulation even increases the estimation error of the identified parameters. 
 
We now consider different aspects of the Least Squares Multiwavelength Pyrometry solution 
(LSMWP). 

5.2.2. Least-squares solution of the linearized Temperature Emissivity Separation 
problem (TES) 

 
We adopt Wien’s approximation and consider the vector of observables vector of observables 

𝒀 = (𝑌1 . . . 𝑌𝑚)𝑇 described in eq. (35). We assume here that the experimental errors 𝑒 ′
𝑖,  

𝑖 = 1, . . . , 𝑚 are uncorrelated random variables following a Gaussian distribution of uniform 
variance. It is usually assumed that the spectral signal 𝑆𝑖, not the compound logarithm 𝑌𝑖 in eq. 
(35), is affected by a noise of uniform variance. The present approximation is valid if the 
spectral range is not too wide with respect to the shape of Planck’s law 𝐵(𝜆, 𝑇) and if the 
emissivity values do not span a too wide interval. Otherwise a Maximum Likelihood Estimation 
(MLE) is better appropriate.  
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According to eq. (38) where 𝑙𝑛(𝜀𝑖) is approximated by a polynomial of degree 𝑘 < 𝑚 − 2, the 
least squares solution is: 
 

𝛃̂ = [𝑎̂0 … 𝑎̂𝑘

1

𝑇̂
]

𝑇

= arg min
𝑎𝑗,𝑇

∑ [𝑌𝑖 − (∑ 𝑎𝑗𝜆𝑖
𝑗

−
𝐶2

𝜆𝑖𝑇

𝑘

𝑗=0

)]

2
𝑚

𝑖=1

 (49) 

 
For numerical reasons (the reason is not only to manipulate numbers that are of similar range, 
but to minimize a particular condition number, see later), it is preferable to replace the 
wavelength 𝜆𝑖 in the polynomial expression by its reduced and centered value 𝜆𝑖 ∗ defined by: 
 

𝜆𝑖 ∗= 2
𝜆𝑖 − 𝜆𝑚𝑖𝑛

𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛
− 1 (50) 

 
In this way 𝜆𝑖 ∗∈ [−1,1]. For the same reason, it is better to normalize 𝑇 by 𝑇𝑟𝑒𝑓 where 𝑇𝑟𝑒𝑓 is 

chosen in such a way that the coefficients 𝜇𝑖 ≡ 𝐶2 𝜆𝑖𝑇𝑟𝑒𝑓⁄  (see eq. (36)) are of the order of 1. 

The associated unknown parameter is then 𝛽𝑇
∗ = 𝑇𝑟𝑒𝑓 𝑇⁄ . The parameter vector is: 

 

𝛃̂∗ = [𝑎̂0
∗ … 𝑎̂𝑘

∗
𝑇𝑟𝑒𝑓

𝑇̂
]

𝑇

= arg min
𝑎𝑗

∗,𝑇
∑ [𝑌𝑖 − (∑ 𝑎𝑗

∗𝜆𝑖
∗𝑗

− 𝜇𝑖

𝑇𝑟𝑒𝑓

𝑇

𝑘

𝑗=0

)]

2
𝑚

𝑖=1

 (51) 

 
where the parameters 𝑎𝑗 ∗ are the coefficients of the polynomial expressed in terms of 𝜆𝑖 ∗. 

The sensitivity matrix of this linear model is the following 𝑚 × (𝑘 + 2) matrix: 
 

𝑿 = [
1 𝜆1 ∗ 𝜆1 ∗2 . . . −𝜇1

. . . . . . . . . . . . . . .
1 𝜆𝑚 ∗ 𝜆𝑚 ∗2 . . . −𝜇𝑚

]

𝑚,𝑘+2

 (52) 

 
where the columns correspond to the sensitivity to any of the 𝑘 + 2 parameters present in 

vector 𝜷 ∗ (i.e. the first derivative of the model function relatively to each parameter). 
 
The sensitivities to the first three parameters 𝑎𝑗 ∗ (𝑗 = 0, . .2) and to 𝛽𝑇 ∗ have been plotted 

versus the reduced wavelength 𝜆 ∗ in Figure 3 for the particular case 𝜆𝑚𝑎𝑥 𝜆𝑚𝑖𝑛⁄  = 5/3. The 
absolute values of the wavelength are not important, only the relative width of the total spectral 
band is relevant (the spectral interval [3 µm – 5 µm] satisfies the present criterion on relative 
width, 𝜆𝑚𝑎𝑥 𝜆𝑚𝑖𝑛⁄  = 5/3). 
 
The sensitivity to the first three coefficients of the model are respectively a constant, a linear 
function, and a quadratic function of the reduced wavelength 𝜆 ∗. The important question is 
how the sensitivity to the temperature reciprocal does compare to the former sensitivity 
functions? It is actually very smooth, close to linear. We thus expect a strong correlation 
between the parameters (since the sensitivity vectors are nearly collinear). 
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Figure 3. Sensitivity to the first three coefficients of the polynomial model (resp. continuous, 
dashed and dotted line) and to the inverse of the normalized temperature (dashed-dotted 
line). The reduced wavelength is 𝜆 ∗ (see eq. (50)). For this illustration, the total spectral 
interval is such that 𝜆𝑚𝑎𝑥 𝜆𝑚𝑖𝑛⁄  = 5/3. 

 

The estimator of the parameter vector 𝜷̂ ∗ based on the OLS method is obtained by solving 
the 𝑚 × 𝑚 linear system (see the lecture L3 devoted to linear estimation): 
 

(𝑿𝑇𝑿)𝜷̂ ∗= 𝑿𝑇𝒀 (53) 
 

The fact that the sensitivities are nearly dependent leads to a 𝑿𝑇𝑿 matrix that is near-singular. 

Indeed, by computing the condition number of the matrix 𝑿𝑇𝑿 (the condition number is the ratio 
between the maximum and minimum eigenvalues), we obtain very high values, even when the 
polynomial model has a low degree (see Figure 4). The condition number increases 
exponentially with the polynomial degree (it increases by a factor of about 100 when the 
polynomial degree is increased by just one). Furthermore, Figure 4 shows that increasing the 
number of spectral measurements in a given spectral interval brings no improvement regarding 
the condition number. Notice also that if the normalizations described in eqs. (49) and (50) are 
not applied, the condition number would reach even higher values. 
 
The condition number describes somehow the rate at which the identified parameters changes 
with respect to a change in the observable; indeed, it measures the sensitivity of the solution 
of a system of linear equations to errors in the data. Hence, if the condition number is large, 
even a small error in the observables may cause a large error in the identified parameters (the 
condition number however only provides an upper bound). The condition number also reflects 

how a small change in the matrix 𝑿𝑇𝑿 itself affects the identified parameters. Such a change 
may be due to the measurement error of the equivalent wavelength corresponding to each 
spectral channel. From Figure 4, a first statement is that the regularization with a polynomial 
model of degree 2 or higher is not efficient. But even a polynomial model of degree 1 is 
expected to show unstable results (the condition number is in this case of about 104). 
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Figure 4. Condition number of the matrix 𝑿𝑇𝑿 versus the polynomial degree k  of the 

emissivity model and for a number of spectral measurements equal to 𝑚 = 𝑘 + 2 (○), 𝑚 = 7 

(□), 𝑚 = 30 (◊), 𝑚 = 100 (x). For this illustration, the total spectral interval is such that 
𝜆𝑚𝑎𝑥 𝜆𝑚𝑖𝑛⁄  = 5/3. The case 𝑚 = 𝑘 + 2 is the limiting case avoiding under-determination 
(§5.1). 

 
The condition number has been computed in [3] for a larger spectral interval, namely for the 

case minmax  = 1.75 (the interval [8 µm – 14 µm] satisfies this criterion regarding the relative 

width). It was found slightly lower as compared to the present values. Increasing the relative 
width of the total spectral band is thus beneficial from this point of view. 
 
However, the condition number is not all. Sometimes it could even be misleading because it 
only gives an upper bound of the error propagation. It is indeed better to analyze the diagonal 

values of the covariance matrix (𝑿𝑇𝑿)−1. They actually provide the variance amplification 
factor for each identified parameter 𝑃 ∗: 
 

[𝜎𝜷∗
2] = 𝑑𝑖𝑎𝑔((𝑿𝑇𝑿)−1)𝜎2 (54) 

 

where 𝜎2 is the variance of the observable 𝑌𝑖, i.e. (𝜎𝑆𝑖
𝑆𝑖⁄ )

2
 which is here assumed independent 

of the spectral channel 𝑖 (if instead one assumes that the radiance variance (𝜎𝑆𝑖
)

2
 is uniform, 

the result would be [𝜎𝜷∗
2] = 𝑑𝑖𝑎𝑔((𝑿𝑇𝜳−1𝑿)−1) where 𝜳 is the covariance matrix of the 

observable 𝑌𝑖).  
 

One should be aware that 𝜎𝜷∗
2 merely describes the error around the mean estimator value 

due to the radiance error propagation to the parameters. If the mean estimator is biased, as it 
is the case when the true emissivity profile is not well represented by the chosen model, we 
should add the square systematic error to obtain the RMS error. The latter better represents 
the misfit to the true parameter value, either the temperature or a spectral emissivity value (this 
is described later through a Monte Carlo analysis of the inversion process). 
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With the polynomial model, the mean standard relative error for emissivity, which is defined 
by: 
 

𝜎𝜀

𝜀
≡ √

1

𝑚
∑

𝜎𝜀𝑖
2

𝜀𝑖
2

𝑚

𝑖=1

 (55) 

 
is related to the standard error of the retrieved polynomial coefficients through: 
 

𝜎𝜀

𝜀
= √

1

𝑚
∑[𝑋𝑖𝑗

2]
𝑇

[𝜎𝑎𝑗∗
2]

𝑗=1,𝑘

𝑚

𝑖=1

 (56) 

 
As such, it can be related to the uncertainty of the observable 𝜎𝑌 (which corresponds to 𝜎𝑆 𝑆⁄ ) 
through an error-amplification factor 𝐾𝜀: 
 

𝜎𝜀

𝜀
= 𝐾𝜀

𝜎𝑆

𝑆
 (57) 

 
With the grey-band model, the mean standard error and the amplification factor 𝐾𝜀 are defined 
according to: 
 

𝜎𝜀

𝜀
≡ √

1

𝑚
∑ (

𝜎𝜀𝑖

𝜀𝑖
)

2
𝑚𝑏

𝑖=1

= 𝐾𝜀

𝜎𝑆

𝑆
 (58) 

 
From Wien’s expression of the blackbody radiance, it is clear that the standard relative error 

for temperature is proportional to the temperature, to 𝜎𝑆 𝑆⁄ , and to a wavelength scale 𝜆̃ 
representative of the spectral window (we can choose the geometric mean of the window limits: 

𝜆̃ ≡ √𝜆𝑚𝑖𝑛𝜆𝑚𝑎𝑥). The error amplification factor for the temperature, 𝐾𝑇, is thus defined through:  

 
𝜎𝑇

𝑇
= 𝐾𝑇𝜆̃𝑇

𝜎𝑆

𝑆
 (59) 

 
The error amplification factors 𝐾𝑇 and 𝐾𝜀 have been plotted in Figure 5 versus the degree of 
the polynomial model of emissivity, assuming again a relative bandwidth 𝜆𝑚𝑎𝑥 𝜆𝑚𝑖𝑛⁄  of 5/3. 
 
A first comment is that the standard errors increase exponentially with the polynomial degree 
𝑘. The rise is roughly like 𝑒𝑥𝑝(2𝑘). The amplification factors can be reduced somewhat by 
widening the spectral window; in addition, the increasing rate with the polynomial degree is 
lower (compare with the results in [3] obtained for 𝜆𝑚𝑎𝑥 𝜆𝑚𝑖𝑛⁄  = 1.75). 
 
With the grey-bands model, the standard errors increase nearly in proportion to the number of 
bands (see [3]). 
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In both cases, the standard errors decrease with the total number of spectral measurements, 

roughly like 𝑚−1 2⁄ . 
 

 

Figure 5: Left: Error amplification factor on emissivity versus the polynomial degree m chosen 
to model 𝑙𝑛[𝜀(𝜆)]. The symbols correspond to different numbers of spectral measurements: 
𝑚 = 𝑘 + 2 (○), 𝑚 = 7 (□), 𝑚 = 30 (◊), 𝑚 =100 (x). Right: Same for the error amplification factor 

on temperature. The case 𝑚 = 𝑘 + 2 is the limiting case avoiding under-determination.  
 
Regarding the bandwidth influence, let us notice that the relative error on temperature depends 
both on 𝜆𝑚𝑖𝑛 and 𝜆𝑚𝑎𝑥 whereas the mean relative error on emissivity only depends on the ratio 

𝜆𝑚𝑎𝑥 𝜆𝑚𝑖𝑛⁄  (for a given value of 𝜎𝑆 𝑆⁄  in eqs. (57) and (59)). 
 
Assuming a target at 600 K, a pyrometer with seven wavelengths between 3 µm and 5 µm and 
1 % radiance noise in each spectral channel, provides temperature and emissivity values with 
standard errors as reported in Table 1, depending on the degree of the polynomial chosen to 
model the logarithm of emissivity 𝑙𝑛(𝜀𝑖). 
 

Table 1. Polynomial model for (the logarithm of) emissivity. Root-mean 
square error for the estimated temperature and the emissivity depending on 
the degree of the polynomial model. Target temperature is 600 K. Pyrometry 
performed at seven wavelengths between 3 µm and 5 µm with 1 % radiance 
noise 

 
Polynomial degree 𝜎𝑇 (K) 𝜎𝜀 

0 2.1 0.02 
1 14.5 0.13 
2 107.5 1.1 

 

 
The errors are already high with a linear model and they reach unacceptably high values with 
a polynomial model of degree two. These results seem to preclude using the least squares 
linear regression approach with a polynomial model of degree 2 and more. 
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Notice that these results have been obtained with the use of Wien’s approximation. However, 
Planck’s law is close to Wien’s approximation over a large spectrum, therefore we expect that 
the general least squares nonlinear regression based on Planck’s law also faces serious 
problems when using a polynomial model for emissivity. 
 
Let us recall that the temperature and emissivity errors mentioned above only describe how 
the radiance errors propagate to the parameters. It has been assumed here that the emissivity 
spectrum otherwise perfectly matches the considered polynomial model. If this is not the case 
(which actually occurs almost every time) a systematic error appears and is added to the 
previous one. The joint errors are presented in §5.2.4 through a Monte Carlo analysis. 
 
Applying the grey-band model to the previous example leads to the standard errors shown in 
Table 2. The number of grey-band can be increased up to 𝑚𝑏 = 𝑚 − 1 = 6 (which is the 
maximum to avoid underdetermination in the considered case of 𝑚 = 7 spectral 
measurements). 

 
Table 2. Grey-band model for emissivity. Root-mean square error for the 
estimated temperature and the emissivity depending on the number of grey-
bands when assuming 𝑚 = 7 spectral measurements. Target temperature is 
600 K. Pyrometry is performed at seven wavelengths between 3 µm and 5 µm 
with 1 % radiance noise. 
 

Number of bands 𝜎𝑇 (K) 𝜎𝜀 

1 2.7 0.02 
2 4.9 0.04 
3 7.0 0.05 
4 10.7 0.08 
5 12.6 0.10 
6 13.7 0.11 

 

 
The errors increase with the number of grey-bands, starting from the values corresponding to 
a degree 0 polynomial and ending at values that are lower than those obtained with a 
polynomial of degree 1. This is interesting in the sense that even with six grey-bands, i.e. six 
degrees of freedom for emissivity, the errors do not “explode” as it is observed before by 
increasing the polynomial degree. The grey-bands model, although not being smooth, could 
thus capture more easily rapid variations in the emissivity profile like peaks. 
 
However, as stated before, the standard errors that have been presented here only show what 
happens when noise corrupts the radiance emitted by a surface, but assuming that the true 
emissivity otherwise perfectly follows the staircase model. As such, with the 6-bands case, the 
emissivity should be equal in the two channels that are chosen to form the largest grey-band. 
As this is never strictly the case, again, a systematic error is added to the one shown in Table 
2. 
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5.2.3. Another look on the solutions of the TES problem 
 
Another way of presenting the ill-posedness of the TES problem and the difficulties in finding 
an appropriate regularization method consists, like in [26], in exposing first the multiple 
solutions to the underdetermined problem shown in eq. (34). It is clear from this set of 

equations that when selecting a value 𝑇̂ for temperature, the emissivity values 𝜀𝑖̂(𝑇̂) obtained 

from: 
 

𝜀𝑖̂(𝑇̂) = 𝑆𝑖 𝐵(𝜆𝑖, 𝑇̂)⁄ ,  𝑖 = 1, . . . , 𝑚 (60) 
 

are such that, when combined with 𝑇̂ they provide a perfect solution to the problem presented 
in eq. (34), namely a solution that exactly leads to the observed spectral signals. The emissivity 
values obtained in this way depend on the selected temperature, which explains the notation 

𝜀𝑖̂(𝑇̂). Increasing the value of 𝑇̂ entails a decrease in all spectral emissivity values and vice 

versa. There is an infinite number of exact sets of solutions 𝜷 = [𝜀1̂(𝑇̂) . . .   𝜀𝑚̂(𝑇̂)  𝑇̂]
𝑇
, the 

only limitation is that 𝑚𝑎𝑥
𝑖=1,𝑚

𝜀𝑖̂(𝑇̂) ≤ 𝜀𝑚𝑎𝑥 and 𝜀𝑚𝑖𝑛 ≤ 𝑚𝑖𝑛
𝑖=1,𝑚

𝜀𝑖̂(𝑇̂). The boundary values 𝜀𝑚𝑖𝑛 and 

𝜀𝑚𝑎𝑥 are chosen in accordance with the type of tested materials. Without other information 
𝜀𝑚𝑎𝑥 is usually set to 1 whereas 𝜀𝑚𝑖𝑛 can be set to 0.02 since it is unusual to find surfaces with 
emissivities less than about 0.02, and these are very clean, polished metal surfaces [26]. 
 
As an illustration we consider a multiwavelength system operating over seven narrow spectral 
bands in the [3 µm – 5 µm] range, excluding the 4.3 µm CO2 absorption band of the 
atmosphere. The central wavelengths are 3, 3.5, 3.7, 4, 4.6, 4.8, and 5 µm. Two hypothetic 
materials are considered. The first one presents an emissivity profile such that the seven 
emissivity values at the former seven wavelengths are distributed perfectly linearly between 
0.72 at 3 µm and 0.53 at 5 µm. The emissivity of the second material has the following values: 
0.72, 0.75, 0.63, 0.57, 0.56, 0.51, 0.53 at the former seven wavelengths. 
 
These two emissivity distributions have been represented with circles in Figure 6, resp. in 
Figure 7. The spectral radiance is then computed at the central wavelengths according to 
Planck’s law, assuming a temperature of 600 K. At first no measurement error is considered, 
it is added later. The objective is to retrieve from the seven radiance values the true 
temperature and the true emissivity distribution for both materials. 
 

To start, we selected different values for the temperature 𝑇̂ between 580 K and 660 K, and 

then plotted the distribution of emissivity 𝜀𝑖̂(𝑇̂) that perfectly matches with each value of 𝑇̂ 

(curves with star symbols), namely that yields the same seven values of spectral radiance as 
those observed with the combination of true temperature and true emissivity distribution. 
 

We notice that temperature values 𝑇̂ as low as about 577 K could be acceptable; however, 
lower temperature values should be discarded since they make one of the emissivity values 

𝜀𝑖̂(𝑇̂) larger than one. On the other hand, temperature values 𝑇̂ much higher than the real 

temperature of 600 K could be well accepted. 
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Figure 6.  Emissivity profiles inferred from the spectral radiance (at seven wavelengths 

between 3 µm and 5 µm) by considering several hypothetical temperature values 𝑇̂ higher 

or lower than the “real” temperature 𝑇 = 600 K. The temperature values 𝑇̂ are indicated on 
the right. The “true” emissivity distribution is with circles; it is here assumed linear with the 
wavelength. 

 
Figure 7.  Same as in figure 6 for a non-linear emissivity distribution. 

 
The traditional way consists in looking for a distribution of emissivity in the form of a polynomial 
in wavelength and performing a least squares regression on the emitted radiance. As an 
example, let us consider a polynomial model of degree 1. In this case, the problem can be 
reformulated as follows: among all hypothetic emissivity profiles represented in Figure 6 
(respectively in Figure 7 for the second material), which one is closest to a straight line? 
 
Let us give some indications on this notion of closeness. It is quantified by the sum of the 
square residues between any emissivity distribution in Figure 6 or in Figure 7 and the straight 
line obtained by linear regression. We are actually dealing with weighted least squares: each 
term should be weighted by the blackbody radiance expressed at the corresponding 

temperature 𝑇̂. Hence, let us consider the weighted linear regression of a particular distribution 

𝜀𝑖̂(𝑇̂); the considered weight is 𝐵(𝜆𝑖, 𝑇̂). The sum of square residues is: 
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𝑅2(𝑇̂) = 𝑚𝑖𝑛
𝑎0,𝑎1

∑ [𝐵(𝜆𝑖, 𝑇̂) (𝜀𝑖̂(𝑇̂) − (𝑎0 + 𝑎1𝜆𝑖))]
2

𝑚

𝑖=1

 (61) 

 

Let us now consider the temperature 𝑇̂𝑜𝑝𝑡 for which the sum of square residues 𝑅2(𝑇̂) is 

minimum: 
 

𝑇̂𝑜𝑝𝑡 = arg min
𝑇̂

(𝑅2(𝑇̂)) 
(62) 

 

Remember that 𝜀𝑖̂(𝑇̂)𝐵(𝜆𝑖 , 𝑇̂) = 𝑆𝑖, 𝑖 = 1, . . . , 𝑚 for any value of 𝑇̂ (see eq. (60)), in particular 

for 𝑇̂𝑜𝑝𝑡. Hence, we have: 

 

𝑇̂𝑜𝑝𝑡 = arg min
𝑇̂

(𝑚𝑖𝑛
𝑎0,𝑎1

∑ (𝑆𝑖 − (𝑎0 + 𝑎1𝜆𝑖)𝐵(𝜆𝑖, 𝑇̂))
2

𝑚

𝑖=1

) (63) 

 

which shows that 𝑇̂𝑜𝑝𝑡 is also the temperature estimator obtained by the least squares 

minimization involving a linear emissivity model. 
 
Notice that the previous demonstration can be extended to a polynomial model of any degree. 
As a consequence, when dealing with a polynomial model of degree 0, the question changes 

to: which distribution 𝜀𝑖̂(𝑇̂) is closest to a horizontal line? With a polynomial model of degree 

2, it changes to: which distribution 𝜀𝑖̂(𝑇̂) is closest to a parabola? The demonstration can 

actually be extended to any other analytical model for emissivity. In the end, the general 

question becomes: which distribution 𝜀𝑖̂(𝑇̂) is closest to the selected model? 

 
We are actually far from the aim implicitly suggested by the regression methods proposed in 
the literature. As a matter of fact, the emissivity models (e.g. polynomial functions of the 
wavelength) used to perform a regression of the radiance signal, give the erroneous 
impression that the emissivity-profile solution we are looking for is a least squares 
approximation of the true emissivity profile (according to the chosen model). This is absolutely 
not the case, as demonstrated above and illustrated next. 
 

In Figure 6, the emissivity distribution 𝜀𝑖̂(𝑇̂) corresponding to 𝑇̂ = 600 K is the only one to be 

linear. The curvature of the profiles changes depending on whether T̂ is higher or lower than 
600 K. If there is no error on the measured radiance, the best (actually perfect) match with a 

straight line is thus for 𝑇̂ = 600 K, which is the right answer. Nevertheless, we have to admit 

that the profiles corresponding to an estimated temperature in the range 590 K < 𝑇̂ < 610 K 
are very close to a straight line. It is easy to imagine that with some experimental noise added, 
the square residuals obtained after the linear fit would be in the same range for all profiles 

𝜀𝑖̂(𝑇̂) corresponding to the former temperature range. A quantitative analysis of the noise 

influence is given later. 
 
The case in Figure 7 is quite dramatic: it is evident that, among all possible solutions, the “true” 

profile is not the closest one to a straight line. Evidently, in this example, the distribution 𝜀𝑖̂(𝑇̂) 

111/332



 
 
 
 
 
METTI 8 Advanced School Île d’Oléron, France 

Thermal Measurements and Inverse Techniques Sept. 24th – Sept. 29th, 2023. 
 
 
 

 Lecture 4 – Part A. Radiative Thermometry: principles and pitfalls – page 28 / 45 

 
 
  

that is closest to a straight line is obtained for a temperature 𝑇̂𝑜𝑝𝑡 that is much higher than the 

“true” value of 600 K (the profiles in the lower part in Figure 7 are indeed smoother than those 
in the higher part). The final solution will thus present a bias. A bias would also be obtained for 
the case drawn in Figure 7 if the chosen emissivity model was a polynomial of degree 0 instead 
of a polynomial of degree 1. 
 
As often stated, when using LSMWP, it is necessary to choose an emissivity model that 
corresponds exactly to the true profile. The difficulty is that most often, the profile shape is 
unknown. A misleading thought is that LSMWP performs a fit of the true profile with the chosen 
model (polynomial, exponential, and so on). Actually, as seen above, performing LSMWP 

comes to choosing among the hypothetical solutions 𝜀̂(𝜆, 𝑇̂), the one which fits at best to the 

model, in the least squares sense by weighting it with the blackbody radiance (the fit deals with 
𝜀𝑖 if the observable is radiance and with 𝑙𝑛(𝜀𝑖) if it is the logarithm of radiance). This can lead 
to an emissivity profile of much higher or much lower mean value than the real one, together 
with an important temperature error. Actually, the problem with the classical LSMWP is that it 
sticks to the emissivity shape rather than to its magnitude. 
 

5.2.4. Least squares solution of the non linear ETS problem 
 
When using Planck’s law instead of Wien’s approximation, LSMWP cannot be linearized 
anymore. The nonlinear least squares problem can be tackled with the Levenberg-Marquardt 
method as provided for example by the lsqnonlin function from MATLAB library. When 
choosing a linear model for the emissivity and when the "true" emissivity profile is indeed linear 
this naturally leads to the right temperature and the right emissivity profile (there is no 
systematic error when the simulated emissivity spectrum corresponds to the chosen model). 
On the contrary, when the "true" emissivity profile is not linear, the identification presents a 
bias. For a “true” emissivity profile corresponding to the curve with circles in Figure 7, the result 
is reported in Figures 8 and 9. The circles in Figure 8 correspond to the theoretical radiance 
(no noise is added at this stage) and the stars correspond to the spectral radiance calculated 

from 𝐿̂(𝜆𝑖, 𝑇̂𝑜𝑝𝑡) = 𝜀𝑑̂1(𝜆𝑖)𝐵(𝜆𝑖, 𝑇̂𝑜𝑝𝑡) where 𝜀𝑑̂1(𝜆) is the polynomial of degree 1 to which the 

distributions 𝜀𝑖̂(𝑇̂) come closest (the one which is closest is 𝜀𝑖̂(𝑇̂ = 652 𝐾)). A perfect match 

for the radiance is of course impossible: the low order model chosen for emissivity (polynomial 
of degree 1) cannot explain the observed variations of the radiance. 
 

The least squares procedure reveals that the 𝜀𝑖̂(𝑇̂) distribution in Figure 7 that fits at best to a 

straight line (considering the weighting with the blackbody radiance) is the one corresponding 

to the temperature 𝑇̂𝑜𝑝𝑡= 652 K. The stars in Figure 9 correspond to 𝜀𝑖̂(𝑇̂ = 652 𝐾) and the 

continuous curve is the unique line to which the distributions 𝜀𝑖̂(𝑇̂) come at closest, namely 

𝜀𝑑̂1(𝜆). The systematic error is thus +52 K for temperature and between -0.16 and -0.35 for 
emissivity. 
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Figure 8. Inversion result for the emissivity profile represented with circles in Figure 7 when 
using a linear model for emissivity. Here, the circles represent the “true” noiseless radiance 
(true temperature: 𝑇 = 600 K), the stars correspond to the emitted radiance according to the 
solution (i.e. the emissivity distribution that is closest to a straight line, which is obtained for 

𝑇̂𝑜𝑝𝑡 = 652 K). 

 
Figure 9. Inversion result for the emissivity distribution from Figure 7 when using a linear 
model. The “true” emissivity distribution is shown with circles (T = 600 K). The solution is 

represented with stars (the associated temperature 𝑇̂𝑜𝑝𝑡 is 652 K). The linear regression 

profile of the solution is represented with a continuous line (𝜀𝑑̂1(𝜆)). 
 

If the fitting happened be too far from the 𝜀𝑖̂(𝑇̂𝑜𝑝𝑡) profile, the model should be changed. For 

this particular example, however, changing to a quadratic model leads to a complete failure: 
the profile in Figure 7 that is closest to a polynomial of degree 2 is the one corresponding to 
500 K and the retrieved (hypothetical) emissivity spectrum ranges between 1.4 and 3.7! 

Obviously, the constraint 𝜀𝑖̂(𝑇̂) < 1 should imposed. The acceptable solution would then be the 

profile associated to 𝑇̂ = 577 K which nevertheless means a 23 K underestimation. 
 
Let us now analyze the influence of the measurement noise on the temperature and emissivity 
separation performance. This can be easily performed by simulating experiments where the 
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theoretical radiance is corrupted with artificial noise. The radiance is altered by adding values 
that are randomly generated with a predetermined probability density function. We assume a 
Gaussian distribution with a spectrally uniform standard deviation. We fix it to a value ranging 
from 0.2 % to 6.0 % of the maximum radiance (additive noise). The least squares minimization 
is performed without constraint (i.e. without imposing 𝜀𝑖 < 1) in order to highlight the 
mathematical (poor) stability of the inversion procedure. A series of 200 radiance spectra is 
treated for each noise level and for the two nominal emissivity profiles described in Figures 6 
and 7. We chose again a linear emissivity model for the LSMWP inversion. The results for the 
maximum root mean square emissivity error among the seven channels are plotted in Figure 
10-left. Those for the root mean square error on temperature are plotted in Figure 10-right. We 
can notice that: 

- for the “true” profile of linear type (crosses), the RMS error on temperature and on 
emissivity increases proportionally to the radiance noise level. In particular, the RMS 
errors are 0.1 for emissivity and 12 K for temperature when the noise is 1 %. 
- for the “true” profile of non-linear type (circles), the RMS errors are first dominated by 
the systematic error, which corresponds to the model implementation error (the chosen 
model –polynomial of degree 1 – is too crude to match the “true” profile); statistic errors 
due to the measurement noise dominate only when the noise is higher than 2-3 %. The 
RMS errors are 0.36 for emissivity and 54 K for temperature when the noise is 1 %. 
 

 
 
Figure 10. Statistical analysis (Monte Carlo sampling with 200 simulated experiments) of the 
measurement noise influence on the identified emissivity when using a linear emissivity model. 
The “true” emissivity was considered linear (crosses – refer to Figure 6) or non-linear (circles 
– refer to Figure 7). Multispectral measurement in seven channels between 3 and 5 µm. Left: 
emissivity error, Right: temperature error. 
 
Let us also add that the inversion leads to a systematic error as soon as the “true” profile 
departs from a straight line. The previous analysis allows us to evaluate the magnitude of this 
error when the deviation is small. Statistically, by considering several “true” profiles close to 
the nominal straight line in Figure 6, the RMS of the systematic errors would be equal to the 
RMS of the statistic errors obtained by adding the same amount of measurement noise. For 
this reason, a “true” profile departing by as little as 1 % from a straight line leads to an emissivity 
bias whose RMS value is about 0.1. The temperature quadratic mean error is in this case about 
12 K which is far from negligible. This result highlights the considerable importance of choosing 
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the right emissivity model. This impact can be reduced by increasing the number of spectral 

channels (the trend is like 𝑁−1 2⁄ ), at the condition that the departure from the profile model is 
randomly distributed. 
 
As a conclusion we can state that:  

- Even by reducing the number of unknowns, as it is done here by modeling the spectral 
emissivity with a polynomial of low degree, the problem remains badly conditioned; with 
a polynomial model (either for 𝜀(𝜆) or for 𝑙𝑛 𝜀 (𝜆)), reasonable inversion results are 
expected only when the degree is 1 or 0. 
- Important systematic errors appear as soon as the real emissivity departs from the 
considered model: 1 % departure from a straight line already leads to 12 K RMS error. 
More complicated spectral shapes lead to unpredictably high systematic errors (54 K 
for the considered example). 
- Even if the real emissivity values at the sampled wavelengths perfectly fitted to a 
straight line, the demand on radiance measurement precision is very high: as a matter 
of fact, no more than 0.2 % noise is allowed to get an RMS error lower than 2.5 K near 
600 K for a 7-band pyrometer between 3 µm and 5 µm. 

 
Finally, LSMWP is not performing well for simultaneous evaluation of temperature and 
emissivity. Reasonable RMS values can be obtained only when the emissivity spectrum 
perfectly matches with the chosen emissivity model. Otherwise, important systematic errors 
are encountered. The problem is that, apart from a few exceptions, it is not known beforehand 
whether the emissivity of a tested material conforms to such a model or another. 
 
The results are disappointing because the inversion is based on the emitted spectral radiance 
only. Good results can be obtained by taking advantage of the high spectral variability of 
accessory parameters like the atmosphere transmission and self-emission as well as the 
reflection of the environmental flux. 
 
As a conclusion, it appears that there is no valuable reason to apply LSMWP in place of the 
simpler one-color pyrometry or bispectral pyrometry. All methods need a priori information 
about the emissivity. However, the requirements with one-color pyrometry (the knowledge of 
an emissivity level) or with bispectral pyrometry (the knowledge of the ratio of emissivity at two 
wavelengths) are less difficult to satisfy than the requirement with LSMWP, which is a 
requirement of a strict conformity of shape of the emissivity profile with a given parametric 
function, which is practically impossible to satisfy. 
 
Regarding LSMWP, it must finally be admitted that without knowledge of the magnitude of 
emissivity, the temperature measurement cannot be very precise. Some vague intuition about 
the shape of the emissivity spectrum is not sufficient and to add more wavelengths does not 
help much. The blackbody spectrum is extremely regular; therefore, the implementation of a 
polynomial model for the emissivity of degree greater than 1 introduces strong correlations and 
generally leads to poor results. 
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5.3. Another multiwavelength approach: the “TES” method 
 
The “TES” method is a multiwavelength approach that was developed for land-surface 
temperature evaluation through infrared remote sensing, more specifically for the Advanced 
Space-borne Thermal Emission and Reflection Radiometer (ASTER) on board TERRA 
satellite [50]. It is a five-channel multispectral thermal–IR scanner. 
 

TES is based on the observation that the relative spectrum 𝛽(𝜆) = 𝜀̂(𝜆) 𝜀̂̄⁄  where the apparent 

emissivity 𝜀̂(𝜆) is obtained from an estimation of temperature 𝑇̂ according to: 
 

𝜀̂(𝜆, 𝑇̂) =
𝐿(𝜆, 𝑇) − 𝐿↓(𝜆)

𝐵(𝜆, 𝑇̂) − 𝐿↓(𝜆)
 (64) 

 
is relatively insensitive to the temperature estimation error. A crude estimation as with the 
Normalized Emissivity Method (NEM) is thus sufficient [50]. The question is then how to extract 
the absolute spectrum 𝜀̂(𝜆) from the relative spectrum 𝛽(𝜆). Gillespie et al. [50] found out a 
correlation between 𝜀𝑚𝑖𝑛 and the minimum-maximum emissivity difference defined by 𝑀𝑀𝐷 =
𝛽𝑚𝑎𝑥 − 𝛽𝑚𝑖𝑛: 
 

𝜀𝑚𝑖𝑛 ≈ 0.994 − 0.687 𝑀𝑀𝐷0.737 (65) 
 
The regression is based on 86 laboratory reflectance spectra from the ASTER spectral library 
[11] for soils, rocks, vegetation, snow, and water between 10 µm and 14 µm. Ninety five 
percent of the samples fall within 0.02 emissivity units of the regression line. Nevertheless, this 
empirical relation in not universal: data related to artificial materials like metals fall far below 
the regression line. 
 

After evaluating min  from the regression law, we obtain a new estimate of the emissivity 

spectrum from: 
 

𝜀̂(𝜆) = 𝛽(𝜆)
𝜀𝑚𝑖𝑛

𝛽𝑚𝑖𝑛
 (66) 

 

The temperature 𝑇̂ is finally obtained by inverting Planck’s law at a wavelength 𝜆 at which the 
emissivity profile 𝜀̂(𝜆) reaches the highest value. One or two iterations are sufficient for the 
procedure to converge. 
 
To be effective, TES requires at least three or four spectral bands. TES does not work well for 
near-grey materials (as a matter of fact 𝜀𝑚𝑖𝑛 would then stick to the value 0.994). 
 
TES algorithm is presently used to calculate surface temperature and emissivity standard 
products for ASTER, which are predicted to be within respectively +1.5 K and 0.015 of correct 
values. Validations performed on different sites demonstrated that TES generally performs 
within these limits. 
 
The regression law: 
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𝜀𝑚𝑖𝑛 ≈ 0.999 − 0.777 𝑀𝑀𝐷0.815 (67) 
 
was obtained using 108 emissivity spectra from the ASTER library, without manmade 
materials. It is compared with spectra of manmade materials used over urban surfaces in [57] 
(see Figure 11). The correlation in eq. (67) is relatively good for most considered manmade 
materials. Metallic surfaces are however badly modeled by this empirical relationship. 
 

 
Figure 11. Correlation between MMD and 𝜀𝑚𝑖𝑛 in eq. (67) and comparison with 54 manmade 
materials spectra. Right figure is a detail from left plot [57]. 
 
The RMSE for emissivity is 0.017 in average (for a series of 9 manmade urban materials 
excluding metallic materials: brick, glass, tile, asphalt, concrete, marble, cement) and it may 
rise to 0.03 for some materials like marble and glass. Simultaneously, the RMSE for 
temperature is 0.9 K in average and may rise to 1.5 – 1.8 K for marble and glass (‘true’ 
temperature is set between 295 K and 310 K) [57]. 
 
The TES method is performing well for natural materials and manmade materials (excluding 
metallic materials) in the context of remote sensing. This concept could be extended to other 
situations. The decisive point would be to find out an empirical relation of the type shown in 
eq. (65) or in eq. (67) from the spectra of the considered materials. 
 

5.4. The Bayesian approach for radiative thermometry 
 
What has been exposed so far underlines the fact that a priori information on emissivity is a 
prerequisite for the evaluation of temperature. Actually, the Bayesian framework allows taking 
into account any kind of a priori information on the parameters to estimate, hence it should be 
appropriate to solve the temperature-emissivity separation problem. However, although the 
application of Bayesian methods to thermal characterization is relatively common today [58], 
it is rather rare in multispectral pyrometry and multispectral/hyperspectral infrared remote 
sensing [59]-[67]. 
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In the Bayesian framework the entire problem is modeled in terms of probability in order to 
allow for inference, that is, instead of attempting to obtain a single solution for the interesting 
unknowns it offers the possibility to explore the posterior distribution to determine the 
uncertainty in the unknowns given the measurements and prior uncertainty in the unknowns. 
The exploration calls for computing different point estimates like the maximum a posteriori 
estimate (MAP) and the conditional mean estimate (CM) as well as marginal distributions of 
individual unknowns or sets of unknowns [58], [68]. 
 
The parameters 𝛃 (vector of size (𝑚 + 1) × 1) and the measurements 𝐘 (vector of size 𝑚 × 1) 

are considered as random variables. 𝜋(𝛃) is the prior distribution and it represents the 
uncertainty of the unknown prior to obtaining the measurement. The conditional distribution of 
the measurements given the unknown is called the likelihood distribution and is denoted by 
𝜋(𝐘|𝛃). What interests us is the posterior distribution 𝜋(𝛃|𝐘) which contains all information on 
the uncertainty of the unknowns 𝛃 when the information on measurements 𝐘 is utilized [58], 
[68]. It is given by Bayes’ theorem: 
 

𝜋(𝛃|𝐘) =
𝜋(𝐘|𝛃)𝜋(𝛃)

𝜋(𝐘)
 (68) 

 
where the denominator 𝜋(𝐘) is obtained by marginalizing 𝜋(𝐘|𝛃) over the parameters 𝛃. It is 

merely a scaling constant; since it does not involve 𝛃 it is generally discarded for most 
analyses: 
 

𝜋(𝛃|𝐘) ∝ 𝜋(𝐘|𝛃)𝜋(𝛃) (69) 
 
Assume that the physical model is described by eq. (18) (negligible reflection effects) and that 
the measurement is corrupted by additive Gaussian noise with zero mean and covariance 
matrix 𝛀, which will be noted 𝜋(𝒆) = 𝒩(0, 𝛀) where 𝒆 is the vector of the 𝑚 spectral noise 

terms. The likelihood distribution 𝜋(𝐘|𝛃) = 𝜋(𝐘|𝛆, 𝑇) is then expressed by: 
 

𝜋(𝐘|𝛆, 𝑇) ∝ 𝑒𝑥𝑝[− (𝐘 − 𝛆 ⊗ 𝐁)𝑇𝛀−1(𝐘 − 𝛆 ⊗ 𝐁) 2⁄ ] (70) 
 

where 𝛆 = (𝜀1 . . .  𝜀𝑚)𝑇, 𝐁 = (𝐵(𝜆1, 𝑇) . . .   𝐵(𝜆𝑚, 𝑇))
𝑇
 and ⊗ denotes the elementwise 

product. 
 
On the other side, regarding the prior, we will assume that emissivity and temperature are 
independent variables, hence 𝜋(𝛃) = 𝜋(𝛆)𝜋(𝑇). For ease, we consider that the spectral 
emissivities are independent as well. 
 

5.4.1. A simple example: single-color pyrometry 
 
When there is only one spectral measurement, the posterior distribution 𝜋(𝛃|𝐘) reduces to: 
 

𝜋(𝜀, 𝑇|𝑌) ∝ 𝑒𝑥𝑝 [− (𝑌 − 𝜀𝐵(𝜆, 𝑇))
2

2𝜎2⁄ ] 𝜋(𝜀)𝜋(𝑇) (71) 
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where 𝜎 is the noise RMS. If we are only interested in temperature, emissivity is then 
considered as a nuisance parameter. To obtain the posterior distribution for temperature alone, 
we thus have to marginalize the joint distribution 𝜋(𝜀, 𝑇|𝑌) with respect to emissivity. 
 
Let us consider for ease a uniform a priori distribution for emissivity: 𝜋(𝜀) = 𝒰(𝜀𝑚𝑖𝑛 , 𝜀𝑚𝑎𝑥). The 
marginal posterior distribution related to temperature, 𝜋(𝑇|𝑌), can thus be expressed 
analytically [59]: 
 

𝜋(𝑇|𝑌) ∝
𝜋(𝑇)

𝐵(𝜆, 𝑇)
[𝑒𝑟𝑓 (

𝑌 − 𝜀𝑚𝑎𝑥𝐵(𝜆, 𝑇)

√2𝜎
) − 𝑒𝑟𝑓 (

𝑌 − 𝜀𝑚𝑖𝑛𝐵(𝜆, 𝑇)

√2𝜎
)] (72) 

 
As an example, let us consider a monochromatic sensor at 4.7 µm with 3 % RMS noise, and 
assume that emissivity is expected to be in the range [0.5, 0.75]. If the measured radiance 
corresponds to the radiance emitted by a surface at 600 K with an emissivity of 0.6, the 
posterior distribution for temperature, given that measurement, is described by the black curve 
in Figure 11 (a non-informative prior is considered for temperature, namely  
𝜋(𝑇) = 𝒰(500 𝐾, 700 𝐾)). The curve is quite asymmetrical; the maximum a posteriori estimate 
is 582 K whereas the conditional mean estimate is 597 K, which is closer to the real value  
600 K. The distribution is quite large since the a priori distribution of the emissivity is large itself 
and the a priori distribution of temperature is non-informative. To shrink the a posteriori 
distribution we should have better information on the emissivity and possibly on temperature. 
 

 
Figure 11. Posterior distribution of temperature in the case of uniform prior distribution of 
temperature and emissivity: 𝜋(𝜀) = 𝒰(0.5,0.75). The measured radiance corresponds to the 
emitted radiance of a surface at 600 K with an emissivity of 0.6 (black), 0.65 (blue), and 0.7 
(red). Noise RMS is 3 %. 

 
Let us now consider a measured radiance that is 8.3 % higher than before. Among the infinite 
number of possibilities, it could correspond to the radiance emitted by a surface at 600 K with 
an emissivity of 0.65. The posterior distribution for temperature is now given by the blue curve 
in Figure 11. The maximum a posteriori has risen to 592 K and the conditional mean estimate 
to 606 K. Let us pursue the analysis. If the measured radiance was 16.7 % higher than the 
initial value (it could now correspond to the radiance emitted by a surface at 600 K with an 
emissivity of 0.7), the posterior distribution for temperature is then given by the red curve. The 
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maximum a posteriori has risen further to 600 K and the conditional mean estimate to 615 K. 
Notice that for a progressively higher RMS noise, the curves would be progressively more 
rounded and approach a Gaussian curve. 
 
As a final remark, let us say that thanks to the availability of a priori information on emissivity 
or temperature, the Bayesian approach allows to “anchor” the solution instead of providing an 
infinite set of equally acceptable solutions (𝜀, 𝑇). Nevertheless the “anchoring” is not bound to 

a particular solution set (𝜀, 𝑇), but rather loose. The poorer the a priori information, the more 
the “anchoring” is loose. 

5.4.2. Multiwavelength pyrometry (linear approximation) 
 
The implementation of the linear approximation for multiwavelength pyrometry (notably by 
introducing Wien’s law and considering the logarithm of the spectral signals 𝑆𝑖, 𝑖 = 1, . . . , 𝑚 as 
the observables 𝑌𝑖, 𝑖 = 1, . . . , 𝑚, see eq. (35)) has the advantage, considering normal 
distributions for the priors and for the measurement noise, to yield analytical expressions. 
 
Equation (35) can be rewritten as: 
 

𝐘 = 𝐗𝛃 + 𝐞′ (73) 
 

where 𝛃 = [𝑙𝑛(𝜀1)  . . .  𝑙𝑛(𝜀𝑚)  𝑇𝑟𝑒𝑓 𝑇⁄ ]
𝑇
 is the vector of (linear) parameters whose prior is a 

multivariate normal distribution of covariance matrix 𝐖, namely 𝜋(𝛃) = 𝒩(𝛃𝑝𝑟𝑖𝑜𝑟 , 𝐖), whereas 

𝒆′ is the vector of additive errors with 𝜋(𝒆′) = 𝒩(0, 𝛀) and 𝐗 is the sensitivity matrix: 
 

𝐗 = (𝚰𝑚𝑚 −𝛍m1) ;  𝛍 = (𝜇1 𝜇2 . . . 𝜇𝑚)𝑇 (74) 
 
where the constant coefficients 𝜇𝑖, 𝑖 = 1, . . . , 𝑚 have been defined in eq. (36).  
 
The posterior distribution 𝜋(𝛃|𝐘) in eq. (69) becomes: 
 

𝜋(𝛃|𝐘) ∝ 𝑒𝑥𝑝 (−
1

2
((𝐘 − 𝐗𝛃)𝑇𝛀−1(𝐘 − 𝐗𝛃) + (𝛃 − 𝛃𝑝𝑟𝑖𝑜𝑟)

𝑇
𝐖−1(𝛃 − 𝛃𝑝𝑟𝑖𝑜𝑟))) (75) 

 
In the linear Gaussian case, all conditional distributions are Gaussian. It suffices therefore to 
compute the (conditional) means and covariances only (the maximum a posteriori estimator is 
equal to the (conditional) mean estimator) [68]. To obtain the maximum a posteriori (MAP) 
estimator we differentiate the argument of the exponential in eq. (75) with respect to the 
parameter vector and look for the parameter vector that makes it vanish [68]. In the end we 
have: 
 

𝜋(𝛃|𝐘) ∝ 𝑒𝑥𝑝 (−
1

2
((𝛃 − 𝛃̂𝑀𝐴𝑃)

𝑇
Γ𝛃|𝐘

−1(𝛃 − 𝛃̂𝑀𝐴𝑃))) (76) 

 
with the following expression for the MAP estimator: 
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𝛃̂𝑀𝐴𝑃 = Γ𝛃|𝐘(𝐗𝑇𝛀−1𝐘 + 𝐖−1𝛃𝑝𝑟𝑖𝑜𝑟)  (77) 
 
where Γ𝛃|𝐘 is the posterior covariance matrix: 

 

Γ𝛃|𝐘 = (𝐗𝑇𝛀−1𝐗 + 𝐖−1)−1 (78) 
 
Alternative expressions are [68]: 
 

𝛃̂𝑀𝐴𝑃 = 𝛃𝑝𝑟𝑖𝑜𝑟 + 𝐖𝐗T(𝐗𝐖𝐗𝑇 + 𝛀)−1(𝐘 − 𝐗𝛃𝑝𝑟𝑖𝑜𝑟)  (79) 
 
and: 
 

Γ𝛃|𝐘 = 𝐖 − 𝐖𝐗𝑇(𝐗𝐖𝐗𝑇 + 𝛀)−1𝐗𝐖 (80) 
 
Notice that since 𝐗 is full row rank rectangular matrix, and knowing that 𝛀 is positive definite, 

𝐗𝑇𝛀−1𝐗 is a singular (not invertible) matrix. However, adding the positive definite matrix 𝐖−1 

makes the matrix (𝐗𝑇𝛀−1𝐗 + 𝐖−1) invertible. Hence, the prior information provides the 

regularization needed since 𝐗𝑇𝛀−1𝐗 is singular. Beyond the presently underdetermined 

problem, it provides the regularization needed when 𝐗𝑇𝛀−1𝐗 is ill-conditioned. 
 
Eqs. (77) and (78) show that when the prior variance decreases while the measurement error 
variance is kept constant, the a priori solution progressively dominates the solution. 
 
The following example intends to illustrate that multispectral measurements can lead to 
valuable results when combined to priors of good quality, at least for some of them. 
 
The simplest case of bicolor pyrometry has been considered. The measurements are assumed 
to be performed at 3.7 µm and 4.7 µm with a noise RMS of 5 %. The emissivity priors have 
mean values of 0.75 and 0.45 at the first and second wavelength, respectively. In both cases 
the standard deviation is 0.1. On the other side, the temperature prior has a mean value of  
650 K and a quite large standard deviation, namely 150 K in order to express that the 
temperature is not well-known beforehand. 
 
Consider now that the two measured spectral signals correspond to the radiances emitted by 
a surface at 600 K with spectral emissivities of 0.7 and 0.5 (this will be referred as the set of 
“true” – unknown – values, which, we hope, the estimators come close to). What are the MAP 
estimators and the uncertainty for temperature and emissivity? The application of the eqs. (77)-
(80) provides the answer which is summarized in Table 3. 
 
 

Table 3. Results of estimation in the case of bicolor 
pyrometry. 

Parameter MAP 
estimator 

stand. deviation 

Temperature 598 K 11.7 K 
emissivity at 3.7 µm 0.72 0.09 
emissivity at 4.7 µm 0.51 0.05 
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Figure 12 illustrates the marginal distributions for the three parameters (a priori and a 
posteriori). Notice that normal distributions apply to the transformed parameters 

[𝑙𝑛(𝜀1) . . .   𝑙𝑛(𝜀𝑚)  𝑇𝑟𝑒𝑓 𝑇⁄ ]
𝑇
; a backward transformation has been performed to plot the 

distributions of (𝜀1 . . .  𝜀𝑚  𝑇)𝑇. 
 

 
Figure 11.  Left: normalized probability density of the emissivity at 3.7 µm (in red) and at  
4.7 µm (in blue). The prior density is in dashed line, the posterior density is in continuous line. 
The “true” (unknown) values of the two emissivities (resp. 0.7 and 0.5) are indicated by vertical 
bold lines. Right: normalized probability density of the temperature. The prior density is in 
dashed line, the posterior density is in continuous line. The “true” value of temperature (600 K) 
is indicated by a vertical bold line. 
 
Despite a temperature prior of poor quality, the estimators are quite close to the “true” values. 
Furthermore, if we compare the a priori distributions and the a posteriori distributions, we notice 
that the move is indeed towards the “true” values. In addition, the measurements contribute to 
shrink the distributions (all variances have decreased). 
 
The simple analysis that has been performed so far can be extended to more than two 
wavelengths without any difficulty. The signals from multispectral or hyperspectral detectors 
can thus be processed and inverted directly (i.e. without iterations) through simple matrix 
algebra. 
 
By the way, the former example clearly showed that a prior information on the magnitude of 
the spectral emissivities is of much higher value than a prior information that the emissivity 
profile belongs to a particular class of profiles (e.g. polynomial functions). 
 

5.4.3. Multiwavelength radiometry (non-linear case) 
 
The linear case developed in §5.4.2 presents a few limitations. One could argue that Wien’s 
law is a mere approximation of (exact) Planck’s law, however, as mentioned in §2.1, the 
approximation error is very small as long as the product 𝜆𝑇 is less than about 3 000 µm·K, 
which is the case when the spectral range is chosen in the rising part of the blackbody-radiance 
curve, namely where the sensitivity of the radiance to temperature is highest. The limitations 
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come rather from the fact that in reality the emissivity and temperature priors are not 
necessarily Gaussians. As a matter of fact, some of the “theoretical” distributions in Figure 11-
left go beyond the boundary 𝜀 =1, which is unrealistic. For the emissivity, truncated prior 
distributions should thus be implemented. Moreover, we should be able to simulate probability 
distributions of arbitrary shape. 
 
Beyond linear and Gaussian models, Bayesian inference requires a statistical estimation of 
the posterior probability distributions which involves numerical sampling. Markov Chain Monte 
Carlo (MCMC) algorithms are implemented for obtaining a sequence of random samples from 
a probability distribution from which direct sampling is difficult. Metropolis–Hastings algorithm 
[60] and Gibbs’ sampler [62], [64], [65] are examples of MCMC algorithms.  
 
The versatility of the MCMC algorithms makes them capable of handling radiative problems 
more complex than those described by the simple "pyrometric" equation in eq. (18). As such, 
the reflection contribution could be added in the unknown parameters since a good prior is 
generally accessible. 
 
More details on MCMC algorithms can be found in the lecture devoted to Bayesian inference. 
 

6. Conclusion 
 
Accurate temperature measurement by radiative means is not an easy task. Many parameters 
have to be evaluated beforehand to extract the surface emitted radiance from the measured 
radiance (atmospheric contributions: self-emission and attenuation, reflections from the 
environment). We then face the problem of temperature-emissivity separation. This 
underdetermined problem requires that some knowledge about the emissivity of the tested 
material is introduced. The general feeling is that multiplying the spectral measurements at 
different wavelengths would help identify the temperature. The underdetermined nature of the 
problem is however invariably maintained. Introducing a model of the emissivity spectral profile 
is often a misleading idea: high systematic errors inevitably occur when the model does not 
correspond perfectly to the real emissivity profile. Having some knowledge about the 
magnitude of emissivity is much more useful (but unfortunately more demanding) than 
imposing a particular class of shapes. The Bayesian framework is definitely well-suited to this 
task. 
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Lecture 4 Part B: Quantitative Infrared Thermography  
 

 
H. Pron1, L. Ibos2 
 

1. ITheMM, Université de Reims, Reims, France 
2. CERTES, IUT de Sénart-Fontainebleau, Université Paris-Est Créteil, 

Moissy-Cramayel, France 
 
E-mail:  herve.pron@univ-reims.fr 
              ibos@u-pec.fr 
 
 
Abstract. The main objective of this lecture is to make the end users aware of the 
various physical phenomena and especially of the errors frequently met during 
temperature and heat flow measurement by infrared thermography. For that purpose, 
this chapter will present the three aspects of a quantitative infrared measurement that 
are spatial, temporal and thermal resolution. First, the spatial resolution will be 
discussed, showing that an increase of the matrix size does not necessarily induce an 
improvement of the spatial resolution. Then, a paragraph is especially dedicated to the 
temporal aspects, as far as many applications require at least stable frequency to high 
speed imaging. Last but not least, the calibration of the systems is discussed, showing 
that accurate measurements often need a specific home-made thermal calibration. 

List of acronyms: 
 

• SRF: Slit Response Function 

• IR:  Infrared 

• ADC: Analog-Digital Conversion 

• BPR: Bad Pixel Replacement 

• NUC: Non-Uniformity Correction 

• CNUC Compensated Non-Uniformity Correction 
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1. Foreword: why it is important to well know your equipment? 

2. Spatial resolution 

3. Temporal analysis 

4. Thermal aspects 

4.1. Thermal noise and thermal drift 

4.2. Environment thermal stability 

4.3. Thermal calibration 

5. Conclusion 
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1. Foreword: why it is important to well know your equipment? 
 
Prior to any quantitative measurement using an infrared device, it is important to be aware of 
the limitations of the technique, but also of the transfer function of the device. Some work, 
concerning either the thermography technique [1,2] or the associated metrology [3-6] are 
available in the literature.  
There are three major points of necessary characterization of the devices: inaccuracies of the 
calibration, spatial non-uniformity, and irregular time sampling can lead to false parameter 
estimation.  
 

 
Figure 1 : Strain gauge (tracks of approximately 20 µm) observed with a “M1” lens. 

 
 
2. Spatial resolution 
 
The focal plane array technology has indubitably led to improvements in image quality (Figure 
1 hereafter). However, the quality of an image can be considered either from the point of view 
of the aesthetic, or from the one of the metrology. Unfortunately, these two approaches are 
rarely compatible… 
 
In order to ensure to obtain reliable measurements, the independence of each sensor relatively 
to its neighbors must be checked. One of the most current tests for characterizing such 
equipment is the Slit Response Function (SRF) test: the camera focuses on a thermal side-
cooled slit of variable width, placed in front of a hot plate; the following contrast function is then 
studied: 

 
( )

minmax

min

VV

VxV
SRF

−

−
= , (1) 

 
where V(x) is the value recorded for a slit width equal to x, Vmax is the value recorded when the 
slit is wide open (x →∞) and Vmin is the recorded value on the cooled part (Figure 2a). In 
general, it is assumed that, for 320 x 240 pixel cameras, to obtain a good measurement the 
object must be projected on at least two detectors. Thus, with a lens magnification of 1 (“M1”) 
and a matrix periodicity of 30 µm, one obtains truly independent information only at each step 
of 60 µm. 
 
A study of this SRF for different positions clearly shows (Figure 2) that the pixels are quite 
more correlated on the edges of the array than in the center. Note that there is indeed a 
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problem of correlation between close measurement points, i.e. on the one hand, only the 
contrast (and by no means the average value) is affected and, on the other hand, there is 
convolution of the thermal scene by this response function. Consequently, a simple 
geometrical correction (e.g. of repositioning of the points in the image, or amplification and/or 
offsets applied to each pixel) is necessary to recover the real quantitative image of the scene, 
in addition to a deconvolution procedure. A possible restoration procedure of thermal images 
based on the characterization of the Modulation Transfer Function of the camera was proposed 
in [7]. 
 

 
 

(a) (b) 
Figure 2 : (a) Slit Response Function; (b) SRF near the edge of the array compared to SRF 

at the centre (CEDIP IRC 320-4 LW camera) 
 
 

3. Temporal analysis 
 
First, it seems to be necessary to remind, before any characterization, some important 
definitions concerning this technology.  
 

• Integration time: this duration corresponds to the part of the image period during which 
the detectors are effectively loading their associated capacitors; so, they measure the 
external infrared radiation during the integration time only. Any user should be aware 
that this duration is very short (often about one millisecond), compared to the frame 
period (typically about 10 or 20 ms for a full window): most of the frame period is 
dedicated to the reading of the stored electrical signals. In some situations, this is a 
problem since very quick phenomena can occur during this “blind” phase. 

 

• Multiplexing duration: the reading of the different pixels is not simultaneous; according 
to the considered device, the pixel signals can be read by up to four channels, at a 
sampling rate of a few MHz (fADC hereafter). Then, ts being the settle time, the maximum 
frame frequency can be simply obtained by:  

 
1−









+




+= s
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cr
i t

fN
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tf   (2) 

where: 
nr is the number of rows,  
nc the number of columns,  
and N the number of channels. 
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The integration time ti is the duration during which the radiation coming from the thermal scene 
is collected by the detectors of the camera. Consequently, it determines the ultimate temporal 
resolution of the device. As the image transfer time to the storage memory or to the hard disk 
is often much higher than the integration time (several milliseconds compared to some tenths 
or hundreds of microseconds), the detector thus does not see the scene during most of the 
time, which is particularly penalizing for observing fast phenomena. 
 
Regardless of the problems connected to the integration time, the temporal analysis can be 
disturbed by the absence of some images in the stored sequence. Depending on the devices, 
a temporal shift of one or two images can occur at the beginning of the sequence. This is due 
to the fact that the first stored image corresponds to the one that was captured when the 
starting order occurred, not the actual image at the beginning of the sequence; sometimes, 
due to pre-processing, the temporal shit can be of two images. Then, on condition that the user 
is aware of this fact, a simple sequence shift is enough to correct this edge effect. 
 
The second, more penalizing, problem is the absence of some images within a sequence. This 
problem is relatively unimportant in terms of visualization, but can become critical in the data 
processing when time is highly involved. Algorithms that are compatible with variable 
acquisition frequencies are then required. To count and isolate times from the missing images, 
it is possible to directly read time information in the files from the camera, provided that they 
have been accurately stored, i.e. sufficient with respect to the acquisition frequencies used. 
Depending on the camera model, the number of images missing can thus range from one to 
several dozens. 
 
Figure 3 presents the artefacts observed in the case of a numerical lock-in procedure applied 
to a series of 30 images in which only two images are missing. If the amplitude is not very 
affected, the phase has a completely erratic behaviour, and takes a value that depends directly 
on the number and the phase of the missing images. 
 

  
Figure 3 : Errors induced by the missing images in lock-in thermography: amplitude is not 

really affected but phase is strongly distorted 
 
 

4. Thermal aspects 
 

4.1. Thermal noise and thermal drift 
 
The infrared devices usually used in R&D are cooled at approximately 80 K in order to reduce 
radiation in the vicinity of the infrared sensors. In new-generation IR cameras, a Stirling cycle 
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engine has replaced liquid nitrogen cooling systems of older cameras. Though the cameras 
have thus gained in portability, this new system has a non-negligible drawback: the cooling, 
which was quasi-instantaneous with nitrogen, now requires at least 10 min before any 
measurement is possible (figure 4a).  

 

 
 

 

Figure 4 : (a) Cooling CEDIP IRC320-4LW, (b) thermal drift CEDIP JADE III 
 
 
In addition, once the cooling is achieved, a slow drift of about 1 to 5 mK per second can occur 
with certain materials, sometimes over durations reaching a few hours (figure 4b). This 
temperature drift is mainly due to the evolution of the internal temperature of the camera, and 
modify the sensor responses, so it is appropriate in several situations to wait until the camera 
temperature is stabilized, or to take this internal drift into account in the conversion of the 
digitized signal into temperature (Compensated NUC). In addition, certain lower quality 
materials have instabilities of 0.5 or even 1 K, which that is incompatible with quantitative 
measurements. 
 

4.2. Environment thermal stability 
 

The signal measured by a camera comes primarily from the object (assumed to be gray and 
opaque in the camera’s spectral range), but also, to a lesser extent (in the most favorable 
conditions), from the environment and atmosphere (figure 5). If the environment can be 
considered as an integral radiator of temperature Tenv and if the atmosphere between the target 
and the camera is isothermal at the temperature Tatm, considering a coefficient of transmission 
atm, the measured intensity Lmes can be formulated as a function of the intensity L0 of a 
blackbody at the object temperature: 

 

 mes obj env atm
0 0 0

a a a. . ( ) (1 ) ( ) (1 ) ( )L L T L T L T=   +  − + −
 (3) 

 
For short distance measurements (about a few tenths of cm), the atmosphere can 

reasonably be considered as being transparent, and thus: 

 

 mes obj env
0 0( ) (1 ) ( )L L T L T=  + −

 (4) 
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Figure 5 : Simplified radiometric balance 
 
This equation shows that the environment must be reasonably well controlled in order to limit 
the influence of parasitic radiation (reflection from a radiator or any other radiative IR source, 
or even from the operator!). This precaution is all the more important when the measured 
temperature increases are minor. In addition, using a high emissivity coating (thus of low 
reflectivity) is obviously advantageous to minimize the parasitic flow/object flow ratio. 
 
Along the same lines, note also the presence of the Narcissus effect (reflection of the cold 
detector on the scene), which is often observed when using a macro lens (e.g. lens 
magnification of 1, [8]). Usually, this is only an offset map which is superimposed on the scene, 
and which can thus be offset by subtraction of a reference image. 
 
Last but not least, possible environmental instabilities could modify the exchange conditions 
between the sample and its environment and thus must be taken into account, especially when 
there are strong temperature variations over time.  
 

4.3. Thermal calibration 
 
In order to obtain reliable results, the user must, first of all, be confident in the apparatus 
calibration. Most of the time, infrared devices have their own setting and acquisition 
applications, including data-processing applications for digitizing, non-uniformity corrections, 
display, basic operations… 
 
Generally, the calibration laws used by manufacturers suppose the sensor’s response is linear,  
and consider the differences between the pixels’ responses only as distributions of gains and 
offsets. The calibration of the device consists then in two distinct operations: the calibration of 
the average of a central area, and the application of maps of gains and offsets to link the 
response of each pixel to the one of the average of the sensor matrix. This second operation 
is called “Non-Uniformity Correction” (NUC).  
 
The calibration law is generally taken in the form of a 2 or 3-degree polynomial, or a Planck-
type law. 
 
 ( ) cbTaTTLm ++= 2

 (5) 
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Where (a, b, c) or (R, B, F and Offset) are parameters identified during the calibration, and Lm 
the intensity measured by the camera, expressed in arbitrary units.  
 
The gains and offsets maps are computed so as to obtain uniform distributions of digitized 
fluxes for two specific images of uniform thermal scenes taken at two different temperatures; 
these two scenes are generally obtained by means of an extended blackbody. Recently, some 
manufacturers proposed to go further, by linking the values of the gain and offset maps to an 
“internal temperature” of the camera, in order to compensate the thermal drifts associated with 
the heat produced by the internal electronics and the heat exchanges between the camera 
and its environment. This “advanced” non-uniformity correction is often called “Compensated 
Non-Uniformity Correction”: CNUC.  
 
Moreover, sensor matrixes always include some defective pixels (generally less than 0.5%), 
that can be saturated pixels, noisy pixels, or even “dead” pixels. They are localized using 
criteria dealing mainly with the discrepancy with respect to the mean response (in terms of 
digitized flux, gain, offset, etc.). Manufacturers propose to replace the value of these pixels by 
the one of their nearest non-defective neighbour (Bad Pixel Replacement, or BPR procedure), 
that induces a complete local correlation.  
 
The validity of the standard calibrations can be easily checked out by observing a given thermal 
scene with a unique camera, but using different calibrations, associated with different 
acquisition settings (integration time / measurement range). As an illustration, figure 6 
illustrates different observations on a blackbody using different infrared cameras. These two 
illustrations show that it is appropriate, if possible, to use the centre of the matrix and the middle 
of the calibration range when using the manufacturer’s calibration laws. If the application needs 
a wider measurement area, it could be convenient to take into account the dispersion of the 
measured values in the data treatment procedure. 
 

(a) 

 

(b) 

 
Figure 6 : Check of the calibration using an extended black body: (a) Comparison between 

two ranges of a single camera (FLIR SC1000), (b) Comparison between several pixel 
responses (CEDIP IRC 320-4LW) of the array. 
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If the specifications on the measurement accuracy are more stringent than one Kelvin, or if the 
independence of the measurement is a critical parameter for the later data processing, another 
solution is to be found. The most logical one consists in performing a customized calibration 
of the whole sensor matrix with testing conditions and camera configuration (integration time, 
windowing, etc.) similar to those used for the application, fitting the behaviour of each detector 
independently. 
 
This calibration overcomes the limitations inherent to the NUC (or CNUC) and BPR procedures 
(linearity assumption valid further enough from saturation for the NUC, introduction of a strong 
spatial correlation between neighbouring pixels for the BPR operation…). However, it requires 
a high-uniformity extended blackbody so as to have a uniform radiation source at different 
temperature levels covering the whole range of the future application.  
 
Once more, as in the standard global calibration procedure, the calibration law of each pixel 
can be chosen as a polynomial or as a Planck-like function, but the constant will be arrays of 
coefficients, the size of which being the one of the infrared matrix itself. These calibration 
coefficients are obtained by approximating, generally in the least squares sense, the couples 
(digitized radiation–temperature) by the chosen calibration function. 
 
Defective pixels are then localized using a criterion for measuring the mismatch between the 
calibrated and specified temperature. The BPR operation is not performed: temperatures of 
the defective pixels are not taken into account in the subsequent data-processing. A specific 
pixel-to-pixel calibration is detailed in [9,10]. 
 
 

5. Conclusion 
 
Accurate temperature measurement by radiative means is not an easy task. Many parameters 
have to be evaluated beforehand for extracting the surface emitted radiance from the 
measured radiance (atmospheric contributions: self-emission and attenuation, environments 
radiance reflections). One then faces the problem of temperature-emissivity separation. This 
underdetermined problem requires that some knowledge about the emissivity of the tested 
material is introduced. A general thought is that by adding spectral measurements at one or 
several other wavelengths would help identifying the temperature. The underdetermined 
nature of the problem is however maintained. Introducing a model for the emissivity spectral 
profile is often a misleading idea: high systematic errors unavoidably emerge when the model 
doesn’t perfectly match to the real emissivity profile. Having some knowledge on emissivity 
magnitude helps much than imposing an arbitrary shape model. 
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Lecture 5. Nonlinear parameter estimation problems: 
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Abstract. The aim of this lecture is to present a methodology for enhancing the 
estimation of parameters in the case on a Non-Linear Parameter Estimation problem 
(NLPE). After some definitions and vocabulary precisions, useful tools to investigate 
NLPE problems will be introduced. Different techniques will be proposed for tracking 
for instance the true degree of freedom of a given estimation problem (Correlation, 
Rank of sensitivity matrix, SVD, ..) and enhancing the estimation of particular 
parameters by using either a Reduced model or a Model with some parameters fixed 
at their nominal values. The resulting reduced model can be unbiased or biased. 

List of acronyms: 
 

• NLPE: Non-Linear Parameter Estimation 

• PEP: Parameter Estimation Problem 

• MBM: Model-Based Metrology 

• SVD: Singular Value Decomposition 

• OLS: Ordinary Least Squares 

• SNR: Signal-to-Noise Ratio 
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4.1  Dimensional analysis or natural parameters: case of coupled 
conduction/radiation flash experiment 

4.2  Reducing the PEP to make it well-conditioned: case of thermal characterization 
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5. Conclusion 
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1. Introduction 
 
The Non-Linear Parameter Estimation problem (NLPE) has been the subject of numerous 
lectures during the past METTI schools (see [1]). This text aims first at gathering in a synthetic 
way the basic notions and tools that can be used practically to analyse NLPE problems in 
engineering and science. At the same time, it provides new insights about the tools available 
to: 
 
(i) enhance our knowledge about parameter identifiability in a given problem: which parameters 
can be really estimated in a given experiment and which precision can be achieved? 
(ii) track the origin of pitfalls in parameter estimation problems (PEP), 
(iii) offer new perspectives for enhancing the quality of model-based metrology (MBM) in a 
general way. 
 

This lecture is composed of three different parts. The first one gives some definitions and 
vocabulary precisions. The second one presents some useful tools to investigate NLPE: ill-
conditioned PEP will be considered and analysed and the use of SVD to track the PEP’s 
degrees of freedom will be introduced next. The last part of this lecture consists in presenting 
some techniques for enhancing the performances of estimation, such as a dimensional 
analysis for identifying the degrees of freedom of a given problem and a reduction of the 
number of parameters involved in a theoretical model to make the PEP well-conditioned. As 
an example, the case of thermal characterization of a deposit on a substrate will be considered 
here. 
 
2. Some definitions and vocabulary precisions 

 
 Performances of contemporary metrology, that is the science of measurement which 
includes material characterization for example, are not the result of the enhancement of the 
technology of measuring instruments only. They are also the consequence of the significant 
progresses accomplished in the field of Inverse Problems solving, especially when it is based 
on a very large amount of data. These are provided by new tools and by the facilities now 
available for numerical acquisition of experimental signals (CCD detectors allowing for 2D/3D 
numerical data acquisition and high frequency time resolution). Understanding the conditions 
for which parameters can be estimated from the model/measurements pair constitutes also a 
key point for reaching a high-quality estimation. 
 

 Measuring a physical quantity jβ  requires a specific experiment allowing for this quantity 

to "express itself as much as possible" (notion of sensitivity). This experiment requires a 

system onto which inputs )(tu  are applied (stimuli) and whose outputs )(ty  are collected 

(observations). t  is the explanatory variable: it corresponds to time for a purely dynamical 

experiment. A model M  is required to mathematically express the dependence of the system's 

response with respect to quantity j  and to other additional parameters )( jkk   : 

) ,;( uβtηy =mo  where input function )(tu has been parameterized, that is decomposed 

under a finite set of basis functions, the coefficients of this decomposition being gathered in a 
vector u [8, page 26]. Many candidates may exist for function η  - depending on the degree of 

complexity reached for modelling the physical process - which may exhibit different 
mathematical structure – depending for example on the type of method used to solve the model 

equations. Once this model is established, the physical quantities in vector β  acquire the 
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status of model parameters. This model (called knowledge model if it is derived from physical 
laws and/or conservation principles) is initially established in a direct formulation. Knowing 

inputs )(tu and the value taken by parameter β , the output(s) can be predicted. 

 
 The linear or non-linear character of the model has to be determined: 
 

▪ A Linear model with respect to its Inputs (LI structure) is such as: 
 

 ))(,;())(,;())()(,;( 22112211 tutytutytututy momomo βββ  +=+  (1) 

 
▪ A Linear model with respect to its parameters (LP structure) is such as: 

 

 ))(,;())(,;())(,;( 22112211 tutytutytuty momomo ββββ  +=+  (2) 

 
In a metrological problem referred here as MBM (Model-Based Metrology), observations of the 
outputs will be provided by measurements. The inverse problem consists in making the direct 

problem work backwards with the objective of getting (extracting) β  from ))(,;( tutymo β  for 

given inputs and observations y . This is an estimation process. The difficulty stems here from 

two points:  
 

(i)  Measurements y  are subjected to random perturbations (intrinsic noise ε ) which 

in turn will generate perturbed estimated values β̂  of β , even if the model is 

perfect: this constitutes an estimation problem. 
(ii) the mathematical model may not correspond exactly to the reality of the experiment. 

Measuring the value of β  in such a context leads to a biased estimation, where the 

bias is defined as trueˆBias ββ −= )(E , E ( β̂ ) being the expectation of the 

(stochastic) estimator β̂ : this gives rise to an identification problem (which model 

structure η  to use ?) associated to an estimation problem (how to estimate β  for 

a given model structure?). 
 
The estimation/identification process basically tends to make the model match the data (or the 
contrary). This is made by using some mathematical "machinery" aiming at reducing some gap 
(distance or norm)  
 

) ,;(- )( uβtyyβr mo=     (3) 

 
 One of the obvious goals of NLPE (Non-Linear Parameter Estimation) studies is to 

assess the performed estimation through the calculation of the variances )(β̂V  of the 

estimators of the different parameters. If the probabilistic distribution law of the noise is known, 
this allows to give the order of magnitude of confidence bounds for the estimates. NLPE 
problems require the use of Non-Linear statistics for studying such properties of the estimates. 
 
 Because of the two above-mentioned drawbacks of MBM, the estimated or measured 

value of a parameter jβ  will be considered as "good" if it is not biased (or if its relative bias is 

low) and if its variance is minimum. Quantifying the bias and variance is also helpful to 
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determine which one of two rival experiments is the most appropriate for measuring the 

searched parameter (Optimal experiment design). In case of multiple parameters (vector β ) 

and NLPE problems, it is also interesting to determine which components of vector β  are 

correctly estimated in a given experiment. 
 
3. Useful tools to investigate NLPE problems 
 
3.1. Sensitivities 

The central role of the sensitivity matrix in PEP has been shown in the preceding lecture 
(Lecture 3). In the case of a single output signal y  with m  sampling points for the explanatory 

variable t  and for a model involving n  parameters, the sensitivity matrix is ( )m n  defined as 

  

jk,tj

nom
imo

ji

k

ty
S





=

for

);(




β
 (4) 

As the problem is NL, the sensitivity matrix has only a local meaning. It is calculated for a given 

nominal parameter vector nomβ . 

If the model has a LP structure, this means that the sensitivity matrix is independent from β . 

It can be expressed as (Lecture 3) 

 jj

n

j

mo tSty )();(
1


=

=β  (5) 

The sensitivity coefficient )(tS j  to the thj  parameter jβ  corresponds to the thj  column of 

matrix S , once m discrete observation times have been chosen.  

 
The primary way of getting information about the identifiability of the different parameters is to 
analyse and compare the sensitivity coefficients through graphical observations. This is 

possible only when considering reduced sensitivity coefficients 
*

jS  (sometimes called "scaled" 

sensitivity coefficients) because the parameters of a model do not have in general the same 
units. 
 

 

jk
k

,j

nom
mo

jk
k

,j

nom
mo

jjj
*
j





=




==

forfor
)(ln

);();(






tt

βtyβty
SS  (6a) 

Or 
 

 RSS =*  (6b) 

 

with R  the square diagonal matrix whose diagonal is composed of the components jβ  of β . 

 

TOOL Nr1: A plot of all the reduced sensitivity coefficients )(tS*
j  gives a first idea about 

the most influential parameter for a given model (largest magnitude) and about possible 
correlations (sensitivity coefficients following the same evolution). 
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Example: Measurement of thermophysical properties of a coating layer through the Flash 

method using thermal contrast principle (Number of parameters 2=n ). 

 
 

Figure 1 : Basis of the “thermal contrast” method 

The thermal contrast method requires the repetition of two "flash" experiments A and B (Figure 
1). The first one is operated on the substrate only (index (2)) whose thermophysical properties 
are known. The second experiment is performed on the two-layered sample (index (1)/(2)). In 
both cases, one records the rear face temperature evolutions. The thermograms so obtained 
are normalized with respect to their maximum and the difference of the scaled thermograms 

AT  and BT  is computed to produce the thermal contrast thermogram. This latter is a function 

of the thermophysical properties of the coating (1) and of the substrate (2) through two 
parameters: 

222

111
2

1

2

2

1
1 and

c

c
K

a

a

e

e
K




==    (7a) 

The observable (contrast curve) and the reduced sensitivity coefficients to 
1K  and 2K  are 

plotted in Figure 2. They show (i) that the sensitivities have the same order of magnitude as 
the signal (a good thing) but unfortunately (ii) these sensitivities appear to be totally correlated, 
since their maxima occur at roughly the same time (a bad thing). In this case, this simple plot 

shows that sensitivities to 
1K  and 2K  are likely proportional and therefore that the identifiability 

of both parameters is impossible. This example will be more thoroughly modelled and studied 
in section 4 of this lecture.  
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Figure 2 : Reduced sensitivity coefficients for  36110 21 .Kand.K ==  

 

3.2. Variance/Correlation matrix 
To go further and to investigate more deeply the PEP, the statistics of the estimator must be 
analysed. This can be made when (i) an estimator has been chosen (that is, a method to derive 
estimated values for the different parameters from the experimental signal), and (ii) the 
statistical properties of noise ε  are known (according to experimentally founded observations). 

 
We assume that the noise on the experimental signal is additive (this is in fact the definition of 
a noise), unbiased (which means that its stochastic average, its expectation is zero, for an 

unbiased model structure  of course) and independent (which means that the noise taken at 

two different times are independent) and has a constant variance 
2σ  : this is sometimes called 

a IID. (Independent and Identically Distributed) noise, which occurs for perfect measurement 
with an ideal sensor. This corresponds to 
 

miimoi tyy Iεεβ 2)( cov;)(E;);(  ==+= 0    (7b) 

 

where mI  is the identity matrix of size m (number of measurement points). 

According to Beck's taxonomy (see [2] p. 134 and chapter VII), these assumptions correspond 
to the set "1111—11" with the following additional precisions: non stochastic independent 
explanatory variable (time), and no prior information for the parameters. 

The OLS (Ordinary Least Squares) estimator OLSβ̂  minimizes the least square sum, which 

gives: 

  ( )
=

−===
m

i

imoi

T

OLS ,tyy,,,J
1

22
);();();();()( uβuβtruβtruβtrβ  (8) 

Where: 

  );();( uβtyyuβtr ,, mo−=  (9) 

are defined as the residuals. 
 
The estimator expression is found through a minimization process, where the jth equation, also 
called “normal equation” is: 
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  n...,,,jˆtJ j
OLS

OLS 21for0),( == β  (10a) 

 

verified. If the global minimum of )(βOLSJ  is reached, the OLS estimator is unbiased, which 

means that the statistical mean of repeated estimated values β̂  is equal to the exact parameter 

vector β . 

 
Lecture 3 describes the behaviour of such an estimator for a LP model where the calculations 
can be fully completed to get an explicit linear OLS solution: 
 

( ) ySSSβ TT

OLS
ˆ 1−

=     (10b) 

 
In the case of a NL structure, the minimum is found through an iterative process using local 
linearity (Gauss-Newton algorithm basically, see [3]) of the form: 
 

  ( ))( )()(
1

)()()()1( k
mo

TkkTkkk
OLSOLSOLS

ˆˆˆ βyySSSββ −





+=

−
+  (11) 

The iterative process (12) requires computing the inverse of matrix SST at each iteration k. 

Therefore, this latter must offer a good enough conditioning through repeated iterations. This 
is possible if the sensitivity coefficients are non-zero and linearly independent. Without any 
specialized and dedicated tool, this iterative process can be stopped when the residuals norm 

rrT
 is of the same order of magnitude as the measurement noise, that is when: 

 
2)( )( mˆJ k

OLS β  (12) 

 
At convergence, the standard deviation of the error made for the estimated parameters can be 
evaluated thanks to the (symmetrical) estimated covariance matrix of the estimator. It 
characterizes the precision that can be reached on the estimated parameters (its inverse is 
sometimes named the precision matrix) and depends on the statistical assumptions that can 
be made on the data. In view of an OLS estimator, this matrix is  
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

 

 
 

(13) 

 
It depends on the level of the Signal-to-Noise Ratio (SNR) and brings into play the inverse of 

the SST  matrix, already pointed out as a decisive operation for an accurate estimation. Matrix 

SST , which is also called the Fisher's information matrix with assumptions (8), depends on 

the number m  of measurement points and on their distribution along the estimation interval, 
which may also be optimised if necessary [2]. The diagonal coefficients are the squares of the 

estimated standard deviation of each parameter 
2

j̂
 . They quantify the error that one can 

expect through inverse estimation. This is true if the assumptions made for the noise are 
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consistent with the experiment. The problem being NLP, retrieving these optimum bounds 
through a statistical analysis may depend on the starting guesses made to initialize the 
estimation algorithm. This matrix can also be an indicator for detecting possible correlations 
between the parameters. An estimation of the correlation matrix is calculated according to: 
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 =  

 
 

(14) 

 
The correlation coefficients (off-diagonal terms) correspond to a quantification of the 2 by 2 

correlation existing between the two estimations of parameters i  and j  and, more 

precisely, between their errors (let us note that other forms of correlations involving more than 
2 sensitivity coefficients exist, that is the multiple collinearity problem, which is detailed in 
section 3.3.2 further down). They vary between -1 and 1. They are global quantities (in some 

sense, “averaged” over the considered estimation interval, the whole  mt,0  here). Gallant [4] 

suggested that difficulty in computation may be encountered when the common logarithm of 
the ratio of the largest to smallest eigenvalues of cor exceeds one-half the number of 
significant decimal digits used by the computer. 
 
A more practical hybrid matrix representation Vcor can be constructed. It gathers the diagonal 
terms of the covariance matrix (more precisely their square root, normalized by the value of 
the estimated parameter) and the off-diagonal terms of the correlation matrix.  
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(15) 

 
 
TOOL Nr2: Matrix )(β̂Vcor  gives a quantitative point of view about the identifiability of 
the parameters. The main interest of this matrix lies in its diagonal coefficients, the 
relative standard deviation of the estimations of each parameter: these can be 
calculated independently from their physical units. These standard deviations of the 
estimated parameters are the stochastic root mean squares of the errors that are 
caused by the sole stochastic character of the IID noise, for an unbiased model.  
 
The off-diagonal terms (correlation coefficients) are generally of poor interest because of their 

too global character. Values very close to 1  may explain very large variances (errors) on the 
parameters through a correlation effect. 
 
NB: Another matrix, )(rcov β̂  defined in equation (35) further on, is also very useful for 

assessing the quality of a potential inversion. Its diagonal coefficients are the squares of those 

of  )(Vcor β̂ , but its off-diagonal coefficients are different. 

 

149/332



 

 

 

 

METTI 8 Advanced School   Ile d’Oléron, France 

Thermal Measurements and Inverse Techniques             Sept. 24th – Sept 29th, 2023 
 

 Lecture 5: Non linear parameter estimation problems – page 10 

Example: Here are two Vcor  matrices taken from [1]. They were obtained for the same NLPE 

problems and for the same given set of nominal values of the 3=n  parameters but 

considering two different observables A and B (two different locations of the temperature 
measurements). 
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
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
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
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



=

0.0042

0.93-0.0008

0.630.38-0.0002

)(Vcor



β̂B  

Observable A Observable B 
 
In the case of observable A, high relative standard deviations (nearly 3%) is observed for 

parameters 1β  and 3β  : it can be explained by a high degree of correlation between them (

999013 .= ). Observable A can clearly not be used for estimating these parameters. On the 

contrary, observable B offers good identifiability for all parameters (small relative standard 
deviations) and does not show any 2 by 2 correlation. 
 

3.3. Ill-conditioned PEP and strategies for tracking true degrees of freedom 

3.3.1. Pathological example of ill-conditioning resulting from correlated parameters. 

 The good identifiability of parameters can be related to the local convexity of the cost 

functional )(βOLSJ  in the hyper-parameter space. One obvious consequence of a correlation 

between parameters is that several local minima may exist and make estimation algorithms 
consequently fail. The discussion that follows here is taken from an example of parameter 
estimation in a case of coupled radiative-conductive heat transfer [5]. The thermal 
characterization of a semi-transparent material implies a model depending on three basic 

parameters at least: the thermal diffusion characteristic time a/etd
2= , the dimensionless 

optical thickness 0  and the dimensionless Planck number N  (explanations to follow in section 

4.1) and so  T

d N,t 0, =β . The estimation of the three parameters in this NLP problem may 

be difficult for some range of values of parameters 0  and N  where matrix )(Vcor β̂  shows 

that a high degree of correlation between these two parameters exists, whereas the value of 

parameter dt  remains unconcerned. 

 

A plot of the OLS criterium )(βOLSJ  in the 2D space ( )N,0  for a given dt  value and a given 

noise σ  (Figure 3) makes the consequence of such bad conditioning quite clear. 

 
All level sets draw a very narrow valley oriented along a line which graphically corresponds to 

the relation 02 N . A 3D plot would show that the central line of this valley does really 

correspond to a descending slope and hence that no real minima can be found. The level set 

indicated in the figure corresponds to exactly 2070)( m.JOLS ==β . Trying to make the 

iterative optimization algorithm works below this limit for the stopping criterion is useless. In 
other words, the larger the noise, the higher the stopping level-set should be.  
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Figure 3 : Level sets for )(βOLSJ  in the ( )N,0  parameter space 

 
In the present case, this will not change the identifiability criterion. Depending on the initial 
guesses for the parameters, the deterministic algorithm will find different minima and different 
parameter estimates.  
 

The four local minima are presented as big dots in Figure 3 and correspond to the 3 
parameters whose values are given in Table 1. Let us note that the local minimum Nr 4 Table 
4) has been obtained with a stochastic algorithm (Simulated Annealing) different from a 
deterministic gradient based minimization algorithm used for finding the first 3 local minima.  
This shows that when the problem is ill-conditioned, stochastic algorithms are of little help for 
a correct estimation process (contrary to what is usually believed).  
 

Such a behavior is more likely the result of a model which is not adapted to the physics 
involved. In the present case, it is interesting to note in Table 1 that all local minima that were 

found follows the relation Constant1)( 00 =+ N . 

 
 

Parameter 
vector 

components 

Local Minima 
(found using either deterministic or 

stochastic algorithms) 

 N°1 N°2 N°3 N°4 

a  (107 m²/s) 5.2 4.9 5.85 4.8 

N  0.6 0.74 0.16 0.82 

0  0.38 0.5 0.076 0.56 

Rr = ( )1
N

0
0

Pl +


 2.18 2.22 2.26 2.28 

 

Table 1 : Example of local minima found β̂  
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In fact, an approximate modeling for conductive-radiative transfer in optically thin media can 
be shown to be more pertinent and more parsimonious. It makes naturally arise the notion of 

radiative resistance rR  which can be expressed as 00 1)(  += NRr . This resistance is the 

appropriate parameter in this limiting behavior and prove that there is no way to identify 

independently 0  and N  (Many different pairs are able to produce the same value for rR ). 

 
 
TOOL Nr3: For an independent noise with known standard deviation and for a given 
model, it may be interesting to look at the level-set representation of the optimisation 
criterion in appropriate cut planes (for a given pair of parameters if n > 3) and compare 
it with the minimum achievable criterion given by 2J mσ= , where m is the number of 
measurements.  

3.3.2. Rank of the sensitivity matrix.  

We focus here on the scaled (or reduced) sensitivity matrix (see definition in equations (6a) 
and (6b)). This (m, n) matrix is composed of n  column vectors, the reduced sensitivity 

coefficients *
jS : 

 
jk,j

nom

j
*
j

*
n

***

k 



==

for

21

);(
with






t

βtη
SSSSS   (16) 

where t is a column vector composed by all the m times of measurement: 

  T

mttt 21=t     (17) 

These n column vectors 
*
jS  are in fact just the components of a set of n vectors 

*
jS


in a m-

dimension vector space. One can recall here that this set of vector  = { *
1S


, *
2S


,…, *
nS


} is 

linearly independent only if m coefficients j  exist such as: 

njjj

n

j

*

jj ==
=

1withanyfor0
1

 0S   (18) 

 
This means that a linear combination of all these m vectors is equal to zero only if all its 

coefficients (the j 's here) are equal to zero. If it is not the case, system  is linearly 

dependent. Let us note that the presence of a null vector in the  set of vectors   makes it 

linearly dependent: such a null vector 
*
jS


 would correspond here to a parameter that has no 

influence on the variation of the model output, (the very specific case of a parameter jβ  

rigorously equal to zero is discarded here).  
 

So, if the set is dependent, one has to remove one vector 
*
jS


 from the original set  and try 

again to test the independence condition (19) with the n-1 remaining vectors. This can be made 
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with the n possible choices for the vector *
jS


that is removed from set . If one finds one such 

independent set of n-1 vectors, the rank of the set is n-1. In the opposite case, one has to test 

the independence with n-2 vectors and so on... The rank r of  is the larger number of vectors 

for an independent subset of  that can be formed with the n original vectors. 

 In order to illustrate this, we will assume that m = n =2 and that the model is linear. This 

corresponds to two observations of a model with two parameters  and . This leads to the 

set of two sensitivity vectors  = { *
1S


, *
2S


} from which the situations shown in Figure 4 can be 

considered: 

 

 
 

Figure 4 :  Reduced sensitivity vectors: 

a - independent sensitivities (r = n = 2) b - dependent sensitivities c- nearly dependent sensitivities 

Case a corresponds to linearly independent sensitivity coefficients: the rank of  is equal to 2. 

It is also the rank of the reduced sensitivity matrix *S  and hence the rank of the sensitivity 

matrix, since RSS =*  (where R is the square diagonal matrix with two  diagonal coefficients  

1  and 2 according to equation 7). One can say that the observations of the model output 

provide two degrees of freedom since two parameters can be estimated.  

Case b demonstrates a pathological nature of the sensitivity coefficients: they are proportional, 

with *
2S


= 2 *
1S


(one sees that the choice  = 2 and  = -1 in (19), which allows to show that 

the set of vectors  is not independent) and estimation of both coefficients is not possible 

anymore. In this case, the rank of *S and hence the rank of S is r = 1 and the determinant of 

the information matrix SS T is equal to zero. This means that the explicit value of OLSβ̂ , in the 

linear case (see equation 11b) and with a noise of spherical covariance matrix, which requires 
an inversion of the information matrix, is not possible. The same is true for the calculation of 

the variance-covariance matrix of OLSβ̂ : the observations of the model output provide only one 

degree of freedom and only one parameter can be estimated, if the value of the other one is 
known. 
 

Case c lies in between: the two reduced sensitivity vectors are nearly proportional *
2S


≈ 2 *
1S


. 

Even if the mathematical rank is still equal to 2 (the previous equality is not an exact one), one 
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guesses that the number of degrees of freedom is somewhere between one and two and a 
more refined statistical analysis, taking into account the noise level in the measurements, has 
to be implemented.  
 

Let us note that it is possible to test the presence of two nearly proportional vectors in set , in 
the very general case, with of course a number of parameters less or equal to the number of 

observations ( mn  ), by testing the assumption 0or


=− *
jjk

*
k c SS , where jkc  is a 

proportionality constant: a plot of )( i
*
k tS as a function of )( i

*
j tS , for the m common values it of 

the independent variable where observations are available (parametric representation of a 

curve) shows whether the plots gather on the )()( tSctS *
kjk

*
k = line or not.  

 
As an example of this type of representation, Figure 5 illustrates the case taken from [1] of a 

1D rear face transient response of a low insulating sample (conductivity ) sandwiched 
between two very thin copper layers. The knowledge model (RDM1 in [1]) assumes pure 
thermal resistance for the insulating layer and pure known capacities for the copper layers. 
The front face is stimulated by a Dirac pulse of energy Q (J.m-2),  with a heat loss coefficient h 

(W.m-2 K-1) equal over its two faces: the sensitivities to the three parameters Q,  and h seem 
to be qualitatively independent, but only in terms of  two by two linear dependencies: this does 
not mean that the rank of the reduced sensitivity matrix (if only these three parameters are 
looked for) is equal to three, because three by three linear dependencies may be possible.  
 
This aspect, a possible dependency between the three sensitivity coefficients, is shown in 
Figure 6, for the same experimental design: a linear combination of the form 

0or22113


=−− *** cc SSS  is looked for between the three sensitivity coefficients (for  = Q, 

= h and  = ) and a linear OLS estimation of 1c  and 2c  is made using the )(1 i
* tS 's and the 

)(2 i
* tS 's as the new independent variables and the )(3 i

* tS 's as new observations. The 

corresponding )(3 i
* tS values are plotted as a function of the recalculated values (optimal linear 

combination) of the corresponding model, )()( 2211 tSĉtSĉ ** + : since the corresponding curve 

is very close to the first bisecting line, a qualitative 3 by 3 possible linear dependency is 
detected.  
 
However, one can wonder how this dependency would impede the estimation of the three 

parameters: this has to be confirmed by a calculation of the covariance or Vcor  matrix of the 

corresponding estimations, as explained in 3.2.  
 
So, we will focus here on nonlinear parameter estimation problems where local linearization 
concepts as well as a Singular Value Decomposition of matrix deserve to be introduced.  
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Figure 5 :  Sensitivities plotted by pairs 
Figure 6 :  Evidence of Linear Combination 

between all three parameters 

3.3.3.  Generalization: Use of SVD to track PEP degrees of freedom 
 
It has been shown previously (see Lecture 3) that the question of identifiability of the 

parameters of a model relies on the condition number of the information matrix SST  if the 

physical units of the parameters are the same and of its scaled form *T* SS  if it is not the case. 

However, a systematic tool for tracking down hidden correlations is lacking. Such a tool will be 
presented now to circumvent this problem. Ultimately it will allow determining which 
parameters it is wise to exclude from the estimation (metrological) process, in order to get 
better estimates of the remaining ones.  

 
In the next section two sequential steps will be presented.  
 
First, in order to use all the tools available for linear estimation (see Lecture 3) on which  the 

iterative OLS estimation (12) is based, the differential moyd  of the model will be calculated 

around a reference point nomβ , that is a nominal value of the parameter vector for which a 

sensitivity analysis has been carried out (see previous sections) and the original parameter 

vector β  will be made dimensionless using the components of nomβ : a reduced parameter 

vector x with a well-defined norm will be constructed. 
 
Second, Singular Value Decomposition (SVD) will be applied to the reduced sensitivity matrix 

of the "tangent" local linearized model around nomβ , the ultimate goal being the determination 

the r parameters that can be estimated in a problem with n original parameters (with rn  ), 

when the levels of the measurement noise and measurement magnitude are known (SNR).  
 

The non-linear model );( βtmoy is still considered here with m  available measurements. 

 
 

3.3.3.1. Parameterizing a non-linear parameter estimation problem around the nominal 
values of its parameters  

Sensitivity (A.U.)

Se
ns

iti
vi

ty
(A

.U
.)

1 2

* *

β βS f ( S )= −

2 3

* *

β βS f ( S )− = −

1 3

* *

β βS f ( S )=

Sensitivity (A.U.)

Se
ns

iti
vi

ty
(A

.U
.)

1 2

* *

β βS f ( S )= −

2 3

* *

β βS f ( S )− = −

1 3

* *

β βS f ( S )=

3

*
S

1 1 2 2

* *ˆ ˆc c+S S

3

*
S

1 1 2 2

* *ˆ ˆc c+S S
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The following single-output non-linear model is considered here: 
 

);( βtymo =       (19) 

 
where β  is the column vector of the n parameters, of size (n, 1), moy  its (scalar) output at time 

t and η  is a scalar function of t . If m observations of moy  are available for times ti, one can 

use a column vector notation: 
 

);( βtηy =mo       (20) 

 

where moy is the output vector of the model, of dimensions (m, 1) and t the column vector of 

the m times of observation. In the relation, )(.η is a vector function whose values belong to Rm. 

 
Since the model is non-linear, it will be written under a differential form, in the neighbourhood 

of a reference point nomβ , which corresponds to a nominal value, where a sensitivity study has 

been already implemented. This allows to use a local linearity: 
 

ββtSy d) ;(d nom
mo =       

jkfor,j

nom
i

ji

k

t
S





=






t

β ) ;(
with  (21) 

 

Let us note that in the notation moyd , the column vector t of the measurement times has been 

"frozen". S is the sensitivity matrix. 
 

 
  for

21

);(
with

jk,j

nom

jn

k 



==




t

βtη
SSSSS    (22) 

 

In (22), the column vector moyd  has a norm, because all its m components have the same 

physical units. However, such is not the case for column vector βd , which is only a column 

matrix composed of n parameters whose physical dimensions are not necessarily the same: 

1d  is a very small variation in the neighbourhood of nom
1 , which can be a thermal conductivity 

λ . 2d  a very small variation around nom
2 , which can be a volumetric heat capacity c and 

so on … 
 

So βd  is not really a vector belonging to any vector space of dimension n, but a simple 

collection of n parameters. 
 
In order to transform it into a real vector, a normalization of all its elements is necessary. The 

components of nomβ will be used for that purpose. A new dimensionless parameter x is 

introduced.  
 
Its components are defined by: 
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( )nom
jjj /x ln=     (23) 

 
And its nominal value is equal to zero:  
 

 Tnom 000 == 0x    (24) 

 

In the neighbourhood of nomβ , each component of x is equal to the relative variation of the 

corresponding component of β  around its nominal value (first order series expansion): 

 

( )
nom
j

nom
jj

nom
j

nom
jjnom

jjj /x









−














 −
+== 1lnln    (25) 

 
The new parameter vector x is written the following way: 
 

( ) ( )nom
nomnom ββRβRx −= −− 11ln      (26) 

 
with : 
 

 





















=

nom
n

nom

nom

nom















00

00

00

2

1

R      (27) 

 

With this definition, the differential dx of x is the logarithmic differential of β : 

 

  )(lnd
dd

dwithdddd 21 j

j

j

nom
j

j
j

T

n xxxx 







=== x   (28) 

 

Let us note that the very last equality is only valid in the neighbourhood of nomβ . It can also 

be written with a column vector notation: 
 

βRβRx ddd 11 −− = nom     (29) 

 

where R is the square diagonal matrix whose diagonal is composed of the components of β , 

in the same way as (28) for the definition of nomR  starting from nomβ . 

 

Equation (22) is rewritten in order to make xd appear: 

 

nommo ** RSSxSy == withdd     (30 a-b) 

 
 

*S  is the reduced sensitivity matrix calculated for nomβ , see (17, 23).    
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So, moyd is a column vector belonging to 
mR  (it can be made truly dimensionless by a division 

by );( nomβtη  but it is not necessary here) and xd  is a true column vector belonging to mR  

because its norm can be defined. 
 
Using this change of variable as well as the SVD decomposition (see Appendix 1) of the scaled 

(also called reduced) sensitivity matrix *S , one can show that equation (31a) can be used to 

get a first order development in the neighbourhood of nomβ (see Appendix 2 for the 

demonstration): 
 

( )  ( ))(-)(- 11 nom
momo

T
nom

nomnom
momo

T
nom βyyUWVRββyyUWVRβ −− +=+ 1

 (31a) 
 

with the following SVD decomposition:  Tnom* VWUβS =)(    (32b) 

 
Equation (12), that gives the Gauss-Newton algorithm can also be recast in terms of the scaled 
parameter x: 
 

( ) ( ))()()()(
1 nom

mo
nomT*nom*nomT*ˆ βyyβSβSβSx −=

−
   (33) 

 

This expression is equivalent to equation (12) where one has replaced the left-hand side β  

by its estimated value β̂  for a single iteration number k for 1)-(k(k) and ββββ ˆˆˆ nom == . The 

complete demonstration is given in Appendix 3. 
 

In a similar way, the variance-covariance matrix of scaled vector x̂ can be derived from (33) 
and (32b), see Appendix 4: 
 

( ) TT

nomnom
ˆˆ VWVRβRx 2211 )(cov)(cov −−− ==     (34) 

 

One can note that, by definition, matrix  )(cov x̂ is the reduced (or scaled) covariance matrix 

of β̂ , which can be called rcov( β̂ ): 

 

( ) 12

22

2
2

2

112121
2

1
2

)Symmetric

)

))/cov))/cov)

)(cov)(rcov 2

1

−
=





















 *T*

nom
nˆ

nom
ˆ

nom
n

nom
n

nomnomnom
ˆ

/(

/(

(ˆ,ˆ((ˆ,ˆ(/(

ˆˆ

n

SSxβ 















(35) 
 

One also shows, in Appendix 4, that the trace of )(cov x̂ , that is the sum of the square of the 

relative standard deviations of all the estimations j̂ , at convergence, is equal to the sum of 

the square of the inverses of the singular values of *S , with a multiplicative factor equal to the 

variance 2 of the IID noise: 
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( ) ( ) 
==

=

n

k k

n

j

nom
jj

w
/ˆ

1

2

2

1

2 1
)(covTr  x   (36) 

 

This allows to define a criterion qm  that assesses the global precision of the estimation: 

 

( ) ( )

21

1

2

21

1

2 11
)(covTr

11
/

n

k k

/
n

j

nom
jjq

wn
ˆ

n
/

n
m














==














 

==

  x (37) 

 

qm  is the root mean square relative standard deviation of the different parameters. So, it can 

be expressed in percent. If a specific parameter is estimated with a high relative variation, this 

will have an effect of qm  that will get large. The advantage of this criterion is that it takes into 

account the level of the measurement noise, contrary to the condition number of the relative 

sensitivity matrix n
* ww /)(cond 1S  (see Lecture 3). It is quite easy to find an upper and a 

lower bound for it: 
 

( )
n

/
n

j

nom
jjq

n w
/

n
m

wn





 














= 

=

21

1

211
  (38) 

 

Other points about this criterion that allows to study the well-posedness of a non-linear 
parameter estimation problem are given in Appendix 4. 
 

 
 
TOOL Nr4: The SVD of the normalized sensitivity matrix calculated for nominal values 
of parameter vector β  can bring valuable information to quantify the real identifiability 
of the parameters, once the level of noise known.  
 

3.3.4 Residuals analysis and signature of the presence of a bias in the metrological process 

One way to analyse the results of an estimation process is to calculate the residuals (equation 
10) at convergence, when the assumptions (8) are fulfilled (an IID noise). When the model 

used for the estimation is not biased, the calculation of the residual column vector )(βr ˆ whose 

kth coefficients is the residual );( β̂tr k  at time kt  is: 

)()()()()( exact
mo

exact
momo

ˆˆˆˆ ββSεβyεβyβyyβr −−−+=−  with )(βSS ˆ=    (39) 

One shows in Appendix 5 that, strictly speaking, the residuals, when the model is unbiased, 
are correlated but, in practice, adding more measurements times for a given estimation interval 
tends to make them nearly uncorrelated. This is especially true for thermal characterization of 
materials or systems, where the number of parameters is low (2, 3, 4, ...) and the time sampling 
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rate high enough with respect of the length of measurement (several hundredth of 
measurements at least for modern data acquisition systems). 

So, when these previous conditions are fulfilled, "signed" residuals can be considered as the 
signature of some estimation based on a biased model. 

This bias can stem from different causes such as: 

(i)  the a priori decision that some parameters of the model are known and therefore 
fixed at some given value (maybe measured by another experiment). As active 
parameters in the PEP, they can alter the estimates of the remaining unknown 
parameters.  

(ii) Experimental imperfections which make the model idealized with respect to the 
reality of the phenomena.  

 
The existence of a bias means that a systematic and generally unknown inconsistency exists 
between the model and the experimental data. 

We give here an example taken from [1] and already studied in section 3.3.2 above. It concerns 
the simulation of a flash experiment applied to a three-layer medium: two highly capacitive and 
conductive coatings and a central layer made of a material with very poor conductivity (highly 
insulating material) and heat capacity (aerogel material). This system can be modelled through 

some function ),( βtyT mo
rear = . An artificial bias )(td  is introduced under the form of a linear 

drift superimposed to the output simulated observations. It corresponds practically to a linear 
deviation of the signal from the equilibrium situation before the experiment starts. So, the 
correct model that should be used to mimic the observed rear face measurement should be: 

)();(),( k
exact

kmo
exact

k
drift
mo tdtyty += ββ    (40) 

A noise respecting equation (8) is also added to the simulation of the measurements so that 

we have at each time kt :  

k
exact

k
drift
mok tyy += ),( β     (41) 

 

Of course, model ),( βtymo  is exact if no drift is present in the experiment. However, in the 

opposite case, it becomes biased, since it does not account for the presence of this drift.  
 

Let us note that in this definition, the drift model is the reference one ( drift
mo

exact
mo yy = ) and the 

preceding thermal model is the biased one ( mo
biased
mo yy = ). 

 
If this biased model is used for estimation, the minimization will be done by a minimization of 
the following criterion based on a biased residual vector: 
 

dβyyβyyβrβrβrβ +−=−= )()()(with)()()( drift
momobiasedbiased

T
biasedbiasedJ  (42) 

 

160/332



 

 

 

 

METTI 8 Advanced School   Ile d’Oléron, France 

Thermal Measurements and Inverse Techniques             Sept. 24th – Sept 29th, 2023 
 

 Lecture 5: Non linear parameter estimation problems – page 21 

As a consequence, at convergence, the error on the estimated parameters vector will have a 
deterministic part and a stochastic part: 
 

00 ==+− dbεAbββe ifwith 
exactbiasedˆ   (43) 

 
where A is a matrix that corresponds to the linearization of the inverse problem with respect to 

the noise in the neighbourhood of the exact value of exactβ and b  a bias of non-zero average, 

that stems from the presence of the drift d.  
 
As a consequence, the residual defined in (42) can be calculated, at convergence, using (43): 

)()()()( biased
mo

exactdrift
momo

biased
biased

ˆˆ βyεβyβyyβr −+=−  (44) 

 

or 
 

)()( εAbβyεdβyr ++−++= 
exact

mo
exact

mobiased    (45) 

 

A first order development of the last term around the exact value exactβ yields: 

 

 εAbβSβyεdβyβr +−−++= )()()()( exactexact
mo

exact
mo

biased
biased

ˆ  (46) 

 
or 
 

  εAβSIbβSdβr )(-)()( exactexactbiased
biased

ˆ ++=   (47) 

 
This means that the residuals are biased, because of their first deterministic component, even 
if its second stochastic one may be diagonal. 

 
We return here to the estimation problem described in section 3.3.2 (flash experiment on a 
three layer sample for the inner insulating layer characterization): we have seen that the  model 
used for parameter estimation was ill-conditioned: some correlation exists between the 

parameters (Case 3=n  corresponding to the correlation existing between parameters shown 

in Figure 5 and Figure 6). Figure 7 below shows that  
 

•  the simulated rear face noisy output of the system, with the drift and some added 
noise (dotted curve), 

•  the corresponding rear face recalculated output using the biased estimate β̂

(obtained through minimization of criterion (42)) - (blue solid line), 

•  the drift of the model output (function )(tby ) introduced (brown solid line) . At the 

final time of the experiment ( s1000=ft ), the magnitude of the drift represents less 

than 4% of the maximum level of the signal, 

•  the residuals curve, with the noised signal (minimization of criterion (42), grey 
stochastic line), and after removing the noise, that is with the same estimation 

process starting from a noiseless signal, that is with 0=ε , blue solid line). 
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Figure 7 :  Signed character of "post-estimation" residuals in the presence of a bias and 
using a badly conditioned PEP  

 
The "signed" character of the residuals is obvious (oscillation around zero with a much smaller 

frequency than the noise). The three parameters estimated ( andh,Q ) using these biased 

"measurements" have averaged values (obtained by repeated Monte Carlo simulated 

measurements) that differ respectively by % 18- , % 7.5- , % 91+  from the exact  input values. 

These differences are not of stochastic origin (caused by noise only) but result from the 
introduction of the bias. One possibility for the experimenter who wants to check whether his 
estimations are biased or not, is to observe the output of the inversion process for varying 
identification ranges of the independent variable. For example, we can vary the identification 
time interval. If a bias affects the data when compared to the modeling, then the estimations 
will vary, depending on the selected identification interval. This is what can be observed in 
Table 2 where three identifications have been performed for three different time intervals [0-
70s], [0-150s], [0-300s]. In this case we have used a more refined model than the one used 
for Figure 7  and thus a more badly conditioned PEP. In this table both thermal properties of 
the insulating material (thermal conductivity and thermal diffusivity) were estimated from the 
biased data. Obviously with such a material, the small heat capacity makes a good estimation 
of this parameter difficult, but sadly (because of a lack of sensitivity) this also affects the 
estimation of the second parameter. The thermal diffusivity and conductivity estimated from 
the data of Figure 7 depend strongly on the identification intervals. The values can change 
within a factor of 60% or 170% in that case. 

 

Time Interval 70 s 150 s 300 s 

a (m²/s) 3.76.10-6 3.22.10-6 2.21.10-6 

 (W/m/°C) 0.031 0.064 0.084 

Table 2 : Influence of the existence of some bias on the parameter estimates for a 
badly conditioned problem 
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TOOL Nr5: The "post-estimation" residuals have to be analysed carefully to check the 
potential existence of a bias of systematic origin. Its magnitude can be compared to the 
standard deviation of the white noise of the sensor in order to check whether this bias 
may introduce too large confidence intervals for the estimates (with respect to the pure 
stochastic estimation of the variances of parameter estimates in the absence of any 
bias). Invariant estimates for different identification intervals suggest that the bias is 
acceptable. In the opposite case, strategies must be implemented, either to change the 
nature of the estimation problems (reduction of the initial goals) or to use residuals to 
give a fair quantitative evaluation of the confidence bounds of the estimates. Some hints 
on that topic will be given in the next section. 
 
4. Enhancing the performances of estimation 

 
Some tools have been given above: they can help the experimenter to gain insight into its 
metrological problem. They can lead to a conclusion of failure: the problem is ill-conditioned 
regarding the estimation of the interesting parameters. This means that the parameters we 
initially wish to measure will actually never be estimated accurately. Two strategies are 
possible: recognizing that the initial goal is in vain or modifying the problem through physical 
thinking to make it well-posed or adequately conditioned even by changing the goals 
themselves (number of parameters to estimate). Quoting J.V.Beck [2]: "the problem of non-
identifiability can be avoided, through either the use of a different experiment or a smaller set 
of parameters that are identifiable".  
 
This position emerges from the well-known parsimony “principle” (see 
http://en.wikipedia.org/wiki/Parsimony) which in the field of science could be summarized by 
this sentence : “trying to perfectly recover reality is indeed very easy, when one adds 
parameters to each other so that it connects-the-dots”. There is much more to learn and to 
retrieve from the distance maintained between a model and the observations it is supposed to 
match. The resulting consequence is that any minimization algorithm is a good one because 
the problem is well defined. This section will now proceed to give additional tools to work out 
badly conditioned problems with special analysis regarding the role of known versus unknown 
parameters. 
 
4.1 Dimensional analysis or natural parameters: case of coupled conduction/radiation flash 

experiment 
 
 Through the preceding sections, the reader should have been convinced of the 
importance of notions like the pertinence of a model (good representation of reality, controlled 
origins of bias), the application of the parsimony principle that is to adapt one's metrological 
objective by making the "quality" of the available information match the degree of complexity 
of the model.  
 
A reduced model, seen as a model with a reduced number of parameters, has to be considered 
first in the light of Dimensional Analysis. The principles of Dimensional Analysis in Engineering 
precisely rely on the construction of "appropriate" natural parameters (the Pi-groups) emerging 
from the rank determination of the dimensional matrix of all physical quantities involved in the 
problem with respect to a basis of "base" quantities [6].  
 
If we consider the heat transfer problem in a semi-transparent material like glass, coupled 
conduction and radiation transfers must be considered. Material parameters involve classical 
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thermophysical properties of the opaque material (thermal conductivity  , specific heat c ) 

with the additional parameters accounting for radiative transfer : the absorption (extinction 

coefficient) )(m-1 , the level of temperature of the material 0T  (in Kelvin) which rules the 

magnitude of radiation emission, the Stefan-Boltzmann constant SB , the refractive index n , 

and the inner emissivity i  of the boundaries (no units - opaque coatings of the glass slab are 

considered here). 
 

Let us assume that a flash experiment is planned, with an absorbed heat density )(J.m-2Q .  

In order to study the possibilities for a transient thermal characterization technique of such 
materials (which parameters can be measured with this experiment?), the model will give the 
rear face temperature response of the slab (thickness e ) as  the following function: 

 

 )( 0 n,,T,,,,c,Q,e,tTy iSB
flash

rearmo =      (48) 

 
Practicing a "blind" Dimensional Analysis leads to the construction of a new function depending 
on a new set of parameters: 
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0   (49) 

 
which naturally produces 4 pi-groups governing heat transfer inside the sample, with a 
reduction of the number of initial parameters of the model from 10 to 5. 
 
Another classical example deals with conductive and convective mechanisms of transfer which 
appear jointly in problems of heat transfer within boundary layers. Solving the Inverse Heat 
Conduction Problem in order to get a heat exchange coefficient estimation will require the 
introduction of the classical Reynolds, Nusselt and Prandtl numbers. 
 

4.2  Reducing the PEP to make it well-conditioned: case of thermal characterization of 
a deposit 

 

➢ Model: Case of the contrast method 

 
The method of the thermal contrast already presented in Section 3.1 consists in making two 
"flash" experiments in order to estimate the thermal properties of the coating layer, denoted 
(1) in Figure 8 below (the same as Figure 1). We will now on detail the modelling already 
presented briefly in section 3.1, in order to be able to find out which parameters of the model 
can be really estimated, in this non-linear parameter estimation problem. 
 
Let us remind that the first flash experiment is carried out on the substrate denoted (2), which 
allows characterization of the substrate in terms of diffusivity (the thermal capacity of the 
substrate is measured by another facility). The second flash experiment is performed on the 
two-layer material denoted (1)/(2). 
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In both cases, the variation of the rear-face temperature T with time, called thermogram, is 

measured. By taking the difference of theses thermograms 
*

AT  and 
*

BT  normalized by their 

respective maximum, we obtain a curve called a thermal contrast curve, which is a function of 
the thermophysical parameters of the film (1) and of the substrate (2). 

 

experiment  A 

  

(2) 

a 

 

 C p T A 

experiment  B 

  (2) 

e 1 e 2 

(1) T B 

 
 

Figure 8 :  Principle of the Method 
 
The thermal quadrupoles method [7] is very appropriate to find the rear-face temperatures. 
Taking the Laplace transform of the heat equation yields a linear relationship between the 
different quantities of the "in" and "out" faces of each layer of the material.  
 

Let ( )pz,  and ( )pz,  being the Laplace transforms of the temperature ( )tzT ,  and heat 

density ( )tz,  respectively, with z the axis normal to both faces: 

 

 ( ) ( )  ( ) ( )


−==

0

dexp tptt,zTt,zTp,z L      (50) 

and  

 ( ) ( )  ( ) ( ) ( )
z

T
t,ztptt,zt,zp,z




−=−== 



 withdexp

0

L   (51) 

 
The thermal quadrupoles method allows to linearly link the temperatures and the heat flux 
densities of a homogeneous layer (numbered i here) without any source term and with zero 

initial temperature, through a transfer matrix iM , defined in the following way: 

 

 












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
=









outi

outi

ii
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ini

ini

DC

BA








     (52) 

with the coefficients of the matrix being calculated as:  

( ) ( ) ( )iiiiiii

ii

iiiii a/pea/pCa/pe
a/p

Ba/peDA sinh;sinh
1

;cosh 


====

The subscript ( )i  is related to the layer ( )i  : film (1) and substrate (2). 
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ie  : thickness of the material 

ia   : thermal diffusivity 

i   : thermal conductivity 

ipC  : specific heat 

It is convenient in this 1D transient problem, to notice that time can be made dimensionless 
with the thermal diffusivity a2 of the substrate and with its thickness e2, to make a Fourier 
number t* appear, which will be associated to a reduced Laplace parameter p* defined as: 
 

 
2

2

2 = 
e

ta
t*

 , 
2

2

2  = 
a

e
pp*

and  *ps =      (53) 

We can then define a reduced Laplace transform 
~

 as: 

 

 ( ) ( )  ( ) ( ) ( )p,z
e

a
*t*t*p*t,zTt,zT*p,z

~ *~


2
2

2

0

dexp =−== 


L  (54) 

 

➢ Flash Experiment on the substrate: 

The expression of the rear face response to a pulsed (Dirac) stimulation ( ) ( )tQt 2=  , where 

Q2 is the energy density (in J.m-2) absorbed by the front face, is given by the following 
relationship: 
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    (55) 

 

Hence:   















2

2

2

2
2

2

2

2
2

sinh
a

pe

a

p
 

Q
 = 

C

Q
 = 

out



    (56) 

Here subscript 'in' designates the front (stimulated) face while subscript 'out' is associated to 
the rear face, where temperature can be measured. This rear face is supposed to be insulated 

here ( 02 =
out

  in (55)). 

Setting 
*ps = and normalizing the thermogram with respect to its maximum that corresponds 

to the adiabatic temperature: 
222

2
2

ec

Q
T


=


 reached for long times for this adiabatic model, we 

obtain: 
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Using the reduced Laplace transform (57), we can write:  
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 = 
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


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

L      (58) 

➢ Flash Experiment on the two-layer material: 

The expression of the rear face response of the two-layer material can also be obtained 
easily through the quadrupoles method: 
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and where 
21

Q is the energy density absorbed by the front face in this second flash experiment 

on the two-layer sample. 

In the case of good conductive materials with small thicknesses, the Biot number which 
represents the ratio between the internal resistance and the external resistance is low, which 
justifies neglecting the heat losses in the model output (rear face temperature) above. The 
expression of the temperature takes the following form: 
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Q
 = 

C

Q
 = //

eq

/

1221

21
2121     (61) 

Note:  If we switch the two layers of the material, it means inverting subscripts 1 and 2, and 
the expression of the rear-face temperature can be proved to remain unchanged. 
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If we now scale the thermogram with the adiabatic temperature of the two-layer material, that 

is with 
222111

21
21

ecec

Q
T /

 +
= 


, the expression of the Laplace transforms of this reduced 

temperature temperature 2121 // T/T  takes a simpler form: 
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As in section 3.1 two reduced parameters are introduced: 
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2

2

1
1    

a

a

e

e
K = :  ratio of the root of characteristic times  

or             21forwith 2
211 ,ia/etctc/tcK iii ===     (64) 
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


= :  ratio of the thermal effusivities  

or  21forwith212 ,icbb/bK iii ===       (65) 

We can note that 1K  is a function of the thicknesses of the substrate and coating and 2K  is 

an intrinsic parameter of the materials. The reduced Laplace transform of the response of the 
two-layer system can then be written, using (54): 
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The heterogeneous nature of the two-layer material system appears here through the 
expression of the denominator that cannot be simplified: this makes the definition of an 
equivalent material associated to this two-layer sample impossible. 
 

 
 

➢ Contrast Curve:  

The contrast curve is obtained by taking the difference between the two thermograms, that 
is: 

 ( ) ( )***
/

**
/

*
out T  = T T  

~~
= 

~ ~~
outoutoutout

−=− LL 221221     (67) 

The expression of the reduced thermal contrast in the Laplace domain is: 

168/332



 

 

 

 

METTI 8 Advanced School   Ile d’Oléron, France 

Thermal Measurements and Inverse Techniques             Sept. 24th – Sept 29th, 2023 
 

 Lecture 5: Non linear parameter estimation problems – page 29 

 

 
( ) ( ) ( ) ( ) ( )






−

+

+
=

ssKsssKK

KK

s

~

11 sinh

1
  

coshsinh  coshsinh 

  1
 

1
  

2

21

*

out   (68) 

Theoretically, 1K  and 2K  can be measured from an experimental thermal contrast curve 

through an "inverse" technique. The numerical inversion of the model is implemented by De 
Hoog’s algorithm [10] whose MATLAB version (Invlap) is given in [11]. 

From 1K  and 2K  (or by a parameter substitution), it is also possible to calculate the thermal 

capacity and conductivity of the deposit by the following relations: 
                            

       
222

111
213

ec

ec
KKK




==  thermal capacities ratio 

  

 or 21forwith213 ,iecCC/CK iiittt ===       (69) 

                     and 
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e

e
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K ==    thermal resistances ratio  

 

 or 21forwith214 ,i/eRR/RK iii ===       (70) 

Another parametrization of the same model consists in writing expression (68) as a function of 

3K  and 4K .  

The expression of the theoretical model with scaled parameters clearly shows that its output 
is in this case only function of two parameters. This means in particular that the thermophysical 
properties of the deposit can theoretically be obtained only if the properties of the substrate 
are known and as well as the thickness of each layer. Thus, the precision of the measurement 
also depends on the precision of these known parameters. 

In the followings, our attention will be focused on two particular cases. The first one 
corresponds to a conductive deposit on an insulating material. The second one corresponds 
to an insulating film on a conductive substrate. 

In these two cases, the materials we consider have low thicknesses and are good conductors. 

So, the Biot number based on the properties of the substrate 22 heBi =  is low and it is 

possible, as a first approximation, to neglect its influence on the measured reduced rear face 

contrast 
*T .  

It can be shown that even in the presence of heat losses, there is some kind of compensation 
through the construction of this contrast, which is a difference, which means that the present 
adiabatic model is a robust one: we will see in a later section that this parameter has a low 
influence in the estimation of the coating properties. The thicknesses and thermophysical 
properties are given in Table 3. 
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 Thickness (µm) a (m2/s)  (W/m/°K) pC  

(J/m3/°K) 

Case 1 : Aluminium coating on a Cobalt/Nickel substrate 

Film (1) 220 9.46 10-5 230 2.43 106 

Substrate (2) 1 100 2.36 10-5 84.5 3.57 106 

Case 2 : Insulating film on a Alumina substrate 

Film (1) 247 6.84 10-7 2.23 3.26 106 

Substrate (2) 640 7.47 10-6 23 3.08 106 

 
Table 3: Thermophysical properties and thicknesses of the materials 

The reduced thermograms for the substrate and two-layer material as well as the contrast 
curve are plotted for the conductive/insulating and insulating/conductive cases in Figure 9 
and Figure 10 respectively. 

  

Figure 9 : Case 1 – Conductive 
coating / Insulating substrate 

Figure 10 : Case 2 – Insulating film / 
Conductive substrate 

 
 

➢ Sensitivity Study 

The contrast curves and reduced sensitivities to parameters 1K  and 2K  for the two cases 

considered (conductive and insulating deposits) are plotted in Figure 11 and Figure 12.  
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Figure 11 : Contrast curve and reduced 

sensitivities to 21 KandK  (Case 1) 
Figure 12 : Contrast curve and reduced 

sensitivities to 21 KandK  (Case 2) 

These two examples are representative of most of the cases that can be met. In the first case, 
both sensibilities are of the same order of magnitude but seem to be strongly correlated: they 
exhibit a nearly constant ratio, which means that they are proportional. In the second case, 
one of the sensitivity is low. 

➢ Covariance and correlation matrices 

 Table 4 gives the scaled covariance matrix ( ) 12)(rcov
−

= *T*ˆ SSK  defined in  (35), as well as  

the correlation matrix )(cor K̂ defined in (15), for the two cases considered (the standard-

deviation of noise   is taken equal to unity here and 1000 points in time are used for the 

simulation of the thermal contrast curve). 
 

Scaled Variance-Covariance 
 

   28.0302  -35.9846 
  -35.9846   46.6417 

 

Scaled Variance-Covariance 
 

    0.1067    3.1409 
    3.1409   99.1677 

 
Correlation 

 
    1.0000   -0.9952 
   -0.9952    1.0000 

Correlation 
 

    1.0000    0.9655 
    0.9655    1.0000 

 

Case 1 Case 2 
 

Table 4 : Reduced covariance and correlation matrices  21 and KK  (for  = 1) 

The most interesting information is given by the reduced variance-covariance matrix )(rcov K̂

:  it takes into account at the same times the reduced sensitivities through the inversion of the 

reduced information matrix *T* SS as well as the noise through its standard deviation . 
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We calculate now the square root of the diagonal terms of matrix )(rcov K̂ , that is the relative 

standard deviations of the estimates of each parameter K1 and K2, for a reduced standard 

deviation of the noise on each of the two *T2  and *
/T 21  scaled thermograms now equal to 

010.* = . This corresponds to a signal over noise ratio of 100. So measurement of the 

(experimental) reduced thermal contrast 
exp*T is affected by a (relative) standard deviation 

*T equal to *2 (for two independent experiments, because 

2*exp
1/2

*exp
2 2)(var)(var)(Δvar *TTT exp* =+= ), one gets (application of equation (35) with 

*2 replacing ): 

 

- for case 1: 
361 for %590.096646.64172

10 for %7.50.0749 28.03022

22

11

2

1

.K.*K/

.K*K/

K̂

K̂

===

===




  (71) 

 

It is interesting to calculate the singular values of the reduced sensitivity matrix *S .They are 

the square roots of the eigenvalues (equal to the singular values) of the reduced information 

matrix *T* SS and can also be calculated through the inverse of the eigenvalues of ( ) 1−*T* SS : 

 

( ) ( )( )
( ) ( )( ) 11590)(w1)(w)(w

43472)(w1)(w)(w

211-
1

21

22

211-
2

21

11

./

./

/*T*/*T**

/*T*/*T**

===

===

SSSSS

SSSSS
   (72) 

 

This allows to get the condition number of *S (see Lecture L3): 

  

21 )()/w(w)(cond 21 == *** SSS      (73) 

 

We can also calculate the root mean square reduced standard deviation qm  of the estimates 

of both parameters 1K  and 2K  defined in (37): 

 

( ) 08640112
212

2
2
1 .w/w/m

/*
q =+=      (74) 

 
It is easy to check that this value is simply the root mean square of the relative standards 
deviations given in (71). 

Let us note that this value (73) is close to the lower bound of qm  defined in (38), here: 

08620)2)/(2( 22 .w/w ** ==  . The smallest singular value is mostly responsible for the 

relative errors on both parameters.  
 
The same calculations can be made for the second case: 

 

- for case 2:   
320 for%11414080 99.16772

281 for %5000460 0.10672

22
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1

.K..*K/

.K..*K/
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===

===




  (75)
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and :    10040)(w785111)(w 21 .. ** == SS    (76) 
 

So, the condition number of *S is: 
 

171 )()/w(w)(cond 21 == *** SSS      (77) 
 

which means that matrix *S is more ill-conditioned in the second case with respect to the first 

one. 
 

One also gets here:        
 

09960:forboundlowerand09960 2 .w/m.m *
qq ==     (78) 

 

So, returning to case 1, it appears clearly that both the ratios K1 of the characteristic times and 
K2 of the effusivities can be estimated with a relative error nearly equivalent for both parameters 
(in the 7 to 10 % interval): this was already apparent in Figure 11 where the reduced sensitivity 
curves corresponding to both parameters were very close, with a slightly higher absolute value 
for the sensitivity to K1. 
 

For case 2, it is clearly the ratio K1 of the characteristic times that can be reached, with a very 
good precision (0.5 % here): this is quite natural since the reduced sensitivity to K2 in Figure 
12 is close to zero. So, because of the nonlinear character of this PEP problem, the accessible 
parameter depends on the location of the (K1, K2) parameter vector in the R2 plane. The 
question that remains is to know if is possible to measure, with higher precisions, two 
parameters derived from (K1, K2) using the experiment corresponding to case 1 for example. 

Let us introduce for instance the ( )43 K,K  pair instead of ( )21 K,K  in the analytical model. 
 

 

Variance-Covariance 
2.6921  -18.5189 

-18.5189  145.8475 
Correlation 

1.0000   -0.9346 
-0.9346    1.0000 

Case 1 
 

Figure 13 : Contrast curve and reduced 

sensitivities to  43 KandK   - case 1 

Table 5 : Reduced covariance and 

correlation matrices 43 KandK (for  = 1) - 

case 1 

The thermal contrast is naturally the same (the materials are identical).  

Table 5 gives the scaled covariance matrix )(rcov K̂ as well as the correlation matrix )(cor K̂  

for the estimator of  T
KK 43=K .  The relative standard deviation of both parameters becomes 

(for 010.* = ): 

 

173/332



 

 

 

 

METTI 8 Advanced School   Ile d’Oléron, France 

Thermal Measurements and Inverse Techniques             Sept. 24th – Sept 29th, 2023 
 

 Lecture 5: Non linear parameter estimation problems – page 34 

- for case 1:   
07350 for%11717080 145.84752

 1360 for%320.0232 2.69212

44

33

4

3

.K..*K/

.K.*K/

K̂

K̂

===

===




  

 (79) 
 
So, when comparing (79) and (71), one clearly sees that instead of having (K1 , K2) with quite 

poor precisions, the ( )43 K,K  allows to retrieve very precise values for the ratio of volumetric 

heat capacities 3K . This was already apparent in Figure 13: the relative sensitivity to K4 was 

quite low when compared to the one of K3, but both minima of the corresponding curves 
occurred at times far apart, with a degree of collinearity much weaker than in figure 11 (see 
also section 3.3.2 of this lecture). 

 
This result obtained for the two cases can be explained from the expression of the contrast 
curve.  
 

( ) ( ) ( ) ( ) ( )






−

+

+
=

ssKsssKK

KK

s

~

11

*

sinh

1
  

coshsinh  coshsinh 

  1
 

1
  Δ

2

21  (80) 

In the previous case (conductive coating on an insulating substrate), 1K  is close to zero. A 

rough approximation can be obtained by setting: 
( )
( )




−

−

1cosh

sinh

1

11

~sK

sK~sK
 

 

( ) ( ) ( )






−

+

+
=

ss  ss K

K

s

~*

sinh

1
  

sinhcosh

  1
 

1
  Δ

3

3     (81) 

 

We can see then that within this first order approximation, the model is only a function of 3K = 

21KK . We can check the other criteria already considered for case 1 with the (K1 , K2) 

parameters: 
 

08210)(w72701)(w 21 .. ** == SS     (82) 
 

So, the condition number of *S is: 
  

21 )()/w(w)(cond 21 == *** SSS      (83) 
 

Compared to the preceding parameterization, the reduced sensitivity matrix  *S as well as its 

singular values have changed, but the condition number is the same, see (73). 
 
One also gets here: 
 

 12180:forboundlowerand12190 2 .w/m.m *
qq ==     (84) 
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When both qm 's are compared, see (74), one can say that the global precision of the 

estimation of the ( )43 K,K  parameterization is lower than the ( )21 K,K  one. However, we will 

see later on that this superiority of the ( )43 K,K  parameterization is only an apparent one if 

both thermophysical characteristics of the film are looked for. 

 

 

Variance-Covariance 
 

103.5845  -97.1801 
-97.1801   91.1985 

 
Correlation 

 
1.0000   -0.9999 
-0.9999    1.0000 

 
Case 2 

 

Figure 14 : Contrast curve and sensitivities to 

43 KandK  (Case 2) 

Table 6 : Reduced covariance and 

correlation matrices 43 KandK  (for  = 

1) 

 

 
In case 2 (insulating coating on a conductive substrate), parameters 3K  and 4K  are strongly 

correlated and exhibit the same sensitivity curves – see Figure 14. This confirms the result we 

observed previously, that is a thermal contrast mostly sensitive to 1K . 

2

1

2

1

22

11

2

1

2

1
43 K

tc

tc

CR

CR

R

R

C

C
KK ====     (85) 

This can be also explained by the fact that 1K  is close to unity: 

 

( ) ( ) ( ) ( )sKsK~ssK 111 coshsinhcoshsinh −   (86) 

This yield: 

 

( ) ( ) ( )






−=

ssKss

~

1

*
out

sinh

1
  

coshsinh

1
 

1
  Δ    (87) 

 
 

So, the thermal contrast is mainly a function of 1K . Returning to the same calculation as in 

the other case, using Table 6, one gets: 
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- for case 2:   
4 for%51313510 91.19852

 40960 for%4140.1439 103.58452

44

33

4

3

===

===

K..*K/

.K.*K/

K̂

K̂




  (88) 

 
The singular values of the reduced sensitivity matrix are: 
 

07170)(w36248)(w 21 .. ** == SS    (89) 

 

So, the condition number of *S is: 

  

117 )()/w(w)(cond 21 == *** SSS      (90) 

 
We observe here the same thing as for case 2: the condition number of the reduced sensitivity 
matrix is independent of the parameterization, see (77). 
 
One also gets here: 
 

 13950:forboundlowerand13960 2 .w/m.m *
qq ==     (91) 

 

When both qm 's are compared, see (78), one can say that the global precision of the 

estimation of the ( )43 K,K  parameterization, which provided an excellent estimation for K3. is 

lower than the ( )21 K,K  one. 

 

4.3  Note on the change of parameters 

It has been suggested earlier that some change of parameterization would allow to overcome 
parameter estimation difficulties such as in the case of high correlation coefficients inducing 
high variances for the estimated parameters for example. We want here to come back to this 
discussion to give, very briefly, some precisions and our conclusions.  
 
First, and taking experience of what has been shown previously, if a change of 
parameterization is made that results in the production of a new parameter of sensitivity close 
to zero (and thereof excluded from the model), this new parameterization will have a positive 
effect and will allow to properly estimate the remaining ones. Note that it is the object of 
Dimensional Analysis to help making such reparameterization efficient. 
 
Second, if all the parameters of the problem have non negligible sensitivities but appear 
correlated, the question is: is it possible to find a new set of parameters defined from the initial 
one, to enhance the quality of the estimation process? 
 
The answer is no. It can be demonstrated, see Remy [9] that the sensitivities to a new set of 
parameters can be derived from the sensitivities of the current set (using the Jacobian of the 
transformation). The same is true for the variance-covariance matrix and the explanation is 

obvious from the quantified SVD analysis given above (the same condition number of *S is 

obtained whatever set of parameterizations is used) These relationships show that: 
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• if two parameters appear correlated in a given set of parameters, two parameters of a 
new set, recombined from the previous ones, will also be correlated, 

 

• if the sensitivity of a parameter is changed with a new parameterization (for example, 
it is enhanced), this will not change its variance ultimately. 
 

For instance, if we keep the parameter 1K  and choose another second parameter instead of 

2K , we can show that the sensitivity curve to 1K  can become higher or lower: we have to 

remind that the partial derivative that appears in the definition (4) of a sensitivity coefficient is 
associated to the variation of the output of the model for a variation of a given parameter, which  
requires that the other ones stay fixed at given values. This means that if the definition of these 
other parameters is changed, such is also the case for the sensitivity coefficients. So, talking 
of a sensitivity coefficient to a given parameter does not mean anything if the other parameters 
in the parameter vector are not specified. 
 

So, one can wonder whether it would be possible to improve the estimation of 1K  by combining 

this parameter with a particular parameter that can increase its sensitivity. In fact, this is not 
true because the standard-deviations of the estimates of the new parameters do not only 
depend on the sensitivities of the old parameters but also on the correlation between the 
estimates of the old parameters.  
 
To show this, we are going to see through an example how the standard-deviations (square 
roots of variances) of the new set of parameters change when one parameter is kept as for 

instance parameter 1K , that is 


21 KKKa =  with  =1;  =0, while 2K  is replaced by 

( )21  K,KFK bb = :  

 
( )

( )21

11

  

  =   

K,KFK

KKFK

bb

aa

=

=
     (92) 

We have: 









===








==

b

a

momo
K

K
'''

K

K
KKSKSyKKtηy withdddwith);(

2

1
  (93) 

 

where S is the sensitivity matrix to the old ( )21 K,K  set of parameters and S' the sensitivity 

matrix to the new ( )ba K,K  one. This requires the calculation of the Jacobian matrix J of this 

transformation since; 
 

Tˆ'ˆ'' JKJKJSSKJK )(cov)(covanddd ===    (94) 

 
The last equation in (94) stems from the linearization around the exact value of the K parameter 
vector: 

)(dcov)(cov KK ˆˆ =      (95) 
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with:  
( )
( ) 




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




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
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==
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F
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F

K

F

K,KD

F,FD
















J    (96) 

So, the sensitivity matrix to the new parameter set K' is: 
 

     222211
221

21
1 )1()(

1

01
SSSSSJSSSS ,b,b,b

,b,b,b
ba F/F/F

F/F/F
' −=









−
=== −   (97) 

 

Here the old sensitivity column vectors 1S  and 2S  , as well as the new ones aS  and bS  , 

have been explicitly written in terms of the corresponding sensitivity matrices, S  and 'S  

respectively.   
 
Application of (94) allows the calculation of the variances and covariance of the estimators of 

the new set of parameters ( )ba K,K : 
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F
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K̂  (98) 

 
that is:  

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )21211

21212

2

21

2

1

1

covvarcov

cov2varvarvar

varvar

K̂,K̂FK̂FK,K̂

K̂,K̂FFK̂FK̂FK̂

K̂K̂

,b,bba

,b,b,b,bb

a

+=

++=

=

   (99) 

We can see that even if the change of parameters modifies the sensitivity to parameter aK , 

that replaces parameter 1K  in the new set of parameters, the variance of this parameter 

remains unchanged whatever the choice of the second parameter.  
 
This means that the variance of a given parameter (and consequently the error on this 
parameter) is independent on the choice of the second parameter. Thus, identifying the 

parameter 1K  from the ( )21 K,K  pair is equivalent to estimating 1K  from the ( )31 K,K  or ( )41 K,K  

pairs.  
 

Similarly, we can show that estimating parameters ( )43 K,K  either through the 

parameterization ( )21 K,K  or directly, is strictly the same. 

 
The conclusion is that the interest of a change of parameters is justified only when an 
improved estimation of a particular parameter of interest is looked for. 
 
Whatever the parameterization, if the thicknesses of both layers are known, as well as 
the thermophysical properties of the substrate, we have: 
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2casefor%50

1casefor%32

11

31

11

31

.K/a/

.K/c/

K̂â

K̂ĉ

==

==



 

    (100) 

 
These relative standard deviation of the estimated thermophysical properties of the front face 
layer are valid for a signal to noise ratio equal to 100 for the experimental thermogram of each 
flash experiment (single substrate layer and two-layer sample). So, this rear face thermal 
constrast technique allows estimation of the capacity of the film for case 1 and of its diffusivity 
in case 2, for high enough signal over noise ratios. 
 
In case of very low sensitivity to a given parameter, it is possible to fix the value of the 
corresponding parameter to its nominal values. So, if the number of parameters that are 
looked for is reduced, then the stochastic errors on the remaining parameters (reduced 
standard deviations) decrease. However, their estimation becomes biased and leads to a 
systematic error on each estimated parameter such as:   
 

( ) ( ) ( )exact
c

nom
cc

T
rr

T
rrrˆ

ˆ
r

ββSSSSββb
β

−−=−=
−1

E   (101) 

 

Here the initial parameter vector has been decomposed into two parts 







=

c

r

β

β
β , where rβ  

gathers the parameters that are looked for and its complementary part cβ is supposed to be 

known, that is its value is blocked to a nominal value  nom
cc ββ = which differs from its exact 

value exact
cβ . Equation (101), which has already been derived in the case of a linear model in 

lecture L3 of this series (see also [1]), corresponds here to a linearization in the neighborhood 

of the exact value of β . 

 
This technique, which consists in reducing the number of parameters that are looked for, 
presents an interest only if the bias caused by the reduction of the number of parameters and 
its associated standard deviations are much lower than the initial stochastic error as illustrated 
in Figure 15.  
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Figure 15 : Comparison between the probability density distributions of the jth parameter of the 

parameter vector for two different estimators 1) all the parameters in β  are 

estimated altogether (red) or 2) only the components of one of its part rβ (blue) 

are estimated while its complementary part cβ are blocked to its nominal value. 

NB: here one assumes that index j in  β  and in rβ  are the same ( jjr  = ) and 

that the scale of the vertical axis is different for both distributions for practical 
plotting reasons (the area below both distributions should be equal to unity)  

 
 

5. Conclusion 
 
Useful tools have been introduced for the analysis of estimations (variance-covariance matrix) 
and the detection of the ill-conditioned character of the Parameter Estimation Problem (PEP). 
Different techniques have been presented for tracking the true degrees of freedom of a given 
PEP (matrix rank, correlations between parameters, SVD, ...). If we want to enhance the 
estimation of a given parameter, one solution is to use a reduced model. This reduced model 
can be either unbiased or biased. It is of particular interest to know if a reduced model is biased 
or not.  
 
We have proposed, in the last section of the lecture, to work with a variable estimation time 
interval in order to evaluate the systematic error caused in the estimated parameters. We hope 
that the different "realistic" examples of thermal metrology presented in this lecture will help 
the reader to master the corresponding tools to get good estimates in a PEP. 
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Appendix 1 - Reminder of the Singular Value Decomposition of a rectangular matrix 
 
Any rectangular matrix (called K here) with real coefficients and of dimensions (m, n) with 

nm  , can be written under the form : 

 

TVWUK = , that is  
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 (A1a) 

 

 
This expression is sometimes called "lean" singular decomposition or "economical" SVD and 
involves  
 
- U, an orthogonal matrix of dimensions (m, n), its column vectors (the left singular vectors of 

K) have a unit norm and are orthogonal by pairs: n

T IUU = , where nI  is the identity matrix of 

dimension n. Its columns are composed of the first n eigenvectors Uk, ordered according to 

decreasing values of the eigenvalues of matrix  TKK . Let us note that, in the general case, 

m

T IUU  . 

 

- V, a square orthogonal matrix of dimensions (n, n), n

TT IVVVV == . Its column vectors 

(the right singular vectors of K), are the n eigenvectors Vk, ordered according to decreasing 

eigenvalues, of matrix  KKT
; 

 
- W, a square diagonal matrix of dimensions (n, n), that contains the n so-called singular values 

of matrix K , ordered according to decreasing values: nwww  21 . The singular values 

of matrix K  are defined as the square roots of the eigenvalues of matrix KKT
. If matrix K  is 

square and symmetric, the eigenvalues and the singular values of K are the same. 
 
Another SVD form called "Full Singular Value Decomposition" is available for matrix K. In this 
equivalent definition, both matrices U and W are changed: the matrix replacing U is now square 
(size m x m) and the matrix replacing W is now diagonal but non square (size m x n). In the 

case nm  , this can be written: 

 

  )()(dimand;with
x)(

0000 m - nxmcomp
nnm
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
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


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
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−

U
W

WUUUVWUK 0  

(A1b) 
 

or: 
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Matrix compU is composed of the (m - n) left singular column vectors do not present in U. So, 

the concatenated matrix 0U verifies now: 

 

m
t

compcomp
ttt IUUUUUUUU =+== 0000      (A1d) 

 
This singular value decomposition (A1b) can be implemented for any matrix K ,  with real 

value coefficients, for nm  . 

 

Appendix 2 - Singular Value Decomposition of the scaled sensitivity matrix 
 
This singular value decomposition can be implemented for any matrix K . 
 
A double change of basis, in the measurement domain and in the parameter domain, using 

the matrices of the left U  and right V, in the SVD of S* written for K = S* yields: 

 
T* VWUS =      (A2) 

 
Matrix V is used as a (square) change of matrix basis and it transforms the differential of the 

reduced parameter vector xd , see (29) into a new differential vector pd , where p can be 

called the diagonal parameter vector, of dimensions (n, 1). 
 

Matrix U allows to change the differential observation vector moyd of dimensions (m, 1) into a 

differential vector dzmo of smaller length, where zmo can be called the diagonal observation 
vector, of dimensions (n, 1).  
 

pVxzUy ddanddd == momo    (A3a, b) 

 
Let us note here that the reduction of the length of the observation vector (m observations for 

moyd and only n components in dzmo stems from the fact that the (m-n) singular eigenvectors 

Uk not present in matrix U corresponds to null singular values wk (for k > n). 
 

Use of equations (A1) to (A3), together with the property n
TT IVVUU == , allows to get the 

equivalent of the differential model (31a) in the double transformed space: 
 

pWz dd =mo      (A4) 
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This equation corresponds to a diagonalization of the model in Rn, and one gets then, 
component by component: 
 

n,,,korz
w

p k,mo

k

k 21fd
1

d ==    (A5) 

 
Combining (A3a, b) and (A4) yields: 
 

mo
*

mo
T ySyUWVx ddd 1 +− ==     (A6) 

 

where +*S = TUWV 1− is the pseudo-inverse, or Moore-Penrose inverse, of the scaled 

sensitivity matrix *S . 

 

Combination of the preceding equations leads to a relationship between βd  and moyd : 

 

mo
T

nom yUWVRβ dd 1−=     (A7) 

 
 
and an integration can be implemented to give the relationship between the diagonal and 
original sets of parameters in a column vector form: 
 

( ) ( ) 0x ==−== −− nomTnomnom
nom

T
nom

TT VpββRVβRVxVp becauseln 11      (A8) 

 
 
The transformed observation vector can be expressed: 
 

0==== nomnom
mo

nom
momo

T
mo pWzpWβyyUz because))(-(       (A9) 

 
Combining (A8) and (A9) yields: 
 

( ) ( ) ( )( ))(-exp)(-ln 111 nom
momo

T
nom

nom
momo

T
nom

T βyyUWVRββyyUWβRVp −−− ===  

(A10) 

An approximation of this expression in the neighbourhood of nomβ is available: 

 

( )  ( ))(-)(- 11 nom
momo

T
nom

nomnom
momo

T
nom βyyUWVRββyyUWVRβ −− +=+ 1  (A11) 

 
 
where 1 is the column vector of length n whose coefficients are equal to unity. 

 

Appendix 3 – Non-linear Ordinary Least Square estimator and SVD 
 
It is interesting to compare diagonal equation (A5) that shows the interest of an inversion in 

the left and right singular spaces with the OLS estimator (12) of parameter β . So, if the first 

order approximation in the neighbourhood of nomβ is considered, the difference between 
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measurements and model outputs can be expressed with the residual vector  defined in (10), 
and rlin the linearized form of this difference vector: 
 

)() (-)(   )()()( nomnomnom

molinmo βββSβyyβrβyyβr −−=−=  (A12) 

 

The least squares sum JOLS can be written as a quadratic form J , using the fact that JOLS = 

JOLS T (scalar): 
 

( ) ( )
( ))() ()(2 )() () ()(

)()()()()()(

nom
mo

nomTTnomnomnomnomTTnom

nom
mo

Tnom
mo

T JJ

βyyβSβββββSβSββ

βyyβyyββrβrβ

−−−−−+

−−== 

 

(A13) 
 

When the minimum is reached, one gets:  
 

( ))() ()() () (0
d

d nom

mo

nomTnomnomnomT ˆJ
βyyβSβββSβS

β
−=−=



  (A14) 

 
which leads to an approximation of the OLS estimator: 
 

( ) ( ))() () () (
1 nom

mo
nomTnomnomTnomˆ βyyβSβSβSββ −=−

−
  (A15) 

 
This is exactly the same equation as the iterative algorithm (12), with 

)()1( and k
OLS

nomk
OLS

ˆˆˆ ββββ == + . One shows, using (31b) and (A2): 

 

( ) T
nom

nomTnomnomT UWVRβSβSβS 11
) () () ( −−

=     (A16) 

 
The least square estimator (A15), with the diagonal parameter p and the experimental diagonal 
signal z in their new bases, can be written thanks to (A16): 
 

))(-(with1 nom
mo

Tˆ βyyUzzWp == −    (A17a, b) 

 
Equation (A17a) is diagonal. Use of (A15) and (A16) provides a new expression for the OLS 

estimator of β :  

 

( )))(-(-1 nom
mo

Tnomˆ βyyUWVRβ += 1     (A18) 

 

This expression is the same as relationship (A1) that links β  and )(βymo : these corresponding 

two values are simply replaced by the linearized OLS estimator β̂  and by measurements y 

respectively. 
 
The linearized OLS estimator of the reduced parameter vector stems directly from (A19):  
 

( ) ( ))()()()(
1 nom

mo
nomT*nom*nomT*ˆ βyyβSβSβSx −=

−
  (A20) 
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Appendix 4 – Variance-covariance of the Non-linear Ordinary Least Square estimator 
and SVD 

 
With the noise properties defined in (8), the variance-covariance of the linearized OLS 

estimator β̂  given by equation (A15), can be written thanks to (31b) and (A2): 

 

( ) ( )
( ) nom

T
nomnom

T
nom

nom
T

nom
nomnomT

**

**ˆ

RVWVRRSSR

RSSRβSβSβ

2212

111212 ) () ()(cov

−−

−−−−

==

==




  (A21) 

 

This expression is valid if the difference between β̂  and nomβ is small: it is always the case 

near convergence of algorithm (12) where nomβ  can be redefined as )(k
OLS

nom β̂β =  and with 

)1( += k
OLS

ˆˆ ββ . 

  

The expression of the variance-covariance matrix of βRx ˆˆ
nom

1−=  becomes:  

 

( ) TT

nomnom
ˆˆ VWVRβRx 2211 )(cov)(cov −−− ==     (A22a) 

 
The first relationship in equation (A22a) allows to calculate the reduced covariance matrix of 

β̂ , )(rcov β̂ , whose diagonal coefficients are the reduced variances of the estimators of each 

parameter, using the nominal values of the parameters as scaling factors: 
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(A22b) 

where 
j̂

 is the standard deviation of j̂ . The square roots of the diagonal terms of this matrix, 

nom
ˆ / 1
1




, can be considered as a measure of the relative error made for each parameter and 

caused by presence of noise in the measurements y. 
 
It is very interesting to calculate the trace of this matrix, which is equal to the sum of the 

variances of the different components of x̂ : 
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where x j is the standard deviation of the estimate of reduced parameter xj  and  j the 

corresponding one for j. Since the right singular vectors have a unit norm ( 1
1

22
== 

=

n

i

ikk VV

), this last equation becomes: 
 

( ) ( ) 
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==
n

k k

n

j

nom
jj

w
/ˆ

1
2

2

1

2 1
)(covTr  x    (A24) 

 
In order to get a good estimation (in percent) of all the parameters of the model, the quadratic 

mean of the relative standard deviations of their estimates qm  should be smaller than a given 

level maxqm (NB: subscript q corresponds here to the quadratic mean of the normalized 

standard deviations): 
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One of the objectives of the "inverter" (the person in charge of the inversion) is to get a relative 

error qm , expressed in term of quadratic mean, lower than an upper threshold maxqm  equal to 

a few percent. This means that as soon as the number n of parameters that have to be 
estimated becomes large, the singular values wk of the corresponding reduced sensitivity 
matrix decrease, which increases the error. This increase of the error is proportional to the 
standard deviation of the noise. This standard deviation has the same unit as the output of the 
signal and the same is true for the singular values which do not depend on the structure of the 

model (function ) only, but also on the intensity of the stimulation (in a problem where the 
output is related to a field: temperature, concentration, …) and on the choice of the "times" of 
observation t. 
 
Both a lower and an upper level can also be constructed for the criterion of global relative error 

qm  defined in (A25), using the smaller singular value nw : 
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This clearly shows that a too large value for the ratio nw/ , between the standard deviation 

of the measurement noise and the smaller singular value of the reduced sensitivity matrix 

)( nom* βS , can make the estimation of the whole set of parameters « explode ». In that case, 

one of the  j  parameters (the parameter "supposed to be known", sk )  has to be removed 

from the original set of parameters to be estimated. This will lead to a new parameter vector 

'β  to be estimated, of smaller dimensions (n-1, 1), with a better (smaller) associated mq 

criterion (lower average dispersion) but with the apparition of a bias on its n-1 estimates, 
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because of the biased value of the removed parameter sk  that will be fixed to its nominal 

value that is different from its exact value (see Lecture 3).  

 

Appendix 5 – Residual analysis for an unbiased model using the SVD approach 

If the model used for estimation is unbiased, the residual vector, at convergence, is defined 
by: 

)()()()()( exact
mo

exact
momo

ˆˆˆˆ ββSεβyεβyβyyβr −−−+=−  with )(βSS ˆ=    (A27) 

The last approximation in equation (A27) is based on a first order development of the model 

with respect to parameter β , assuming that β̂  and exactβ  are close. So, 

))()(()())(()()( 1-1- exact
mo

exact
mo

TTexact
mo

TTˆ βyεβySSSSεβyySSSSεβr −+−=−−  

(A28) 

The second term in equation (A28) is also a first order development that stems from the Gauss-

Newton algorithm (12) used for minimizing )(βOLSJ  defined in (9) in an iterative way. 

After simplification, equation (A28) can be rewritten using the scaled sensitivity matrix *S : 

  )(diag)(with))(-())(-()( 1-1- ββSSεSSSSIεSSSSIβr ˆˆˆ *T**T**
m

TT
m ==   (A29) 

The lean SVD form (32b) (in the main body of this paper) of the scaled sensitivity matrix (see 
also Appendix 1) can be used then: 

Tˆ* VWUβS =)(     (A30) 

This yield, using the orthogonality property of the right singular matrix V: 

εUUIβr )()( T
m

ˆ −     (A31) 

So, under the IID noise assumption, for an unbiased model, one can show that the expectation 
of the residual vector is equal to zero:   

0=− )(E)())((E εUUIβr T
m

ˆ     (A32) 

This means that if the model used for describing the experiment is appropriate, the residuals 
curve is centred on the y = 0 axis.  

 
In order to get “unsigned” residuals, the variance-covariance matrix of the residuals should be 
diagonal. If the model is unbiased, this matrix is: 
 

t
compcomp

T
m

T
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TT
m
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Here compU  is the complementary left singular vectors matrix composed of the (m – n) left 

singular vectors, that appear in the full SVD decomposition of )(βS ˆ*  given by equation (A1b) 

in Appendix 1: 
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In case of a square non-linear least square problems, there are as many measurements as 

parameters to be estimated (m = n) and T
m UUI = . So, in this case, the residuals (A27) are 

deterministic and equal to zero ( compU is an ‘empty’ matrix with 0 column in that degenerated 

case). As soon as the number m of measurements gets higher than the number n of 

parameters, matrix t
compcomp UU becomes non-diagonal, especially if the difference (m – n) is 

small and the residuals are correlated. However, when this difference increases, that is when 
the number of measurements is a lot higher than the number of parameters, the ratio m/n  

goes to zero and compU  becomes very close to 0U , which means that  

m
T

m/n

t
compcomp

ˆ IUUUUβr 2
00

2

0as

2))((cov  =⎯⎯⎯⎯⎯ →⎯
→

 (A35) 

This means that, strictly speaking, the residuals are correlated, even for an unbiased model 
but, in practice, adding more many measurement times to a given estimation interval tends to 
make them nearly uncorrelated. This is especially true for thermal characterization of materials 
or system, where the number of parameters is low (2, 3, 4, ...) and the time sampling rate high 
enough with respect of the length of measurement (several hundred measurements at least 
for modern data acquisition systems) where the asymptotic level given by (A35) is reached.  
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Abstract. The methods for solving inverse problems must propose some consistent solutions despite 
their ill-posed character. Regularization is one of the major techniques for stabilizing the solution. We 
present in this lecture some generic examples as well as the main concepts within the linear estimation 
frame for the OLS (Ordinary Least Squares) estimator already studied in Lectures 1 and 3. The Singular 
Value Decomposition of the sensitivity matrix is used in order to analyse the solution. For such finite 
dimensional problems, the ill-posed behavior results in a bad-conditioned matrix computation. 

1. Introduction

The reader could see in Lecture 1, “Getting started with problematic inversions with three 
basic examples”, some examples of generic inverse problems, which gave rise to envision the 
main characteristics that make their solution difficult. In Lecture 3, “Basics for linear inversion, 
the white box case”, the concepts and resolution of linear parameter estimation problems were 
presented, when using a direct model that computes the output from the knowledge of the 
input and some inner parameters used in the direct model. 
The parameters to be recovered may be as well the passive structural parameters of the model 
(model identification), the parameters relative to the input variables, initial state, boundary 
conditions, some thermophysical properties, calibration, etc… For any of these considered 
cases, the output of the model can be properly computed if all the required information is 
available.  

In a famous book, Hadamard (Hadamard 1923) introduced in 1923 the notion of well-posed 
problem. This is a problem whose solution: 

- exists;
- is unique;
- depends continuously on the data.

Of course, these notions must be specified by the choice of space (and topologies) in which 
the data and the solution evolve. Problems that are not well-posed in the sense of Hadamard 
are said to be ill-posed problems. Note that the simple inversion of a well-posed problem may 
be either a well-posed or an ill-posed problem. 
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The example of 1D steady heat conduction in a wall discussed in Lecture 1, shows how the 
interpolation problem (that is the computation of �(�) between the sensor location and the
well-known boundary condition) is a well-posed problem, while the extrapolation problem 
(computation of �(�)  between the unknown boundary condition to be retrieved and the sensor
location) is an ill-posed problem, since the estimation error may increase drastically. 

The example of searching the slope of a line with two or more data points, such as 
discussed in Lecture 3, may be either a well-posed or an ill-posed problem: 

- a unique and stable solution exists if all the data points fit on the same line (no noise in
the data), and the time zero has not been chosen for some noisy data point. In that
very specific case, the problem of finding the slope is well-posed.

- If, due to the noise in the measurement points, the data do not fit on the same line, a
solution does not exist and the corresponding inverse problem of finding the slope is
ill-posed.

- If the values of time for taking the measurements are not properly chosen (mostly close
to zero), the solution is unstable, since the errors in the measurement may increase
drastically – see the absolute and relative amplification coefficients such as defined in
Lecture 1, and the corresponding inverse problem is ill-conditioned and may be
considered as  ill-posed.

The parameter estimation problem that consists in finding the vector of parameters by 
matching the measurements to the model outputs is most often an ill-posed problem, since it 
is generally over-determined (because the number of measurements � is greater than the

number of parameters �), and has no solution because Im( )∉y S . When the system is under-

determined (� < � ), it is also ill-posed because there is an infinite number of solutions.
Moreover, when � = �, the problem may be well-posed if it were stable, but may also be
unstable due to the effect of noise in the data.  

In the present lecture, we will consider discrete inverse problems, where the number of 
parameters to be estimated is finite. When the quantities to be estimated are functions instead 
of discrete values, the corresponding problem is a continuous inverse problem which may be 
fully ill-posed. However, in many cases, the searched functions can be parametrized and 
conveniently approximated by a discrete inverse problem. It was typically the case for the 1D 
transient inverse heat conduction example in section 4 of Lecture 1, where the wall heat flux 
was to be estimated as a function of time. The heat flux at each time 	
 is represented by a
stepwise function �
 .

The main challenge for such discrete function estimation problem is that the number of 
unknown is almost the same as the number of measurements, and the least squares approach 
is quite close to an exact matching procedure where only one observation is available for one 
estimated value. In this case the solution is highly sensitive to any ill-conditioned behaviour of 
the sensitivity matrix.  

2. Some examples of typical ill-posed problems

We give hereafter some typical examples of ill-posed problems, such as derivation and 
deconvolution of experimental data. These examples are typical of the case of a parameterized 
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function estimation problem. Instead of having a low number of parameters to be estimated 
with a high number of measurements, as for the example in Lecture 3 for estimating the slope 
and intercept of a straight line, the number of parameters to be estimated is herein very large 
and is quite of the same order as the number of observable data � , which makes the problem 
highly sensitive to noise. Unfortunately, in this case the inversion is often also amplifying the 
measurement noise. 

2.1 Derivation of a signal 

The derivation of a signal is often required for data processing. It is the case of time 
dependent functions, for instance, when deriving the time evolution of the mass of a product 
during drying or deducing the velocity of a body from the measurement of its position. A usual 
case in heat transfer is the problem of estimating the heat flux 
(�) exchanged by a body with
uniform temperature �(�) and volumetric heat capacity (��), with the lumped body
approximation for a small thickness � . The heat balance can be written as

(ρCe) dTdt =q(t) with the initial condition (6.1) 

An inversion procedure is sought, for recovering an estimation of 
(�) from the measured
temperature values �(��), for different levels of the measurement noise, based on the following
steps: 

a. Choose some heat flux function, such as ( ) 2q t t= (arbitraly chosen here)

b. Compute the corresponding analytical solution �(�) = ��/(���).
c. Add some random error, in order to simulate some experimental data, such as �(�) = �(�) + �(�)
d. Retrieve the estimation by discrete derivation of the signal 
 (�) = (���) !"!# ≈  (���) %&%#
e. Repeat for different values of the Signal-to-Noise Ratio (characterized by different levels of
standard deviation (std))

The results are depicted in Figure 1, assuming that (���) = 1 . When the standard deviation
of the error is low, the heat flux is conveniently retrieved (Fig. 1a). For case (b), the noise on 
the signal � remains very low, in the sense it is still almost not visible in the corresponding
curve. However, the heat flux is poorly computed. Increasing the level of noise, such as in Fig. 
1c, where the std is 0.9 K, results in a drastically poor computation of the heat flux. Thus, the 
numerical derivation of an experimental signal in order to retrieve its integral is an ill-posed 
problem, due to its unstable nature. The numerical derivation consists in computing the 
difference of successive measurements, divided by the time step. In this case the ill-posed 
character of the problem could be more dramatic as the time step decreases. As a result, the 
fluctuations in the identified function could be as important as we would like if Δ� tends to 0. It
is an illustration of the ill-posed character of the inverse problems: a bounded error can be 
amplified to infinity and the third condition of Hadamard is not satisfied! 

0T0t ==
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(a) 

(b) 

(c) 

Figure 1 – Derivation of an experimental signal (a) std = 0.03 K (b) std = 0.3 K (c) std = 0.9 K 
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2.2 Deconvolution of a signal 

The deconvolution of a signal is also an operation often required when processing 
experimental data, for instance when searching the transfer function of a system or sensor, in 
image processing, optics, geophysics, etc... We give again the heat transfer example of some 
heat capacity exchanging with convective heat losses with the surrounding medium, such as 

(ρCe) dTdt =q(t ) − ℎ�  with the initial condition � = 0  � = 0 (6.2) 

We assume here that (���) = 1, ℎ = 1 and that the area of the boundary surface of the body
is 1. 

Solving this equation by using the Laplace transformation of the temperature and heat flux with 
an analytical return to the time domain yields the solution in the form of the following 
convolution product: 

T(t)= - q(t- /)#0 exp(-h /) 4/ = - q(/)#0 exp(−ℎ (� − /)) 4/ (6.3) 

The same approach as in previous example is proposed herein, such as 

a.Choose some heat flux function, 
(�), called the input. Here the input function is chosen as:

q(t) = 
0exp 5− 6  #7#89 : �;  with 
0 = 10; �0 = 0.5  and /� = 0.05
b. Compute the corresponding analytical solution, that is the output �(�),  of the convolution
product above.

c. Add some random error, such as �(�) = �(�) + �(�)
d. Retrieve the heat flux by inverting the convolution product of  this signal by the negative
exponential above, that is the corresponding impulse response in this example (a numerical
deconvolution). The impulse response can be noted as: >�?(�) = exp(-h �).

e. Repeat for different values of the Signal-to-Noise Ratio (different levels of std:  @A)

The discrete approximation of expression (6.3) can be considered as a linear matricial 
expression between an input  vector : q=[
0 
C … 
E7C] and an output vector T=[�C �� … �E],  such as 

K�C��⋮�E
M = Δ� K>�?C>�?�⋮>�?E

0>�?C⋮⋯
⋮0⋮>�?�

00⋮>�?C
M K 
0
C⋮
E7C

M or  �� = Δ� ∑ >�?�7R ∗ 
RE7CRT0 (6.3 bis) 

With >�?U = exp (−ℎ�U) and �U = V ∗ Δ� V = 1 �W �
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The sensitivity matrix which here depends on only one vector: Imp=[>�?C >�?� … >�?E] is
called a lower triangular Toeplitz matrix, such as Z = [\]^_
	`(Imp) Δ�. Such a matrix is
diagonal-constant. 

The results from the Matlab script given in Appendix 1 are depicted in Figure 2. For a low 
standard deviation of the error (std = 0.01 K), the heat flux is conveniently retrieved by the 
deconvolution operation (simple inversion of the Toeplitz matrix). When increasing the noise 
level (std = 0.1 K), the drastic amplification of the errors in the deconvolution operation makes 
the result absolutely inaccurate. The increase of the noise level, that can be observed in the 
temperature plots, makes the solution (the input) inaccurate or even unavailable. This example 
shows that deconvolution of an experimental signal may be an ill-posed problem, depending 
on the functional form of the impulse response and on the noise level. 

Figure 2 – Effect of the noise level on the deconvolution of a signal 

(continuous blue line: exact signal, red line or dotted: noisy or retrieved signal) 

3. Structure of a linear transformation and stability

3.1 Singular Value Decomposition of the sensitivity matrix 
It was already shown in Lecture 3 of this school that the existence, uniqueness and stability of 
the solution of a discrete linear parameter estimation problem depends on the characteristics 
and structure of the rectangular sensitivity matrix S. Moreover, when the overdetermined
problem y=S x is considered as a least square problem given by the normal equations, it
appears that the structure of the square information matrix Z	S  has a major effect on the
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propagation of the errors between the observed data and the output of the model. The anatomy 
of such a linear transformation is very clearly discussed in the text of S. Tan & C. Fox (Tan 
2006). 
One approach of interest in order to analyze this problem is to consider the Singular Value 
Decomposition of S  (SVD). We assume herein that � > �  (overdetermined system, there is
more data than parameters) and that S  has only real coefficients. All the details of SVD analysis
can be found in (Hansen 1998) and the corresponding routines are available in any of the 
linear algebra librairies (LAPACK, Num. Recipes, Matlab®, …). 
The SVD of the matrix S   is then written as

⎣⎢
⎢⎢
⎡ Z

⎦⎥
⎥⎥
⎤ = j k l	 =

⎣⎢
⎢⎢
⎡ j  

⎦⎥
⎥⎥
⎤ mnC o⋱o nEq m l	   q (6.4) 

where 

- U  is an orthogonal matrix of dimensions (m,n)  : its column vectors (the left singular vectors
of Z ) have a unit norm and are orthogonal by pairs :  U  	U  = tu , where tu is the identity matrix
of dimension n. Its columns are composed of the first n eigenvectors vU, ordered according to
decreasing values of the eigenvalues of matrix S S 	. Let us note that, in the general case,U U 	 ≠ tx.

- l  is a square orthogonal matrix of dimensions (n,n) , : l l 	 = l 	 l = tu . Its column vectors
(the right singular vectors of Z), are the n eigenvectors ly , ordered according to decreasing
eigenvalues, of matrix Z	S;

- k  is a square diagonal matrix of dimensions (n,n), that contains the n so-called singular
values of matrix S , ordered according to decreasing values : nz ≥ n| ≥ ⋯ nu  The singular
values of matrix S are defined as the square roots of the eigenvalues of matrix Z	S.

In Lecture 3, the Singular value Decomposition of the reduced sensitivity matrix, through the 
analysis of its singular values, was used to demonstrate that its condition number is a criterion 
that can be used to measure the degree of ill-posedness of the OLS estimator, regardless of 
the noise level.  

As previously seen in Lecture 3, the Ordinary Least Squares solution is obtained by minimizing 
the distance between the output of the direct model Z} and the data � , which is done by  the
orthogonal projection of the data on the space spanned by the column vectors of Z.  This is
equivalent to minimizing the objective function 

~ ���(}) = ‖� − Z}‖� = (� − Z})	 (� − Z})  (6.5) 

The minimization of  ~ ���(}) yields the OLS estimator, computed with Eq. (3.24) in Lecture 3.
Applying the Singular Value Decomposition to the sensitivity matrix yields 

�  ��� = (Z	 Z)7C Z	 � = l  k7z j	 � (6.6) 
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In this case, if the standard statistical assumptions hold (see Lecture 3), the covariance matrix 
of the OLS estimator can be written as 

�W�(}) = @A� l  k7| l	  (6.7) 

Eqs. (6.6) and (6.7) are valid if the sensitivity matrix Z  is of full rank, which means that its
smaller singular value �E  is strictly positive. The condition number is then defined as

�W�4(Z) = ���� (6.8) 

3.2 Spectral analysis of the OLS estimator 

Applying SVD to the normal equations (see Eq. (3.23) in Lecture 3) in order to find the OLS 
estimator in the diagonal basis yields 

(Z	 Z)  }� ��Z =  Z	 �  ⇒   l  k j	 j k l	 }� ��Z =  l  k j	 � (6.9) 

where the estimation problem can be reconsidered now with the new parameter vector � =  l	}  and a new observable vector : ` =  j	�   , such as

k  �� ��Z =  ` (6.10) 

The unicity of the solution is confirmed here when the sensitivity matrix Z   is of full rank, i.e.� = � , which is possible only if  � ≥ �  (more data than parameters). When � <  � , the matrix
has not full rank, and the number of parameters to be estimated must be reduced, or some 
parameters must be determined in an arbitrary form. 

The linear transformation of the data � also yields a new covariance matrix associated to the
observable measurement noise. Hopefully, we can note that this operation does not affect the 
covariance of the error of the transformed signal `  (here for the standard assumptions):

�W�(`) = j	�W�(�) j =  @A� j	 j =   @A�t (6.11) 

Hence the covariance matrix of the error of �� ��Z is computed by 

�W���� ��Z� =  @A� k7| or  �W���� ��Z� = K ��� ��� . o. . .o .  ��� ���
M  (6.12) 

The above equation shows that an effect of noise amplification appears due to the fact that the 
eigenvalues have a wide range of orders of magnitude. It is of particular interest to note in Eq. 
(6.12) that the covariance matrix of the estimator in the diagonal basis is linking the square of 
the singular values to the variance of noise, that is to the level of uncertainty in the 
measurement errors. 

A small perturbation applied to a single component  V of `, such as
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�` =  ��Ujy (6.13) 

yields the following variation to the OLS estimator ��� ��Z =  ����� ly (6.14) 

which implies a relative variation corresponding to ����  ��Z�‖�`‖ = C�� (6.15) 

Thus the singular values indicate how the same perturbation yields different effects on the 
components of the estimator. Moreover, this relative variation may increase drastically when 
the singular values are close to zero. The relative variation between two components of 

respective index V and ℎ is given by the ratio 
����. Hence the maximum relative variation factor 

is obtained between the first and the last component, such as 
���� = �W�4(Z)  , which is the

condition number of the sensitivity matrix, as seen in Eq. (6.8). If  is not too large, the problem 
is said to be well-conditioned and the solution is stable with respect to small variations of the 
data. Otherwise the problem is said to be ill-conditioned. It is clear that the separation between 
well-conditioned and ill-conditioned problems is not very sharp and that the concept of well-
conditioned problem is more vague than the concept of well-posed problem.  

3.3 Example of a simple ill-conditioned matrix 

�1 11 1.01� �?C?�� = �11� the inversion yields  �?C?�� = �10�
Let’s give a perturbation of 1% on the second data point, such as 

�1 11 1.01� �?C?�� = � 11.01� the inversion yields �?C?�� = �01� 1

2

0

1

p

p

   
=   
  

Hence the perturbation of the data makes the solution of the matrix inversion, that is the 
solution of the square linear system of 2 equations with two unknowns, surprisingly as far as 
possible from the original solution. The solution is quite unstable.  

The eigenvalues are (2.005, 0.005), and the condition number is 402 >> 1. 

4. Regularization

In the previous section it was shown how the ill-posed estimation problem is turned into an ill-
conditioned problem by the least squares approach. Equations. (6.6) and (6.7) show that the 
unstable behavior of the pseudo-inverse of the sensitivity matrix can be straightly addressed 
by the means of the singular values diagonal matrix k. Regularization is a process for
searching some acceptable solution, by reducing the effect of measurement errors on the 
estimate. Several approaches may be used for this purpose. The main idea is to reduce the 
effect of the “small” singular values on the obtained solution, while trying to avoid that this 
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“smooth” solution to be too different from the true-but-untractable solution. The two main 
approaches are 

(i) Apply some prior information as a constraint
The most usual methods are truncation of the diagonal basis and the
parametrization of the solution (reduction of the number of parameters)

(ii) Apply some penalization to the objective function
Some weighted prior information is included in the objective function

4.1 Truncated SVD (TSVD) 

TSVD of order α is obtained through replacing in Eq. (6.6) the inverse of the matrix k by the

truncated inverse k 7z
 

where the smaller singular values are removed (their inverse put to
zero), such as  

k 7z =
⎣⎢
⎢⎢
⎢⎢
⎡1/�C 01/��

0
⋱ 1/�¡ 0 ⋱ 0 ⎦⎥

⎥⎥
⎥⎥
⎤

(6.16) 

The regularized TSVD estimator is: 

 }� [Zl¢ =  l  k 7z j	 � (6.17) 

We note that only k 7z can be computed, and not matrix k   since an infinite value has been
assigned to the  smallest singular values n¡£C  , n¡£� , … , nE7C , nE .
Equation (6.17) may be written using the left and right singular column vectors jy  and ly
defined in section 1, such as 

}� [Zl¢ = ∑ C��¡UTC   �jy	��ly (6.18) 

The choice of the truncation order can be considered by taking into account the observable 

measurement noise such as:

n¡ ≥ @A >   n¡£C (6.19)

Unfortunately, it is not always easy to determine the standard deviation of the measurement noise for 
example in the case of non-stationary signal. The choice of the truncation order without the knowledge 
of @A will be discussed in section 4.4.

4.2 Tikhonov regularization of zero order 

α−n

α
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The important idea in introducing some regularization by penalizing the objective function is 
the will to include some prior knowledge relative to the parameters to be retrieved. For 
instance, the parameter should not be very far from a reference value, or the time history of 
the function to be estimated should be smooth… A widespread regularization method by 
penalization of the OLS objective function is Tikhonov regularization.  

We present herein the Tikhonov regularization of order zero, which yields the minimization of 
the following objective function: 

~¤(}) = ‖� − Z}‖� + ¥�} − }¦§�¨§�� = (� − Z})	(� − Z}) + ¥�} − }¦§�¨§�	�} − }¦§�¨§�    (6.20)

where the real positive number ¥ is the regularization parameter. The value ¥ =0 yields the
OLS solution where no regularization applies. Increasing µ tends to force the solution to be

close to the prior estimate }¦§�¨§
Equation (6.20) is solved by: 

}�©&�U0 = (Z	 Z + ¥tu)7C �Z	 � + ¥}¦§�¨§�  (6.21) 

Applying SVD to the sensitivity matrix Z  and using ll	 = tu  yields:

}�©&�U0 = l�k| + ¥tu�7C �kj	 � + ¥l	}¦§�¨§�  (6.22) 

Equation (6.22) clearly shows that the regularization parameter will cancel the noise 

amplification effect of the smallest singular values in the diagonal matrix �k| + ¥tu� to be

inverted. Nevertheless, the cost of this stabilization  is also obvious, since the non-zero 
regularization parameter value yields that the information of the experimental data in �  is
biased by the prior information (}¦§�¨§). Hence let’s point out that the regularized solution aims

to balance accuracy and stability requirements. 

4.3 Example: Regularization for deconvolution 

The experimental derivation and deconvolution example given in section 2 can be solved as a 
linear estimation problem. The function estimation problems are highly sensitive to noise, since 
the number of unknown matches the number of function components to be retrieved (exact 
matching: the sensitivity matrix is a square matrix).  

Expression (6.17) (TSVD method) and (6.21) (Thikonov method) are used for the 

regularization of the output of the model given by equations (6.2) and (6.3), for 1h C eρ= =
and with the same input  as the one presented in figure 2. 
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Figure 3 – Deconvolution and inversion with TSVD regularization 
— temperature (exact and noisy); - - exact input ; + estimated input. 

Figure 4 – Deconvolution and inversion with Tikhonov regularization 
— temperature (exact and noisy); - - exact input ; + estimated input. 

Figure 3 and 4 show how increasing the value of the regularization parameter has a positive 
effect regarding the stabilization of the heat flux time history to be retrieved, while this effect is 
counter balanced by the apparition of a bias with the original solution. It is of great interest to 
point out that the correct possible values of the regularization parameter are related to the 
signal to noise ratio. In the case of the TSVD method, the truncation parameter ª is near 5 and
the corresponding singular values are : �« = 0.124  �® = 0.898 and �± = 0.706 . In the case
of the Thikonov method, the regularisation parameter ¥ is quite close to the variance of the

measurement error (here  @A�=0.01K).

The Matlab codes related  to the figures 3 and 4 are given in appendix 2 and 3. 

4.4 The regularization parameter 
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The optimal choice of the value of the regularization parameter is a nontrivial problem for which 
numerous solutions have been proposed. Such problem is accentuated if the variance of the 
measurement noise is poorly known. The L-curve method (due to Hansen,1998) has become 
a popular method, which is implemented by the graphical analysis of a log-log plot (or ordinary 
plot) obtained by varying the value of the regularization parameter, as shown in figure 5. For 
each value of ¥, the norm of the distance between the data and the model is reported on the
horizontal axis, while the distance of }  to }^´
\´  is reported on the vertical axis. Very often the

vector }^´
\´ is set to zero initially. An iterative process can be further implemented. The L-

curve selection criterion consists in locating the value which maximizes the curvature, that is 
the L-curve corner which separates the two regions: under-regularized on the left, over-
regularized on the right 

Figure 5 – L Curve, choice of the Tikhonov regularization parameter µ, comparison with 
truncated SVD solution 
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Figure 6 – L-curve obtained for the regularization of the deconvolution example 

The L-curve is plotted for the previous regularized deconvolution example on figure 6. The red 
circles are the regularisation parameters obtained with the TSVD method (ª from 1 to � ). The
continuous line is related to the parameter ¥. The best regularization parameter ¥ is near the
same value as the variance of the measurement noise. The best truncation number ª is near5 . It is difficult to distinguish the results with  ª = 4 or ª = 6 . All these points are very close to
the point that maximizes the curvature of the L-curve. 

The Matlab code related  to figure 6 is given in appendix 4. 

6. Conclusions

Regularization is an important step for solving ill-posed problems. When the inverse problem 
is of finite dimension, which is the case for discrete estimation problems, the existence of a 
solution is achieved by the least squares approach, and the problem is in fact ill-conditioned. 
For function estimation problems, the parametrization of the function to be retrieved tends to 
exact matching, where the number of experimental data is equal to the number of parameters. 
This case is generally highly sensitive to the measurement noise. Regularization stabilizes the 
solution by removing the effect of the smallest singular values which amplify the effect of these 
measurement errors. However the cost of regularization is a biased stabilized solution, hence 
the value of the regularization parameter (Tikhonov parameter or truncation level) must be 
carefully chosen. 
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Appendix 1 

%Calculations related to the figure 2 
% Deconvolution influence of the noise 
% fi=fi0*exp(-((t-t0)/tau)*2) 
% dT/dt = q - hT 
% T=conv(q,exp(-ht)) 
% Tr = T + noise 

N=100;dt=0.01;t0=dt*N/2;t=dt*(1:N); 
q0=10;h=1;q=q0*exp(-20*(t-t0).^2); 

% noise 
std1=0.01;, std2=0.1; 
noise1=std1*randn(size(t));noise2=std2*randn(size(t)); 

Imp=exp(-h*(t(1:N)));%Impulse response 
X=dt*toeplitz(Imp, zeros(1,N)); % Sensitivity matrix 

T=X*q'; % Direct model (convolution) 
Tr1=T'+noise1;Tr2=T'+noise2;% noise simulation 
G=inv(X'*X); 
qr1=G*X'*Tr1'; qr2=G*X'*Tr2'; %OLS inversion  

subplot(3,2,1), plot(t,Imp),title('Impulse response'); 
subplot(3,2,2), plot(t,q),title('Imput q(t)'); 
subplot(3,2,3), plot(t,T,t,Tr1), title(['Noisy signal std=' num2str(std1) 'k']) 
subplot(3,2,4), plot(t,q,t,qr1,'*'), title(['Retrieved Input std=' num2str(std1) 'k']) 
subplot(3,2,5), plot(t,T,t,Tr2), title(['Noisy signal std=' num2str(std2) 'k']) 
subplot(3,2,6), plot(t,q,t,qr2,'*'), title(['Retrieved Input std=' num2str(std1) 'k']) 

Appendix 2 

%Calculations related to the figure 3 
% Deconvolution with the TSVD method 

N=100;dt=0.01;t0=dt*N/2;t=dt*(1:N); 
q0=10;h=1;q=q0*exp(-20*(t-t0).^2); 

% noise 
std=0.1; 
noise=std*randn(size(t)); 

Imp=exp(-h*(t(1:N)));%Impulse response 
S=dt*toeplitz(Imp, zeros(1,N)); % Sensitivity matrix 

T=S*q'; % Direct model (convolution) 
Tr=T'+noise;% noise simulation 

%TSVD 

alph=[1 5 20 100]; 

for p=1:4 
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 [U,W,V]=svds(S,alph(p)); 
   qr=V*diag(1./diag(W))*U'*Tr'; 
 %  J(p)=norm(Tr-S*qr); 
 % K(p)=norm(qr); 

subplot(2,2,p),plot(t,T,'k',t,Tr,'k',t,q,'k:',t,qr,'k+'), 
 title(['alpha = ',num2str(alph(p))]) 

   figure(gcf); 
end 

Appendix 3 

%Calculations related to the figure 4 
% Deconvolution with the Thikonnov method 

N=100;dt=0.01;t0=dt*N/2;t=dt*(1:N); 
q0=10;h=1;q=q0*exp(-20*(t-t0).^2); 

% noise 
std=0.1; %standard deviation of the noise 
noise=std*randn(size(t)); 

Imp=exp(-h*(t(1:N)));%Impulse response 
S=dt*toeplitz(Imp, zeros(1,N)); % Sensitivity matrix 

T=S*q'; % Direct model (convolution) 
Tr=T'+noise;% noise simulation 

%TSVD 

mu=[0.04 0.01 0.0007 0.000001]; 

for p=1:4 

 %Thikonov regularization 
 G=inv(S'*S+mu(p)*eye(N)); 
 qr=G*S'*Tr'; 

 %  J(p)=norm(Tr-S*qr); 
 %  K(p)=norm(qr); 

subplot(2,2,p),plot(t,T,'k',t,Tr,'k',t,q,'k:',t,qr,'k+'), 
 title(['mu = ',num2str(mu(p))]) 

   figure(gcf); 
end 

Appendix 4 

% Deconvolution and inversion with regularization related to figure 6 
%L-Curve and comparisons netween TSVD and Thikonov regularization methods 

clear 
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N=100;dt=0.01;t0=dt*N/2;t=dt*(1:N); 
q0=10;h=1;q=q0*exp(-20*(t-t0).^2); 

% noise 
std=0.1; 
noise=std*randn(size(t)); 

mu=[ 0.04 0.03 0.02 0.01 0.005 0.002 0.0015 0.001 0.0008 0.0005 0.0001 0.00005 5e-10  ];% 
Regularization parameter 

nu=[1 2 3 4 5 6 10 20 30 40 50 70 100];%Truncation parameter 

S=dt*toeplitz(exp(-h*(t(1:N))), zeros(1,N)); % Sensitivity matrix 
T=S*q'; % Direct model (convolution) 
Tr=T'+noise; 

for i=1:length(mu) 
%Thikonov regularization 
 G=inv(S'*S+mu(i)*eye(N)); 

    qr=G*S'*Tr'; 
%TSVD regularization 
 [U,W,V]=svds(S,nu(i)); 

   qrs=V*diag(1./diag(W))*U'*Tr'; 
 %norms   
 nres(i)=norm(Tr-S*qr); 
 nqr(i)=norm(qr); 
 nress(i)=norm(Tr-S*qrs); 
 nqrs(i)=norm(qrs); 

end 

hold off 
plot(nres,nqr),xlabel('norm(T-S*q)'), ylabel('norm(q)'), hold on,plot(nress,nqrs,'o'),  figure 2 
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Lecture 7. Types of inverse problems, model reduction, 
model identification.  

Part A: Experimental identification of low 
order model 
Jean-Luc Battaglia 

Email: jean-luc.battaglia@u-bordeaux.fr  

University of Bordeaux 

Laboratory I2M, Department TREFLE, UMR 5295 

ENSAM, Esplanade des arts et métiers 

33405 Talence Cedex, France. 

Abstract: The system identification technique is used to formulate a reliable direct model to be used in 

an inverse heat transfer problem. This approach finds several practical applications in thermal sciences 

for reasons that will be developed in the text. For clarity, we will restrict our presentation to 

monovariable linear systems relating the temperature at one point in the system to one heat flux acting 

on the system. Two approaches are presented in this course. In the first one, the non-parametric method 

only uses the temperature and heat flux measurement by calculating the cross correlation or power 

spectral density. The second set of methods relates to the parametric methods that consist in identifying 

the parameters of a model that expresses the successive time derivatives of the temperature to the heat 

flux. 

Nomenclature 

a Thermal diffusivity m2.s-1 Sxy power spectral density between x and y
 

Cxy correlation function between x and y
 T temperature, K 

Cp specific heat, J.kg-1.K-1 T time, s 

D derivative of real order  Xs=[xs,ys] sensor coordinates 

e measurement error y temperature measurement, K 

hm impulse response V loss function 

h exchange coefficient, W.m-2.K-1 t  sampling time 

H transfer function   heat flux density W.m-2 
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I
 integral of real order   density, kg m-3 

k thermal conductivity, W.m-1.K-1
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1 Introduction 

The system identification framework is a well-known domain that has applications in automatic 

(for control purpose mainly) and in signal processing [1][2]. For several years the heat transfer 

scientific community found very interesting applications of those methods for the modelling of 

heat and mass processes that occur in thermal systems [6][7][8]. In this course we present the 

system identification technique as an efficient tool to formulate a reliable direct model that can 

be used to solve the corresponding inverse heat transfer problem. In case of a monovariable 

system, as that represented in Figure 1, the inverse procedure will consist in estimating the heat 

flux acting on the studied system from temperature measurement at one point in the system. Let 

us highlight now that the methods that will be presented below can be obviously generalized to 

multivariable systems (several heat flux or heat sources acting on a system equipped with 

several sensors). As an additional constraint, we will also restrict the presentation of the 

methods to linear systems. It means that the thermal properties of the system will not depend 

on temperature. However, system identification has been developed for nonlinear systems, but 

mathematical derivations of such techniques are largely beyond the scope of this course. 

 

Figure 1: example of a 2D monovariable linear system. 

Why are scientists working in the field of heat transfer, and more particularly in measurements 

inversion, interested with system identification? The first answer relates to model reduction. 

Indeed, whatever the implemented inverse technique, inversion requires using a direct model 

in an iterative manner to approach the solution. Statistical methods such as the Bayesian 

technique require calls upon the direct model many times and computational times could 

become dramatically long. As an example, let us consider the 2D system represented in Figure 

1. The domain  is characterized by its thermal properties (thermal conductivity 𝑘𝑖, specific 

heat per unit volume 𝐶𝑝,𝑖 and density 𝜌𝑖 for constitutive material i). A heat flux 𝜑 is imposed 

on the boundary 𝜕Ω whereas the remaining part of the outdoor boundary is subjected to 

convection with the coefficient ℎ𝑗 , the temperature of the surrounding fluid being denoted 𝑇𝑒𝑥𝑡. 

Finally, the inner boundaries are insulated. The objective here is to estimate the heat flux density 
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from temperature measurements in the plate. It is thus assumed that a sensor has been embedded 

in the plate and the temperature of the sensor is denoted 𝑇𝑚(𝑡). Although this problem is quite 

simple, only a discrete method (finite elements for example) can be used to solve the heat 

diffusion equation and associate boundary and initial conditions to simulate the temperature of 

the sensor. A mesh is thus built (see Figure 1) that leads to calculating the temperature at each 

node. This discrete model is so-called a high-order model, the order referring to the number of 

degrees of freedom of the mesh. Simulating the output of this model leads to results as those 

presented in Figure 2. 

 

Figure 2: simulation of the temperature field at t=10 sec and of the time dependent temperature 

of the sensor for a step heat flux density. 

The reliability of the direct model rests on the accuracy on two sets of data: the thermal 

properties {𝑘𝑖, 𝐶𝑝,𝑖, 𝜌𝑖, ℎ𝑗} and the location 𝑋𝑠 = [𝑥𝑠, 𝑦𝑠] of the sensor. Uncertainties for these 

data will lead to a very low confidence domain for the estimated heat flux [9]. 

This system identification approach is described in a schematic way in Figure 3. The goal is to 

apply a known heat flux 𝜑(𝑡) on the system and to measure the signal at the thermal sensor. We 

must note as a first point that calibrating the sensor (the link between the measured signal and 

the absolute temperature) is not required since the same sensor is used both for identifying the 

system and the above defined inversion. Once these data given, estimating “a” model M that 

relates them becomes possible. However, it must be emphasized that this estimated model has 

significance on the measurement time-domain only. Prediction is therefore a main issue of 

system identification. Secondly, the measurements are affected by an error (noise) that will 

have an influence on the identified model. It is generally admitted that the imposed heat flux is 

generally fully known and that it is errorless. Thus, all the error is reported on the sensor signal. 

Obviously, the objective is to use a model M that is more accurate than that obtained from 

the FEM with uncertainties on {𝑘𝑖 , 𝐶𝑝,𝑖, 𝜌𝑖 , ℎ𝑗} and  𝑋𝑠 = [𝑥𝑠, 𝑦𝑠]. 
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Figure 3: thermal system identification procedure. 

 

Once the thermal system has been identified, it can be used to solve the inverse problem, which 

is to estimate the heat flux from model M and from temperature measurement at the sensors. 

The classical procedure is described in Figure 4. 

 
Figure 4: use of the identified system to solve the inverse procedure (estimating the heat flux). 

 

It means that if the identified system model describes the thermal behaviour for the heat flux 

sequence represented in Figure 3 in a correct manner, it is then expected to retrieve this 

sequence applying an inverse technique starting from the knowledge of the identified model M 

and of the temperature measurement presented in Figure 3. This is what suggests Figure 4. 
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According to our previous description, it can be thus possible now to draw the main advantages 

and drawbacks of this approach. 

Advantages 

▪ The system identification approach will be first interesting to obtain a reliable and 

accurate low order model that will require less computational time for simulation. 

▪ There is no need to know the thermal properties of the system (thermal conductivity, 

density, specific heat, heat exchange coefficients, thermal resistances at the interfaces, 

parameters related to thermal radiation…). 

▪ It is not required to know the sensor location inside the system. 

▪ Calibrating the sensor is not required. 

▪ The identification procedure is fast (this will be viewed later with the description of the 

different techniques). 

Drawbacks 

▪ The model identification must be achieved in the same conditions as those encountered 

during the inversion (heat exchanges between the surrounding and the system must 

remain the same for the two configurations). 

▪ The prediction of the identified model rests on strong assumptions (in particular, it is 

better reaching the stationary behaviour during the system identification process). In 

general, the identified system is only valid for the time duration of the system 

identification process. 

2 The system identification approach 

2.1 The impulse response 

The temperature 𝑇𝑚(𝑡) of the sensor is related to the heat flux 𝜑(𝑡) thanks to the impulse 

response ℎ𝑚(𝑡) under the form of the following convolution product, that is a direct 

mathematical formulation of the Duhamel’s theorem: 

 

 𝑇𝑚(𝑡) = 𝑇𝑚(0) + (ℎ𝑚 ∗ 𝜑)(𝑡) = ∫  
𝑡

0
ℎ𝑚(𝑡 − 𝜏) 𝜑(𝜏) d𝜏   (1) 

 

Let us note here that if temperature 𝑇𝑚(𝑡) is expressed in kelvin, and if heat flux 𝜑(𝑡) is in 

W.m-2, this means that the product 𝜑(𝑡)dt is in J.m-2, and consequently the impulse response 

ℎ𝑚(𝑡) is in K.m2.J-1. 

Equation (1) is valid for linear systems with a single transient excitation, with time independent 

coefficients and zero initial state, where the impulse response fully characterizes the forced 

thermal behavior. Therefore, any kind of inverse strategy can be based on the direct model 

expressed in terms of the impulse response of the system. However, as we said in the first 

section, this impulse response will depend on the following quantities: {𝑘𝑖 , 𝐶𝑝,𝑖, 𝜌𝑖 , ℎ𝑗}  and  

𝑋𝑠 = [𝑥𝑠, 𝑦𝑠]. According to the uncertainty that affects those quantities, the user could imagine 

directly measuring the impulse response from an experiment. It will consist in replacing the 

heat flux on the real problem by a known photothermal excitation, delivered by a laser for 

example, and in measuring the temperature of the sensor (case of a pulsed heat flux). However, 

this approach is not reliable since the impulse response magnitude should be very low to 

preserve the linear behavior of the system. As an illustration the temperature of the sensor is 
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calculated in the configuration given above with 𝜑(𝑡) = 106 × 𝑒𝑥𝑝(− 𝑡2 𝜏2⁄ ) where  

is small enough to consider this excitation as a Dirac distribution. The simulation is presented 

in Figure 5. The maximum amplitude of the response is very low here. The above 

approximation implies an additional contribution to the measurement error. 

 

Figure 5: simulation of the impulse response using the FEM. 

Another solution could consist in calculating the derivative of the step response shown in Figure 

2 (right plot) to retrieve the impulse response. Again, it is not a reliable technique since the 

derivation will amplify the measurement error and will lead to a very inaccurate impulse 

response, especially at the short times. 

Several powerful techniques have been developed in the system identification and signal 

processing domains that lead to more accurate identified impulse responses of the system. These 

techniques are classified in two sets of methods: the non-parametric methods and the parametric 

ones. 

2.2  The non-parametric approach 

2.2.1 The deconvolution technique 

A very easy technique for the deconvolution of (1) is to consider the discrete form of this 

relation [2], obtained by the numerical quadrature of the convolution integral, calling 𝑡𝑓 = 𝑁 ∆𝑡 

the duration of the experiment, where ∆𝑡 is the sampling time interval: 
 

𝑇𝑘 = 𝑇𝑚(𝑘 Δ𝑡) = 𝑇𝑚(0) + ∑  𝑘
𝑖=1 ℎ̃𝑚,𝑘−𝑖+1 𝜑̃𝑖 Δ𝑡     (2) 
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 where {
ℎ̃𝑚,𝑖 =

1

Δ𝑡
∫  

𝑖Δ𝑡

(𝑖−1)Δ𝑡
ℎ𝑚(𝑡)d𝑡 ≈

1

2
(ℎ𝑚,𝑖−1 + ℎ𝑚,𝑖) with ℎ𝑚,𝑖 = ℎ𝑚(𝑖 Δ𝑡)

𝜑̃𝑖 =
1

Δ𝑡
∫  

𝑖Δ𝑡

(𝑖−1)Δ𝑡
𝜑(𝑡)d𝑡 ≈

1

2
(𝜑𝑖−1 + 𝜑𝑖) with 𝜑𝑖 = 𝜑𝑖(𝑖 Δ𝑡)

  (3) 

 

Let us note that, in order to get a forced response, the three functions present in equation (1) 

should be equal to zero for times t such as 0t  , and in particular (0) (0) 0 (0) 0m mT h = =  =

, where the origin of time is the first time where flux   departs from a zero value. So, the left-

hand term of equation (2) is the instantaneous temperature at time k t , while the right terms 

correspond to average values of the impulse response and of the flux over a time interval. These 

average values are defined in equation (3) and correspond to the time interval 

 ( 1) , for 1i t i t i−    .  

Equation (2a) can be expressed under a vector/matrix form, calling  the duration of the 

experiment:  

[
 
 
 
 
𝑇1

𝑇2

𝑇3

⋮
𝑇𝑁]

 
 
 
 

=

[
 
 
 
 
𝑇𝑚(0)
𝑇𝑚(0)
𝑇𝑚(0)

⋮
𝑇𝑚(0)]

 
 
 
 

+ Δ𝑡

[
 
 
 
 
𝜑̃1

𝜑̃2 𝜑̃1 0

𝜑̃3 𝜑2 𝜑̃1

⋮ ⋮ ⋮ ⋱
𝜑̃𝑁 𝜑̃𝑁−1 𝜑̃𝑁−2 ⋯ 𝜑̃1]

 
 
 
 

[
 
 
 
 
 
ℎ̃𝑚1

ℎ̃𝑚2

ℎ̃𝑚3

⋮
ℎ̃𝑚𝑁]

 
 
 
 
 

   (4) 

Assuming an additive measurement error of normal distribution (zero mean and constant 

standard deviation) for strictly positive times, with a zero error at initial time, the measured 

temperature is related to the exact one as:  

𝑦𝑚(𝑘 Δ𝑡) = 𝑇𝑚(𝑘 Δ𝑡) + 𝑒(𝑘 Δ𝑡) − 𝑇𝑚(0) = Δ𝑡 ∑  𝑘
𝑖=1 ℎ̃𝑚(𝑖 Δ𝑡) 𝜑̃((𝑘 − 𝑖 + 1) Δ𝑡) 

 (5) 

Given that , it is reasonable to truncate the series from  and thus relation (5) 

becomes: 
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  
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     
     
     

=  +     
     
     

     
         H

Y E

    (6) 

Vector  can thus be estimated in the least square sense, to minimize  and one gets: 

 H𝑄 = (Φ𝑁 Φ𝑁
𝑇 )−1 Φ𝑁

𝑇  Y𝑁 (7) 

ft N t= 

lim 0k kh→ = k Q=

HQ ( )E E T

N N
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However, this procedure is quite long according to the values of Q and N and very sensitive to 

measurement errors. 

2.2.2 The correlation technique 

A better and faster approach consists in identifying the impulse response ( )h t , from the cross 

correlation product of the system response that is the temperature 𝑇𝑚(𝑡) of the sensor and the 

heat flux ( )t  [1]. This method is well suited for non-causal systems, that is for problems where 

a space coordinate is the independent variable, or to systems where both excitation and response 

are time periodical. Indeed, let us rewrite relation (5) considering of the measurement errors 

and assuming that the heat flux is equal to zero for negative times as well as past the current 

time t: 

 

            𝑦𝑚(𝑡) = ∫  
𝑡

0
ℎ𝑚(𝑡 − 𝜏) 𝜑(𝜏) 𝑑𝜏 + 𝑒(𝑡) = ∫  

+∞

−∞
ℎ𝑚(𝑡 − 𝜏) 𝜑(𝜏) 𝑑𝜏 + 𝑒(𝑡)  (8) 

 where 𝜑(𝜏) = 0 for 𝜏 ≤ 0 and for 𝜏 > 𝑡 

 

Now let us multiply the two members of this equality by the lagged heat flux 𝜑(𝑡 − 𝜏) and 

integrates from t=0 to infinity. We obtain then: 

∫  
+∞

−∞
𝑦𝑚(𝑡)𝜑(𝑡 − 𝜏)d𝜏 = ∫  

+∞

−∞ ∫  
+∞

−∞
ℎ𝑚(𝑡 − 𝜏)𝜑(𝜏)𝜑(𝑡 − 𝜏)d𝑡d𝜏 + ∫  

+∞

−∞
𝜑(𝑡 − 𝜏)𝑒(𝑡)d𝜏 (9) 

We see a convolution product between the two functions appears: 

 𝐶𝑦𝑚,𝜑 = ∫  
+∞

−∞
ℎ𝑚(𝑡 − 𝜏) 𝐶𝜑,𝜑d𝜏 + 𝐶𝑒,𝜑 (10) 

If one chose the excitation sequence  as a white noise: 

 𝐶𝜑𝜑(𝜏) = 𝛿(𝜏) (11) 

And finally, if one admits that the noise measurement is not correlated to the input signal (𝐶𝑒,𝜑 =

0), one has: 

 𝐶𝑦𝑚,𝜑(𝜏) = ℎ(𝜏) (12) 

It thus appears that the impulse response can be directly deducted from the correlation function 

between the temperature of the sensor and the heat flux. In practice the correlations functions 

are calculated using the Fast Fourier Transform of the signals. 

The interest of the correlation analysis is to make the identification of the physical system under 

less energy constraints for the magnitude of the heat flux. Indeed, in opposition to pulse 

analysis, the energy does not have to be deposited in an intense way during a very short time 

(closest to a Dirac distribution). An interesting feature of such an approach is that the linearity 

and stationarity assumptions are clearly satisfied, and that the confidence domain of the 

estimated impulse response is the same all over all the explored frequency range.  
 

( )t
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2.2.3 Spectral technique 

The correlation technique is very sensitive to the magnitude of the measurement noise and 

practically using the power spectral density instead of the correlation functions [4] is more 

interesting: 

 FFT[𝐶𝑦𝑚𝜑(𝜏)] = FFT[∫  
∞

0
ℎ𝑚(𝑡 − 𝜏) 𝐶𝜑𝜑(𝜏) d𝜏] = 𝑌𝑚(𝑓) Φ(𝑓) = 𝑆𝑦𝑚𝜑(𝑓) (13) 

and 

 FFT [𝐶𝜑𝜑(𝜏)] = FFT [∫  
∞

0
𝜑(𝑡 − 𝜏) 𝜑(𝜏) d𝜏] = Φ(𝑓)2 = 𝑆𝜑𝜑(𝑓) (14) 

( )mY f  and ( )f  are the Fourier transforms of the temperature and of the heat flux respectively. 

In a similar way, ( )S f  and ( )
myS f  are the auto and cross PSD (Power Spectral Density). 

Then, applying the Fourier transform on relation (10) yields immediately: 

 

 𝑆𝑦𝑚𝜑(𝑓) = 𝐻(𝑓) 𝑆𝜑𝜑(𝑓) + 𝑆𝜑𝑒(𝑓) (15) 

Finally, assuming that the noise measurement is not correlated with the heat flux ( ( ) 0eS f = ), 

the expression of the transfer function is: 

 𝐻(𝑓) =
𝑆𝑦𝑚𝜑(𝑓)

𝑆𝜑𝜑(𝑓)
 (16) 

Since the duration of the experiment is set to a fixed value  , the real input signal is: 

 𝜑Π(𝑡) = 𝜑(𝑡) Π𝜏(𝑡) (17) 

In this relation, ( ) 1t =  when 0 t    and 0 elsewhere. Then applying the Fourier transform 

for the heat flux leads to: 

 ΦΠ(𝑓) = Φ(𝑓) ∗ (𝜏
sin (𝜋 𝜏 𝑓)

𝜋 𝜏 𝑓
) (18) 

It appears that the Fourier transform of the heat flux is convoluted by the cardinal Sine function. 

Usually, the heat flux is pre-windowed by a specific function ( )g t  that decreases the influence 

of the function ( )t  as: 

 𝜑Π(𝑡) = 𝜑(𝑡) 𝑔𝜏(𝑡) (19) 

For example, the Hanning window [3][4] is often used. It is defined as: 

 𝑔𝜏(𝑡) = 0.5 (1 − cos (
2 𝜋 𝑡

𝜏
)) (20) 

An improved estimation of ( )
myS f  and ( )S f  has also been proposed by Welch [5]. The 

method consists in dividing the time series data into possible overlapping segments, computing 

the auto and cross power spectral densities and averaging the estimates. 

2.3 The parametric approach 

2.3.1 Principle 

The principles of the system identification method are presented by Ljung [1]. Assuming a 

linear and stationary system, that means that the thermal properties of the system do not vary 

with temperature and time, the method consists in identifying the parameters involved in a 

linear relation between the heat flux 𝜑(𝑡) and the temperature 𝑇𝑚(𝑡) of the sensor, from 
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measurements of these two quantities. Without any kind of physical consideration of the heat 

transfer process, it is assumed a general relationship of the following form is assumed: 

 𝑇𝑚(𝑡) + 𝛼1
d𝑇𝑚(𝑡)

d𝑡
+ 𝛼2

d2𝑇𝑚(𝑡)

d𝑡2 + ⋯ = 𝛽0𝜑(𝑡) + 𝛽1
d𝜑(𝑡)

d𝑡
+ 𝛽2

d2𝜑(𝑡)

d𝑡2 + ⋯ (21) 

This kind of model is consistent with the behaviour of the dynamical systems, and it is also the 

case for thermal systems since the heat diffusion equation rests on the first order derivative of 

the temperature for all the points of the system. It is thus reasonable to admit that the 

temperature at time t must depend on the heat flux value at time t and at previous times. On the 

other hand, since temperature at times before t depends on the heat flux at previous times also, 

it is not surprising that they appear in the model. 

Let us illustrate it on a simple configuration by considering the one-dimensional heat transfer 

in a wall (thermal conductivity k and thermal diffusivity a) subjected to the heat flux 𝜑(𝑡) at 

0x =  and insulated on the other face at x e= . The model is thus: 

 
∂𝑇(𝑥,𝑡)

∂𝑡
= 𝑎

∂2𝑇(𝑥,𝑡)

∂𝑥2 , 0 < 𝑥 < 𝑒, 𝑡 > 0 (22) 

The boundary conditions are: 

 −𝑘
∂𝑇(𝑥,𝑡)

∂𝑥
= 𝜑(𝑡), 𝑥 = 0, 𝑡 > 0 (23) 

 
∂𝑇(𝑥,𝑡)

∂𝑥
= 0, 𝑥 = 𝑒, 𝑡 > 0 (24) 

And the initial condition is chosen as: 

 𝑇(𝑥, 𝑡) = 0,0 ≤ 𝑥 ≤ 𝑒, 𝑡 = 0 (25) 

Let us examine the temperature at x e=  and we note ( ) ( ),mT t T x e t= = . The Laplace transform 

 L  is used to solve the previous problem: 

 𝐿{𝑇𝑚(𝑡)} = 𝜃𝑚(𝑠) =
1

𝑘 𝛽 sinh (𝛽 𝑒)
𝐿{𝜑(𝑡)} =

1

𝑘 𝛽 sinh (𝛽 𝑒)
Φ(𝑠) (26) 

Where: s a = . The hyperbolic sine function can be expressed as the following series: 

 sinh (𝑧) = ∑  ∞
𝑛=0

𝑧2𝑛+1

(2𝑛+1)!
, ∀𝑧 ≥ 0 (27) 

Replacing this expression in relation (26) yields: 

 𝜃𝑚(𝑠) =
1

𝑘 𝛽 ∑  ∞
𝑛=0

(𝛽𝑒)2𝑛+1

(2𝑛+1)!

Φ(𝑠) =
1

𝑘 ∑  ∞
𝑛=0

𝑒2𝑛+1𝑠𝑛+1

𝑎𝑛+1(2𝑛+1)!

Φ(𝑠) (28) 

That can be also written as: 

 ∑  ∞
𝑛=0 𝛼𝑛𝑠𝑛+1𝜃𝑚(𝑠) = Φ(𝑠) (29) 

With:𝛼𝑛 = 𝑘
𝑒2𝑛+1

𝑎𝑛+1(2𝑛+1)!
. 

At this stage we must remind us of an important property related to the Laplace transform of 

the derivative of a function: 
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 𝐿 (
d𝑛𝑓(𝑡)

d𝑡𝑛
) = 𝑠𝑛𝐹(𝑠) − ∑  𝑛−1

𝑘=0 𝑠𝑛−𝑘−1 d𝑘𝑓(0)

d𝑡𝑘
 (30) 

Taking into account the initial condition (25), relation (29) becomes  : 

 ∑  ∞
𝑛=0 𝛼𝑛

d𝑛+1𝑇𝑚(𝑡)

d𝑡
= 𝜑(𝑡) (31) 

It is therefore demonstrated that the heat transfer model expressing the temperature at x e=  

according to the heat flux ( )t  imposed at 0x =  can be put on the form of the relation (21). In 

fact the series in (31) can be significantly truncated and we will thus obtain a low order model. 

 

 

The discrete form of the derivatives gives rise to an equivalent form of relation (21) and 

temperature at time k t   depends on  the heat flux and the temperature at previous times as: 

 𝑇𝑚(𝑘) = 𝑏0𝜑(𝑘) + 𝑏1𝜑(𝑘 − 1) + 𝑏2𝜑(𝑘 − 2) + ⋯− 𝑎1𝑇𝑚(𝑘 − 1) − 𝑎2𝑇𝑚(𝑘 − 2) − ⋯
  (32) 

Let us note that replacing the temperature at previous times with the measurement in relation 

(32)leads to the predictive model as: 

 𝑇̂𝑚(𝑘) = 𝑏0𝜑(𝑘) + 𝑏1𝜑(𝑘 − 1) + 𝑏2𝜑(𝑘 − 2) + ⋯− 𝑎1𝑦𝑚(𝑘 − 1) − 𝑎2𝑦𝑚(𝑘 − 2) − ⋯
  (33) 

Relation (32) is called the output error model whereas relation (33) is called the predictive 

model. Identification of parameters  will significantly differ according to the choice of 

the model as represented in Figure 6. 

 

 
 

Figure 6: parameter identification according to the model representation (output error 

or predictive). 

In case of the output error model configuration, the sensitivity functions  and 

 depend on the parameters  and . It means that the minimization of 

 requires a non-linear minimization algorithm. On the other side, the sensitivity 

functions do not depend anymore on the parameters when minimizing the quantity 

( ),i ja b

system

output error

model

 (k) (k)

Tm (k)

ym (k)
system

predictive

model

e (k) (k)

Tm (k)

ym (k)

( ) ( )d di m iS a T t a=

( ) ( )d dj m jS b T t b=
ia jb

( ) ( )
2

0

N

k

N k 
=

= 
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. It means that estimation of the parameters in case of the predictive model is 

implemented by a linear minimization algorithm. 

2.3.2 Output error model 

Let us assume that the number of parameters is n for  and (n+1) for .  The sensitivity 

functions of the temperature at time  with respect to   and  are: 

 𝑆𝑎𝑖
(𝑘) =

∂𝑇𝑚(𝑘)

∂𝑎𝑖
, 𝑖 = 1, … , 𝑛 (34) 

 𝑆𝑏𝑖
(𝑘) =

∂𝑇𝑚(𝑘)

∂𝑏𝑖
, 𝑖 = 0,… , 𝑛 (35) 

According to relation (32), it is obtained: 

 𝑆𝑎𝑖
(𝑘) + 𝑎1𝑆𝑎𝑖

(𝑘 − 1) + ⋯+ 𝑎𝑛𝑆𝑎𝑖
(𝑘 − 𝑛) = −𝑇𝑚(𝑘 − 𝑖), 𝑖 = 1,… , 𝑛 (36) 

With: 𝑆𝑎𝑖
(0) = 𝑆𝑎𝑖

(1) = ⋯ = 𝑆𝑎𝑖
(𝑛 − 1) = 0 

And: 

 𝑏0𝑆𝑏𝑖
(𝑘) + 𝑏1𝑆𝑏𝑖

(𝑘 − 1) + ⋯+ 𝑏𝑛𝑆𝑏𝑖
(𝑘 − 𝑛) = 𝜑(𝑘 − 𝑖), 𝑖 = 0,… , 𝑛 (37) 

With: 𝑆𝑏𝑖
(0) = 𝑆𝑏𝑖

(1) = ⋯ = 𝑆𝑏𝑖
(𝑛 − 1) = 0. 

Therefore, the output error at time  is: 

 𝜀(𝑘) = 𝑦𝑚(𝑘) − 𝑇𝑚(𝑘) = ∑  𝑛
𝑖=1 𝑆𝑎𝑖

(𝑘)Δ𝑎𝑖 + ∑  𝑛
𝑖=0 𝑆𝑏𝑖

(𝑘)Δ𝑏𝑖 (38) 

Let us imagine that measurements are collected from  up to . A matrix representation 

of (38) of the following form is thus obtained: 

 𝐄 = [

𝜀(𝑛)
𝜀(𝑛 + 1)

⋮
𝜀(𝑁)

] = 𝐒

[
 
 
 
 
 
Δ𝑎1

⋮
Δ𝑎𝑛

Δ𝑏0

⋮
Δ𝑏𝑛]

 
 
 
 
 

= 𝐒ΔΘ (39) 

Where: 

 𝐒 = [

𝑆𝑎1
(𝑛) ⋯ 𝑆𝑎𝑛

(𝑛) 𝑆𝑏0
(𝑛) ⋯ 𝑆𝑏𝑛

(𝑛)

⋮ ⋮ ⋮ ⋮
𝑆𝑎1

(𝑁) ⋯ 𝑆𝑎𝑛
(𝑁) 𝑆𝑏0

(𝑁) ⋯ 𝑆𝑏𝑛
(𝑁)

] (40) 

Solving equation (39) in the least square sense leads to: 

 ΔΘ = (𝐒𝑇 𝐒)−1𝐒𝑇 𝐄 (41) 

It is thus possible to obtain the optimal value of   using an iterative scheme as: 

 Θ𝑣 = Θ𝑣−1 + ΔΘ𝑣−1 (42) 

( ) ( )
2

0

N

k

r N e k
=

= 

ia jb

k t
ia jb

k t

n t N t
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2.3.3 Predictive model 

Relation (33) can be put under the form: 

 𝑦𝑚(𝑘) = 𝐇(𝑘) Θ + 𝑒(𝑘) (43) 

Where Θ𝑇 = [𝑎1     ⋯     𝑎𝑛    𝑏0     ⋯     𝑏𝑛] and H is the regression vector defined as: 

 𝐇(𝑘) = [−𝑦𝑚(𝑘 − 1)     ⋯     − 𝑦𝑚(𝑘 − 𝑛)    𝜑(𝑘)     ⋯     𝜑(𝑘 − 𝑛)] (44) 

Let us imagine that measurements are collected from  up to . Therefore, relation (43) 

leads to: 

 𝐘𝑁 = Ψ𝑁Θ + 𝐄𝑁 (45) 

Where: 

𝐘𝑁
𝑇 = [𝑦𝑚(𝑛)     ⋯     𝑦𝑚(𝑁 + 𝑛)], Ψ𝑁

𝑇 = [𝐇(𝑛)     ⋯     𝐇(𝑁 + 𝑛)] and 𝐄𝑁
𝑇 =

[𝑒(𝑛)     ⋯     𝑒(𝑁 + 𝑛)]. 

An estimation of   in the linear least square sense is obtained as: 

 Θ̂ = (Ψ𝑁 Ψ𝑁
𝑇)−1Ψ𝑁

𝑇 𝐘𝑁 (46) 

Despite of the rapidity of the method, it must be noted that the estimation is biased. Indeed, let 

us replace the expression of the identified parameters, relation (46), in the model, relation (43)

. It is found: 

 Θ̂ = Θ + (Ψ𝑁 Ψ𝑁
𝑇)−1 Ψ𝑁

𝑇 𝐄𝑁 (47) 

It is demonstrated in the literature that: 

 𝐸{Θ̂} = Θ + (𝐸{𝐇(𝑘) 𝐇(𝑘)𝑇})−1𝐸{𝐇(𝑘)𝑇 𝑒(𝑘)} (48) 

It thus appears that if ( )e k  is correlated with ( )kH  or if ( ) E e k   is not zero, the estimation is 

biased and . 

To accelerate the identification of  , a recursive scheme can be used. The vector of parameters 

at instant t is estimated from parameters estimated previously at instant  according to: 

 Θ̂(𝑘) = Θ̂(𝑘 − 1) + 𝐋(𝑘)[𝑦𝑚(𝑘) − 𝐇(𝑘)Θ̂(𝑘 − 1)] (49) 

With: 

 𝐋(𝑘) =
𝐏(𝑘−1) 𝐇(𝑘)𝑇

𝜆(𝑘)+𝐇(𝑘)  𝐏(𝑘−1) 𝐇(𝑘)𝑇

 
And: 

 𝐏(𝑘) = 𝐏(𝑘 − 1) −
𝐏(𝑘−1)𝐇(𝑘)𝑇𝐇(𝑘)𝐏(𝑘−1)

𝜆(𝑘)+𝐇(𝑘)𝐏(𝑘−1)𝐇(𝑘)𝑇
 

where the initial values are:  and , with  and  are zeros vector and 

unity matrix respectively with dimension . 

 

n t N t

( )1t −

( ) 60 10 D=P I
D0 DI

2D N=
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Remark: unbiased approaches are proposed in the literature that consist in whitening the 

sequence ( )e k  in relation to (43). This is the instrumental variables method, and methods based 

on the change of the model structure (auto regressive with exogeneous input model = ARX, 

auto regressive with adjusted mean and exogeneous input model for example). 

3 Input signal waveform – the PRBS signal 

Whatever the method used, non-parametric or parametric, the choice of the input sequence is 

crucial regarding the quality of the identified system. In practice, we will consider the heat flux 

sequence as a Pseudo Random Binary Signal (PRBS). “White noise” is the term given to 

completely random unpredictable noise, such as the hiss you hear on an untuned radio. It has 

the property of having components at every frequency. A pseudo-random binary sequence 

(PRBS) can also have this property but is entirely predictable. A PRBS is rather like a long 

recurring decimal number- it looks random if you examine a short piece of the sequence, but it 

repeats itself every m bit. Of course, the larger m is, the more random it looks. You can generate 

a PRBS with a shift register and an XOR gate. Connecting the outputs of two stages of the shift 

register to the XOR gate, and then feeding the result back into the input of the shift register will 

generate a PRBS of some sort. Some combinations of outputs produce longer PRBSs than 

others- the longest ones are called m-sequences (where m means “maximum length”). A binary 

sequence (BS) is a sequence of N bits, 

aj for j = 0, 1, ..., N − 1 

i.e. m ones and N − m zeros. A BS is pseudo-random (PRBS) if its autocorrelation function: 

 ( )
1

0

N

j j v

j

C v a a
−

+

=

=   (50) 

has only two values: 

 ( )
( ), if 0 mod

,otherwise

m v N
C v

m c


= 


 (51) 

Where: 

 
1

1

m
c

N

−
=

−
 (52) 

is called the duty cycle of the PRBS. 

A PRBS is random in a sense that the value of an aj element is independent of the values of any 

of the other elements, like real random sequences. 

It is 'pseudo' because it is deterministic and after N elements it starts to repeat itself, unlike real 

random sequences, such as sequences generated by radioactive decay or by white noise. The 

PRBS is more general than the n-sequence, which is a special pseudo-random binary sequence 

of n bits generated as the output of a linear shift register. An n-sequence always has a 1/2 duty 

cycle and its number of elements N = 2k − 1. 
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4 Application 

Let us consider the heat transfer problem presented at the beginning and let us generate a heat 

flux sequence under the form of the pseudo random binary sequence represented in Figure 7. 

Such a choice for the excitation sequence makes the identification quite easy in practice. This 

sequence is also very close to a white noise in terms of the power spectral density as represented 

in Figure 8. 

  

Figure 7: image on the left – heat flux generated on the form of a PRBS; image on the 

right – measured temperature of the sensor and comparison with the simulation of the 

identified system. 

 

Figure 8: power spectral density of the heat flux generated as a PRBS. 
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Using the correlation method described previously, the impulse response represented in Figure 

9 is obtained. This figure shows that the impulse response reconstructed using the correlation 

technique is very sensitive to the measurement noise. 

 

In a second stage, we used the parametric approach in order to find the model on the form of 

the relation (33) that best fits the experimental measurements (Figure 7). The choice of 

 ,na nb=Λ  (na is the number of parameters 
ia  and nb is the number of parameters 

ib ) is made 

by collecting in a matrix all the values of  to be investigated and looking for the value of the 

Aikake [1] criterion defined by 

 Ψ =
1+𝑛/𝑁

1−𝑛/𝑁
𝑉, 𝑛 = 𝑛𝑎 + 𝑛𝑏 + 1 (53) 

where n is the total number of estimated parameters and V is the loss function defined by 

 𝑉 = ∑  𝑁
𝑘=1 𝑒𝑘

2 (54) 

Standard errors of the estimates are calculated from the covariance matrix of . If the 

assumptions of additive, zeros mean, constant variance 2  and uncorrelated errors are verified, 

the covariance matrix is expressed as 

 cov (𝚯̂) = (𝐇𝑇 𝐇)−1𝝈2 (55) 

An estimate of the variance 2 , denoted 2s , is: 

 𝑠2 =
1

𝑁−𝑛
𝐄𝑇 𝐄 (56) 

It is found the optimal set of parameters ( ),i ia b  as: 

 

Parameter value 
Standard 

deviation 

Parameter value Standard 

deviation 

0a  1 0 5a  0.0166 0.0054 

1a  0.2823 0.01364 0b  0.0007006 5.348e-006 

2a  0.2539 0.01368 1b  0.0006788 1.19e-005 

3a  0.2715 0.01375 2b  0.0004693 1.404e-005 

4a  0.2047 0.01427 3b  0.0002561 1.365e-005 

 

The loss function is V=0.000123859. 

 

Simulating the response with the heat flux sequence brings a very good agreement with 

measured data as represented in Figure 7. Therefore, the impulse response of the identified 

system is reported in Figure 9. A very nice agreement with that calculated from the FEM is 

found. The main difference occurs for short times. 

Λ
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Figure 9: real impulse response and impulse response found using the correlation 

method and the parametric method. 

5 Conclusion 

System identification is a powerful tool that allows the user to obtain a direct model to solve an 

inverse problem. In fact, this approach consists in applying a known thermal excitation and to 

measure the temperature at the sensors to find a relationship between these two quantities. 

Obviously, this approach finds an interest if the system is not well characterized in terms of its 

thermal properties (thermal conductivity, specific heat, density, heat exchange coefficient at the 

boundaries, thermal resistance at the interfaces). Moreover, this technique does not require 

knowing the exact locations of the sensors in the system as well as their dynamical behaviour. 

It means that a calibration of the sensors is not required since they are used both for the system 

identification and the inversion. The constraints encountered with such an approach are that the 

system must be identified in the same configuration in which it will be used during the 

inversion. It means first that the time range for the system identification will define the usable 

time domain for the direct model. On the other hand, all the boundary conditions experienced 

during the system identification must remain identical during the inversion. 

Finally, it must be emphasized than the computational times for the inversion will be decreased 

very significantly even if the thermal system is complex. It is a very interesting feature of this 

approach since the simulation of the identified system is faster than that based on a 

discretization of the heat equation.  
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Abstract. In the second part of this lecture, the special case of modal reduction

is discussed. This method allows to greatly reduce the size of the model in case

of complex geometry. The principle of this technique is presented. A focus on the

AROMM method is carried out. We insist on the necessity to choose a modal basis

adapted to the physical problem. The di�erent principles of bases reduction are

introduced.
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1 Introduction

As computer hardware developing, the requirements in respect of numerical simulation follow
the same pattern. They are therefore becoming more demanding.
First, one have to use geometries that perfectly match the reality of the simulated object. A
recent study [4] has shown that the exact numerical modelling of a simple electronic component
needs a mesh of 422k nodes. This order of magnitude has to be compared to industrial
demand, that is to obtain the simulation of an entire electronic card.
Furthermore, we are also looking for being more and more precise taking into account physical
phenomena. In thermal problems, infrared radiations for example, hugely complicate the heat
transfer simulations [3].
Considering the inverse approach, this e�ect is ampli�ed by the iterative procedure which
involve the use of an important number of simulations 1.
For all those reasons, the use of reduced models is a topical issue. The idea consist in searching
the temperature �eld as a whole by using a small number of unknowns.

2 Context of the study: the heat equation

The problem is the following: the domain Ω, delimited by boundary Γ, is characterized by its
thermal conductivity k(M, t) [W.m−1.K−1] and its volumetric heat capacity c(M, t)[J.m−3.K−1].
This domain receives two types of thermal loadings:

� the in�uence of the environment, which is characterised by a temperature Tf (M, t) [K]
and a heat exchange coe�cient h(M, t)[W.m−2.K−1],

� the thermal dissipation, which can be a volumetric power on the domain π(M, t)[W.m−3]
or a surface load on the border ϕ(M, t)[W.m−2].

Such a problem corresponds to the following equations: ∀M ∈ Ω : c
∂T

∂t
=
−→
∇ .(k

−→
∇T ) + π

∀M ∈ Γ : k
−→
∇T.−→n = ϕ+ h(Tf − T )

(1)

For complex geometries, the solution of this problem is numerical and needs a spatial dis-
cretization. The �nite element method leads to the weak variational formulation of (1). Let
g be the test function, de�ned on the Hilbert space H1(Ω), we can write:

∀g ∈ H1(Ω),

∫
Ω
g c

∂T

∂t
dΩ = −

∫
Ω
k
−→
∇g.
−→
∇T dΩ−

∫
Γ
g h T dΓ

+

∫
Ω
g π dΩ +

∫
Γ
g (ϕ+ h Tf ) dΓ

(2)

It should be noted that it would be possible to consider:

� an anisotropic thermal conductivity characterized by a tensor k,

� an advection - conduction problem, for which we add to the heat equation a transport
term,

� infrared radiation between boundaries.
1In case of linear inverse problem, even if it is possible to use a direct procedure, this one needs one matrix

inversion.
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The addition of these terms does not change anything for the reduction method, and we will
consider afterwards the problem de�ned by (1).
The spatial discretization of (2) leads to the following equation (according to the order of
terms) :

C
dT

dt
= AT+U (3)

where C et A are respectively named the capacity matrix and the conductivity matrix, with
a dimension [N ×N ], where N is the degrees of freedom (DOF) for the considered discretized
domain. T is the temperature vector, which depends on the time, and U is the load vector.
The dimension of all these vectors are [N × 1].
This equation constitutes the complete heat problem, which the DOF can be very important2

in case of complex geometry.

3 The modal reduced model principle

This method is based on the time-space separation:

T (M, t) =

∞∑
i=1

Vi(M) xi(t) (4)

Considering the space function Vi(M) as being known, it means that the calculation of the
temperature �elds correspond to compute excitation states xi(t) of these functions. It is
important to notice that the relation (4) is true only if the space functions Vi(M) constitute
a basis of the solutions space of the thermal problem (2), and this is not systematic.
The idea is then to rewrite this formulation using a limited number n of space functions
∼
V i(M), which leads to an acceptable reconstitution of the thermal �elds

∼
T (M, t) ' T (M, t):

∼
T (M, t) =

n∑
i=1

∼
V i(M)

∼
xi(t) (5)

Whatever the reduction technique used, the reduced model is obtained by projection of the
heat equation on the subspace de�ned by the space functions Vi(M). The equation (2) then
becomes :

∀g ∈ H1(Ω),∫
Ω
g c

∂

∂t

(
n∑
i=1

∼
V i
∼
xi

)
dΩ =

−
∫

Ω
k
−→
∇g.
−→
∇

(
n∑
i=1

∼
V i
∼
xi

)
dΩ−

∫
Γ
g h

(
n∑
i=1

∼
V i
∼
xi

)
dΓ

+

∫
Ω
g π dΩ +

∫
Γ
g (ϕ+ hTf ) dΓ

(6)

In considering that all the space functions
∼
V i(M) form a basis for the physical problem, these

functions can be used as test functions for the variational formulation: g(M) =
∼
V j(M).

After rearrangement, we have:

2For a �nite volume method or for the �nite element method for which the interpolation functions are
linear, the DOF corresponds to the N number of mesh nodes.
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∀
∼
V j ∈ H1(Ω), j ∈ N,

n∑
i=1

(∫
Ω

∼
V j c

∼
V i dΩ

)
d
∼
xi
dt

=

−
n∑
i=1

(∫
Ω
k
−→
∇
∼
V j .
−→
∇
∼
V i dΩ +

∫
Γ

∼
V j h

∼
V i dΓ+

)
∼
xi

+

∫
Ω

∼
V j π dΩ +

∫
Γ

∼
V j (ϕ+ hTf ) dΓ

(7)

After the spatial discretization, the function
∼
V i(M) becomes a vector

∼
Vi [N, 1] resulting in:

∀ j ∈ [1 : n],
n∑
i=1

∼
V

t

j C
∼
Vi

d
∼
xi
dt

= −
n∑
i=1

∼
V

t

j A
∼
Vi

∼
xi +

∼
V

t

j U (8)

We name
∼
V[N,n] the matrix which gathers the n discretized functions

∼
V i [N, 1], and

∼
X(t)[n, 1]

the vector of the n time-dependant excitation states
∼
xi(t) associated with these space func-

tions:

∼
V

t

C
∼
V
d
∼
X

dt
=
∼
V

t

A
∼
V
∼
X+

∼
V

t

U (9)

Under compact form:

L
d
∼
X

dt
= M

∼
X+N (10)

with L =
∼
V

t

C
∼
V and M =

∼
V

t

A
∼
V whose dimensions are [n, n], and N =

∼
V

t

U [n, 1].

This formulation leads to the reduction of the DOF, because the complete model (2) is char-
acterized by N unknowns, while the dimension of this modal model (10) corresponds to the

n space functions
∼
V i(M).

From this formulation, di�erent methods exist to reduce a model:

� The principle of the POD (Proper Orthogonal Decomposition) is the identi�cation of

the space functions
∼
V i(M) from several reference temperature �elds (noted Tref (M, t)

for a thermal problem). This technique has been used in a lot of studies [5, 6, 7, 8, 9,
10, 11, 12].

� The MIM (Modal Identi�cation Method) is based on the direct identi�cation of the state
equation providing with the modal formulation (10) from simulations or measures. This
technique has been widely used for inverse problems [13, 14, 15, 16, 13, 17, 18].

� the PGD (Proper Generalized decomposition) is a generalization of the decomposition
principle: the temperature is written as a multiple product of a set of functions, where
each of these functions depends on one variable (time, space) or one parameter (heat
capacity,thermal conductivity,...). These functions are computed in enriching the basis
at each iteration [19, 20, 21, 22].
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� The AROMM method follows both steps which appear in the modal principle, that is:

� to compute a complete basis {Vi(M)}i∈N, on which it is possible to proceed to a
rigorous decomposition of the thermal �elds:

T (M, t) =

∞∑
i=1

Vi(M) xi(t) (11)

� to obtain a reduced basis {Ṽi(M)}i∈[1,n], in order to decrease the model order3,
and which allows to obtain a satisfactory estimation of the thermal �eld :

T (M, t) '
n∑
i=1

∼
Vi(M)

∼
xi(t) (12)

The goal of this lecture consists in presenting this method.

4 The complete basis computation

We search a set of spatial functions which form a basis for the considered thermal problem
(11). This set depends on the solutions space.

4.1 Classical basis

4.1.1 The Fourier basis

We consider the following thermal problem, characterized by homogeneous boundary condi-
tions:  ∀M ∈ Ω : c0

∂T

∂t
=
−→
∇(k0

−→
∇T ) + π

∀M ∈ Γ : k0
−→
∇T.−→n = −h0 T

(13)

The physical parameters (heat capacity c0, thermal conductivity k0, and global heat exchange
coe�cient h0) are limited to spatial functions.
The space functions V̂ F

i (M) correspond to eigenvectors and are obtained by the resolution of
the eigenvalues problem associated to the physical problem: ∀M ∈ Ω :

−→
∇
(
k0
−→
∇V̂ F

i

)
= zFi c0 V̂

F
i

∀M ∈ Γ : k0
−→
∇V̂i.−→n = −h0 V̂F

(14)

zFi [s−1] is the eigenvalue associated to each eigenvector V̂ F
i . The inverse of this quantity is a

time τFi [s] named the time constant of the eigenvector. It characterizes the dynamic of the
eigenmode:

τFi =
−1

zFi
(15)

These Fourier eigenmodes (Figure 1.a) can be considered as particular temperature �elds: the
eigenvalues problem corresponds to a stationary physical problem with a volumetric thermal
load which is proportional to the eigenmode searched at each point of the domain, and whose
boundary conditions are homogeneous.

3As we'll see later, the reduced function Ṽi(M) do not correspond necessary with the functions Vi(M) of
the complete basis. This explains the change of notation
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The variational form of the eigenvalues problem is :

∀g ∈ H1(Ω), −
∫

Ω
k0
−→
∇g .

−→
∇V̂ F

j ∂Ω−
∫

Γ
g h0 V̂

F
i = zFi

∫
Ω
g c0 V̂

F
i ∂Ω (16)

In cases of complex geometries, such eigenvalues problem is solved numerically, from a spatial
discretization characterized by N DOF. The number of eigenmodes becomes then �nite and
equal to N . The numerical resolution is performed by the Lanczos method [23], from the
discrete formulation of (16). In using the same matrix than speci�ed previously (3), we have:

A V̂
F
i = zFi C V̂

F
i (17)

This method had been implemented in all principal languages (Matlab since 1996 [24], Arpack
since 1998 [25]). It allows to compute the eigenmodes according to the order of the most im-
portant time constants τFi .

The set of all the eigenmodes V̂ F
i form a basis for the subspace H1

F (Ω) ⊂ H1(Ω), which
corresponds to this of the physical problem (13).

The eigenmodes are mutually-orthogonal according to a scalar product < u, v >=
∫

Ω ucv∂Ω:

∀i 6= j, < V̂ F
i , V̂

F
i >=

∫
Ω
V̂ F
i c0 V̂

F
j ∂Ω = 0 (18)

A standardization allows to impose the magnitude of each mode. In choosing:

V F
i =

V̂ F
i(∫

Ω
V̂ F
i c0 V̂

F
i dΩ

)1/2
(19)

we obtain the �rst orthogonality property:

∀i, j ∈ N, < V F
i , V

F
j >=

∫
Ω
V F
i c0 V

F
j ∂Ω = δij (20)

Because of (16), and in choosing the eigenmodes V F
j as test function, we have:

−
∫

Ω
k0
−→
∇V F

i .
−→
∇V F

j dΩ−
∫

Γ
V F
i h0 V

F
j dΓ = zFi

∫
Ω
V F
i c0 V

F
j dΩ (21)

The use of the �rst orthogonality property (20) enables �nally to obtain the second orthogo-
nality property:

−
∫

Ω
k0
−→
∇V F

i .
−→
∇V F

j dΩ−
∫

Γ
V F
i h0 V

F
j dΓ = zFi δij (22)

We saw previously that the state equation has been obtained by the projection of the thermal
problem on the reduced basis (eq. (7)).
In the case where all the complete basis

(
zFi , V

F
i

)
is used, we obtain:

∀ j ∈ N,
n∑
i=1

(∫
Ω
V F
j c0 V F

i dΩ

)
∂xi
dt

=

+
n∑
i=1

(∫
Ω
k0
−→
∇V F

j .
−→
∇V F

i ∂Ω

∫
Γ
V F
j h0 V

F
i ∂Γ+

)
xi

+

∫
Ω
π V F

j ∂Ω

(23)

Lecture 7 : Types of inverse problems, model reduction, model identi�cation - Part B - page 7

235/332



METTI 8 Advanced School
Thermal Measurements and Inverse Techniques

Ile d'Oléron, France,
Sept.24th - Sept.29th, 2023

Because of the orthogonality properties (eq. (20) et (22)), all the state equations are fully
decoupled:

∀ j ∈ N,
∂xj
∂t

= zFj xj +

∫
Ω
V F
j π ∂Ω (24)

As we will see later, the reduced basis
(
∼
z
F

i ,
∼
V
F

i

)
from his complete basis

(
zFi , V

F
i

)
is

built, such as these previous orthogonality properties (eq. (20) et (22) ) are preserved. The
decoupled state-reduced equations (24) allow to obtain an immediate resolution.
The Fourier basis is valid for a linear thermal problem, with stationary parameters and with
homogeneous boundary conditions, whatever the value of the thermal exchange coe�cient
h0(M).

In the particular case where ∀M ∈ Γ, h0 = 0, we have the Neumann problem : ∀M ∈ Ω : c0
∂T

∂t
=
−→
∇(k0

−→
∇T ) + π

∀M ∈ Γ :
−→
∇T.−→n = 0

(25)

The eigenvalues problem associated is then the Neumann eigenvalues problem : ∀M ∈ Ω :
−→
∇
(
k0
−→
∇V̂ N

i

)
= zNi c0 V̂

N
i

∀M ∈ Γ :
−→
∇V̂ N

i .−→n = 0
(26)

This set of eigenvectors V̂ N
i forms a basis for the subspace H1

N (Ω) ⊂ H1(Ω). Then they are
characterized by a zero heat �ux on the boundaries (Figure 1.b).

4.1.2 The Dirichlet basis

We consider a Dirichlet problem characterized by the following equations 4: ∀M ∈ Ω : c0
∂T

∂t
=
−→
∇ .(k0

−→
∇T ) + π

∀M ∈ Γ : T = 0
(27)

This problem de�nes a particular space of solutions named Dirichlet space H1
0 . It is a sub-

space of the Hilbert space H1, which respects the boundary condition.

Eigenvectors V̂ D
i (M) are obtained by the resolution of the following eigenmodes problem : ∀M ∈ Ω :

−→
∇
(
k0
−→
∇V̂ D

i

)
= zDi c0 V̂

D
i

∀M ∈ Γ : V̂ D
i = 0

(28)

The variational form is as follows5:
4In practical terms, it is numerically possible to approach a Dirichlet thermal problem by a general Fourier

formulation, in which we �x h0 →∞. It is the same for the associated Dirichlet eigenvalues problem. Even if
mathematical proof needs a rigorous writing of the problem (equations (27) and (28)), using such an expression
for a numerical approach gives good results.

5One use here a test function g ∈ H1
0 (Ω), which has then a zero value on the boundaries. The integral

term

∫
Γ

g k
−→
∇V̂ D

i .−→n dΓ is then a zero value.

Lecture 7 : Types of inverse problems, model reduction, model identi�cation - Part B - page 8

236/332



METTI 8 Advanced School
Thermal Measurements and Inverse Techniques

Ile d'Oléron, France,
Sept.24th - Sept.29th, 2023

∀g ∈ H1
0 (Ω), −

∫
Ω
k0
−→
∇g .

−→
∇V̂ D

j ∂Ω = zi

∫
Ω
g c0 V̂

D
i ∂Ω (29)

This set of all the eigenvectors V D
i forms a basis for the Dirichlet subspace H1

0 (Ω) ⊂ H1(Ω).
Then they are characterized by a zero value on the boundaries, as shown in �gure (1.c).

(c) Dirichlet eigenmodes

(b) Neuman eigenmodes

(a) Fourier eigenmodes

Figure 1: Classical modes for a simple 2D rectangular geometry
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An adapted normalization6 enables to �x the magnitude of the modes, and leads to the
following orthogonality relations:

∀i, j ∈ N,


∫

Ω
V D
i c0 V

D
j ∂Ω = δij∫

Ω
k0
−→
∇V D

i .
−→
∇V D

j dΩ = zDi δij

(30)

4.1.3 Non homogeneous problem: applying a gliding temperature

We consider the general problem for which we recall the equations: ∀M ∈ Ω : c0
∂T

∂t
=
−→
∇(k0

−→
∇T ) + π

∀M ∈ Γ : k0
−→
∇T.−→n = ϕ+ h0(Tf − T )

(31)

We saw that the Fourier eigenmodes (14) form a basis for a thermal problem characterized
by homogeneous boundary conditions. In order to use the modal reduction with theses eigen-
modes, we have to split the temperature T on two terms :

T = Tg + Td (32)

� The term Tg is called the gliding temperature, because it corresponds to the temperature
obtained without any consideration of the thermal inertia: ∀M ∈ Ω : 0 =

−→
∇(k0

−→
∇Tg) + π

∀M ∈ Γ : k0
−→
∇Tg.−→n = ϕ+ h0(Tf − Tg)

(33)

Such a problem is simple: from the variationnal formulation from (33):

−
∫

Ω
k0
−→
∇g .

−→
∇Tg dΩ−

∫
Γ
g h0 Tg dΓ +

∫
Ω
g π dΩ +

∫
Γ
g (ϕ+ h0 Tf ) dΓ = 0 (34)

the discrete form is then:
ATg + U(t) = 0 (35)

and we have then:
Tg = −A−1U(t) (36)

� The complementary variable Td is called the dynamic temperature. From (31) and (33),
the equation which allows to obtain Td is : ∀M ∈ Ω : c0

∂Td
∂t

=
−→
∇(k0

−→
∇Td)− c0

∂Tg
∂t

∀M ∈ Γ : k0
−→
∇Td.−→n = −h0 Td

(37)

Such problem is then homogeneous and it is then allowed to reduce it by using the
Fourier basis.

Lastly the researched temperature �eld T is:

T =

∞∑
i=1

xi V
F
i + Tg (38)

6It is the same as the one used for the Fourier eigenmodes (eq. (19))

Lecture 7 : Types of inverse problems, model reduction, model identi�cation - Part B - page 10

238/332



METTI 8 Advanced School
Thermal Measurements and Inverse Techniques

Ile d'Oléron, France,
Sept.24th - Sept.29th, 2023

The state modal problem is always decoupled. The gliding temperature Tg appears only in
cases of time variation of the solicitations:

∀(i) ∈ N,
dxi
dt

= zi xi −
∫

Ω
V F
i c0

dTg
dt

dΩ (39)

Several studies have used this technique, including buildings problems [26, 27, 28, 29].

Hovewer, the limit of this method is that the computed basis is applicable only for problems
in which the boundary conditions are �xed. From the second equation of (14), we can de�ne
the quantity γi such as:

γi =

−→
∇Vi.−→n
Vi

=
−h0

k0
(40)

In this way we can see that all the eigenvectors are characterized by the same value of this
quantity γi. Thus, all the dynamic thermal �elds that can be rebuilt by this modal formulation
have to respect this constraint.
Such basis are not compatible with a thermal problem in which non linearities or time varia-
tions exist on the boundaries. Examples are numerous: time dependant exchange coe�cient
h(t), thermal conductivity depending on the temperature k(T ), infrared radiations... That is
why other basis have been developed.

4.2 Basis adapted to non linear problems

4.2.1 Branch modes

In order to avoid this limit, a new basis is de�ned, whose boundary conditions are not linked
with the physical boundary conditions:{

∀M ∈ Ω , k0
−→
∇(
−→
∇V̂ B

i ) = zBi c0 V̂
B
i

∀M ∈ Γ , k0
−→
∇V̂ B

i .
−→n = −zBi ζ V̂ B

i

(41)

The feature of this basis is that the eigenvalues zBi is present in the boundary condition. This
is the Steklov condition.
The quantity ζ [J.m−2K−1] is called Steklov parameter and it is a simple coe�cient which
allows to respect the physical dimensions in the boundary condition equations. The value of
this coe�cient is obtained from the variational formulation of the eigenvalues problem (41).

−
∫

Ω
k0
−→
∇g.
−→
∇V B

i dΩ = zi

(∫
Ω
c0 g V

B
i dΩ +

∫
Γ
ζ g V B

i dΓ

)
(42)

To balance the two terms linked to the eigenvalue, an appropriate choice of the Steklov
coe�cient ζ is given by:

ζ '

∫
Ω
c0 dΩ∫
Γ
dΓ

(43)

In using the associated scalar product:

< u, v >=

∫
Ω
u c0 v dΩ +

∫
Γ
u ζ v dΓ (44)

the normalisation is done:
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V B
i =

V̂ B
i(∫

Ω
V̂ B
i c0 V̂

B
i dΩ +

∫
Γ
V̂ B
i ζ V̂ B

i dΓ

)1/2
(45)

and we obtain the following orthogonality properties:

∀(i, j) ∈ N2,∫
Ω
V B
j c0 V

B
i dΩ +

∫
Γ
V B
i ζ V B

i dΓ = δij∫
Ω
k0
−→
∇V B

j .
−→
∇ V B

i dΩ = zBi δij

(46)

It is possible to characterize the spatial evolution of each Branch modes by de�ning a form
coe�cient Cζi for each mode V B

i :

Cζi =

∫
Γ
V B
i ζ V B

i dΓ (47)

The evolution of this coe�cient according to the mode number, for a simple rectangular
geometry, is presented on �gure 2. It shows that two Branch modes families exist:

� Because of the orthogonality relation de�ned in Eq. (14), when Cζi is close to 1, the
considered mode is �at on the domain except near the border. Such modes are called
Boundary modes. They do not appear in a classical Fourier basis, and allow the recon-
stitution of any boundary conditions.

� There exist others modes for which the spatial evolutions are located in all the domain.
We call them Domain modes. These modes are characterized by a weak value of cζi (less
than 0.3 for the example in �gure 2). These are less numerous as the Boundaries modes
(for the �rst computed modes).

Figure 3.a represents some Branch modes for a simple 2D rectangular geometry. This �gure
enables to clearly visualize these two families of Branch modes.

With these Branch modes, the orthogonality properties don't allow anymore to obtain a
decoupled modal problem:

∀j ∈ N,
∞∑
i=1

(∫
Ω
V B
j c V B

i dΩ

)
dxi
dt

=

∞∑
i=1

(∫
Ω
k
−→
∇V B

j .
−→
∇V B

i dΩ +

∫
Γ
V B
j h V B

i dΓ

)
xi

+

∫
Ω
V B
j π dΩ +

∫
Γ
V B
j (hTe + ϕ)dΓ

(48)

This is the price to pay for using this Branch basis.

On the other hand, the Branch modes form a basis for any thermal problem, including those
characterized by parameters that are functions of time or temperature. One shows that the
generated functionnal space is the Hilbert space H1(Ω) and we have directly7:

7It is no longer necessary to use the sliding temperature �eld
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T (M, t) =
∞∑
i=1

xi V
B
i (49)
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Figure 2: Evolution of the location coe�cient according to the branch mode number

Initiated by Neveu et al. [30], this base type has been applied to di�erent con�gurations:
Quéméner et al. [31] treats the case of a non-linear problem, with the existence of solidi�cation
of a molded part. Various applications are made for inverse problems by Videcoq et al.

[32, 33, 34]. Branch bases generalized to problems of di�usion with transport are proposed
by Joly et al. [35], then used in the case of an inverse problem of identi�cation [36]. Finally
La�ay et al. [37, 38] proposes a substructuring technique, which allows the computation
of Branch bases for di�erent subdomains, which are then coupled each other by a thermal
contact resistance.

4.2.2 The Dirichlet-Steklov eigenmodes

Recently another way to reduce non linear problems with or without time dependant param-
eters has been developped. It consist in using two bases:

� the Dirichlet basis seen previously (eq. (27)),

� the Steklov basis8, which is de�ned by the following eigenvalues problem:{
∀M ∈ Ω ,

−→
∇(k0

−→
∇V̂ S

i ) = 0

∀M ∈ Γ , k0
−→
∇V̂ S

i .
−→n = −zSi ζ V̂ S

i

(50)

Steklov modes correspond to stationary �elds obtained for a problem in which one im-
poses �uxes at the boundaries, whose value is proportional to the value of this mode at

8Steklov modes are rigorously de�ned only on the boundaries. In order to simply the notation, we call here
by abuse of language the steklov mode as their extension in the domain (noted V̂ S

i )
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any point on the border.

The regrouping of these two families of modes {V D
i }i∈N

⊕
{V S

j }j∈N forms a hilberian basis
de H1(Ω).
We de�ne the following scalar product:

< u, v >=

∫
Ω
k0
−→
∇u .

−→
∇v dΩ + z0

∫
Γ
u ζ v dΓ (51)

where z0 is a constant parameter [s−1] which allows to respect the coherence of the physical
dimension of both terms.

Using the following standardization:

V S
i =

V̂ DS
i(∫

Ω
k0
−→
∇V̂ DS

i .
−→
∇V̂ DS

i dΩ + z0

∫
Γ
V̂ DS
i ζ V̂ DS

i dΓ

)1/2
(52)

we obtain Dirichlet and Steklov modes which are orthogonal with respect to this scalar product
(51):

∀X ,Y ∈ {D,S},∀i, j ∈ N,

< V̂ Xi , V̂
Y
j > =

∫
Ω
k0
−→
∇V̂ Xi .

−→
∇V̂ Yj dΩ + z0

∫
Γ
V̂ Xi ζ V̂ Yj dΓ

= δXY δij

(53)

A sets of modes of the Dirichlet-Steklov basis is compared to the Branch modes in Figure 3.
This shows that Steklov's modes correspond very well to Boudaries Branch modes, whereas
Domain Branches modes and Dirichlet modes are similar only inside the domain. At the
boundaries,the Domain Branch modes are not characterized by null values, unlike Dirichlet
modes. Nevertheless the correspondence between these two bases is �agrant.
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𝑉𝑉4𝐷𝐷

𝑉𝑉8𝑆𝑆

𝑉𝑉2𝐷𝐷

(a) Branch eigenmodes

𝑉𝑉0𝐵𝐵 𝑉𝑉1𝐵𝐵 𝑉𝑉4𝐵𝐵 𝑉𝑉8𝐵𝐵 𝑉𝑉18𝐵𝐵

𝑉𝑉20𝐵𝐵 𝑉𝑉38𝐵𝐵 𝑉𝑉53𝐵𝐵 𝑉𝑉55𝐵𝐵𝑉𝑉40𝐵𝐵

(b) Dirichlet – Steklov eigenmodes

Figure 3: Comparison between the Branch basis {V B
i } and the Dirichlet-Steklov basis

{V D
i }

⊕
{V S

j }
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5 Reducing the basis

Until now, no reduction has been made. Whatever the chosen basis, the problem of state
(eq.(39) or (48)) remains characterized by a size related to spatial discretization. The second
step of the AROMM method is then to build a reduced base containing n modes Ṽi(M) from
the complete base. We saw previously that the form of the modal problem resulting from this
reduction depends on the used base:

� For a base associated with a linear thermal problem and with stationary parameters (ie
Fourier base {V F

i }, Neumann base {V N
i } or Dirichlet base {V D

i }):

∀i ∈ {1, n} dxi
dt

= zi xi −
∫

Ω
Ṽi c0

dTg
dt

dΩ (54)

� For a base adapted to more general problems (ie Branch base {V B
i } or Diriclet-Steklov

base {V D
i }

⊕
{V S

j }):

∀j ∈ {1, n}
n∑
i=1

(∫
Ω
Ṽj c Ṽi dΩ

)
ẋi

=

n∑
i=1

(∫
Ω
k
−→
∇Ṽj .

−→
∇Ṽi dΩ +

∫
Γ
Ṽj h Ṽi dΓ

)
xi

+

∫
Ω
Ṽj π dΩ +

∫
Γ
Ṽj (h Te + ϕ) dΓ

(55)

Several reduction methods exist.

5.1 Truncation

The simplest idea is to take the most relevant modes from the complete base:

∀i ∈ {1, n} ∀j ∈ {1, N} , Ṽi = Vj (56)

5.1.1 Temporal Truncation

A �rst criterion leads to the truncation of Marshall [39]. In this method the modes with
the largest time constants are kept. Independent of any reference problem, this reduction
technique has mostly been used for classical basis [40].

An important advantage of this reduction is that it is immediate to use, since the Lanczos
technique allows the base to be calculated according to the order of the largest time constants.
Thus, temporal truncation can also be used as �rst-level reduction: instead of calculating the
complete base, only a certain percentage of this base is computed, from which it is possible
to make a second reduction more e�cient. In the case of thermal problems characterized by
a very large number of DOF, this possibility of partial calculations of the base is of great
interest, given the important calculation times needed for solving the eigenvalue problem and
the di�culties of the eigenvectors storage.

5.1.2 Energetic Truncation

This technique is used by Joly et al. [35]. From a set of known temperature �elds Tref (t),
it is possible to obtain the excitation states by a simple projection of the complete basis on
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Tref according to the de�nition of the scalar product de�ned for the considered basis.

For example, in the case of Branch basis, orthogonal properties lead to:

∀j ∈ N,∫
Ω
Tref c0 V

B
j dΩ +

∫
Γ
Tref ζ V

B
j dΓ

=

∫
Ω

n∑
i=1

(
xi V

B
i

)
c0 V

B
j dΩ +

∫
Γ

n∑
i=1

(
xi V

B
i

)
ζ V B

j dΓ

=
n∑
i=1

(∫
Ω
V B
i c0 V

B
j dΩ +

∫
Γ
V B
i ζ V B

j dΓ

)
xi

=
n∑
i=1

δijxi

= xj

(57)

For the Dirichlet Steklov basis, given the de�nition of the scalar product used, the projection
leads to:

∀X ,Y ∈ {D,S},∀j ∈ N,∫
Ω
k0
−→
∇Tref .

−→
∇V̂ Yj dΩ +

∫
Γ
Tref ζ V̂

Y
j dΓ

=

∫
Ω
k0
−→
∇

(
n∑
i=1

xi V̂
X
i

)
.
−→
∇V̂ Yj dΩ +

∫
Γ

(
n∑
i=1

xi V̂
X
i

)
ζ V̂ Yj dΓ

=

n∑
i=1

(∫
Ω
k0
−→
∇V̂ Xi .

−→
∇V̂ Yj dΩ +

∫
Γ
V̂ Xi ζ V̂ Yj dΓ

)
xi

=

n∑
i=1

δXY δij xi

= xj

(58)

The knowledge of the excitation states for all the modes of the complete basis makes it possible
to keep only those characterized by the most important states for all the temperature �elds
used. This technique generally leads to a more e�cient reduction than the simple temporal
truncation, but it has a disadvantage: the e�ectiveness of the reduction depends on the
reference �elds that must be known. Here we �nd the same constraint as that existing for the
POD method.
From the same discretized geometry it is generally possible to perform simulations of a thermal
problem which is simpler than that studied, but which will however be able to excite the
characteristic modes.

5.2 Amalgamated base

An even more elaborate technique is that of the amalgam. It brings back the idea of classifying
the eigenmodes according to their states of excitation, but this time, the modes which are not
kept during the truncation are added by simple linear combinations to the retained modes:

∀i ∈ {1, n} Ṽi = Vi,1 +

Ñi∑
p=2

αi,pVi,p ; 0 < |αi,p| < 1 (59)
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In order to maintain the properties of the base, each mode is used only once:

n∑
i=1

(
Ñi + 1

)
= N (60)

The distribution of the initial modes and the computation of the amalgam coe�cient αi,p
are carried out in a fast sequential procedure which depends only on the knowledge of the
excitation states. Set up by Oulefki [41] in the case of classical bases for which decoupling
made it easy to determine the reference states, this reduction technique has been widely used
for Branch modes.
The di�culty is in general to determine the excitation states of the complete basis. A �rst
rather simple solution [42, 43] is, as for energetic truncation, to use a set of temperature �elds
obtained by complete resolution of a reference problem, which gives access to the excitation
states (eq. (57) or (58)).
Other techniques have also been tested [31, 33, 37] in order to avoid computing the reference
thermal �elds: since the eigenmodes excitation states are known only to classify this modes
in order to set up the amalgam procedure, these authors have built the associated complete
modal problem, and sought a simple estimate of the states of excitation: Using a Branch
basis and neglecting the terms of coupling between modes, the modal problem has been solved
analytically and the excitation states became extremely fast to obtain [31]. An improvement
of this technique has been carried out later in the case of a rotating disc, for which only the
coupling of a small number of modes is taken into account [44].

6 Application to the inverse problems: Examples

The examples presented here concern the automobile brake system, which is a major safety
component. It undergoes, during its operating phase, many mechanical and thermal stresses,
which can lead to important damages: cracks, apparition of hot-judder, vapor locking, brake
fade, etc.
Because of thermal solicitations are rarely known (especially the part of the heat �ux received
by the pad and by the disc), the inverse techniques is used. In order to respect the complex
geometry of the system, the model used in the inverse process is numerical, and characterized
by very �ne meshes. Computing time and memory problems appear very quickly, and a
solution is to use reduced models.

6.1 Estimation of heat �ux received by the brake disc rotating [1]

A brake disc in rotation with variable rotation frequency ω(t) is considered (Fig. 4). During
the braking phase, the disc receives a time-dependent heat �ux on the zone of friction with
the brake pads Ω1. The �ux density ϕ[W.m−2] dissipated by friction is not uniform but varies
linearly with the velocity thus with the radius.
The space discretization using P1 �nite elements leads to a DOF N = 9860 for the following
matrix formulation:

C
dT

dt
= [K+ ωu(t)U+ hu(t)H]T+ ϕuU (61)

The goal consists in identifying ϕu(t) in real time, from a local infrared mesurement on the
disc (point A).
Concerning the direct simulation, the computing time is signi�cant (equal to 2160 s on a
simple laptop), because of the transport term which involves small computation time-steps.
Figure 5 illustrates this phenomenon.
Such simulation time is an obstacle for inverse applications where the need for real-time
response is important. To avoid prohibitive time, a reduced model is built. It is obtained by
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ωu
hu
ϕu

(a) Geometry and sollicitations (b) Scenario studied

h(t)

Γ1

ϕ(t)

Figure 4: Physical problem

Figure 5: Temperature �elds at di�erent times

the AROMM method, in choosing Branch eigenmodes (�g 6.a) and the Amalgam method.
The reference scenario used for the Amalgam procedure (�g 6.b) is obviously di�erent from
the one used for the identi�cation (�g 4.b). With a reduced order n = 15, the direct simulation
requires less than 10s, with satisfying results (�g 7).
By integrating such reduced model in an inverse approach, it is then possible to identify the
heat �ux ϕ in quasi real time. The inverse algorithm is based on the adjoint method applied
on sliding time windows (�g 8).
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Figure 6: Reduced model

Figure 7: Using the reduced model ñ = 15 in direct simulation

Figure 8: Identi�cation results
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6.2 Spatio-temporal identi�cation of heat �ux density received by the
brake pad [2]

The identi�cation of the spatio-temporal variations of a heat �ux density �eld is addressed in
this section. The application relates to the identi�cation of the heat �ux received by a brake
pad in a braking situation, for which the mechanical deformation and the phenomena of tear
and wear cause the appearance of hot spots that one seeks to locate.
We consider a car brake pad for which the complexity of the geometry is respected (Fig. 9.a).
It is composed of two materials: the brake lining and its metallic support. This brake pad
undergoes three types of boundary conditions (�g 9.b).

Figure 9: Geometry of the pad and its discretization

6.2.1 Parametrization of the heat �ux density

A �rst Branch base V (ϕ) is used in order to parametrize the heat �ux density (�g. 10):

ϕ(x, y, t) =
n(ϕ)∑
k=1

x̃
(ϕ)
k (t) Ṽ

(ϕ)
k (x, y) (62)

Figure 10: Flux basis
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The equation of the heat discretized (eq. 3) becomes then:

CṪ = (K+H)T+
n(ϕ)∑
k=1

WṼ
(ϕ)
k x̃

(ϕ)
k (63)

where Ṽ
(ϕ)
k [Nmesh× 1] is the extension on the domain Ω, of each eigenvector Ṽ (ϕ)

k computed
on the boundary Γ1, and where the matrixW [Nmesh×Nmesh] corresponds to the integration
of the interpolations functions de�ned on the border Γ1 and extended to the domain Ω.
This can be written compactly:

CṪ = (K+H)T+WṼ
(ϕ)

X̃
(ϕ)

(64)

where Ṽ
(ϕ)

is a matrix of dimension [Nmesh × n(ϕ)] which gathers all the �ux modes Ṽ
(ϕ)
k

[Nmesh × 1] used, and X̃
(ϕ)

is the vector of the corresponding states of dimension [n(ϕ) × 1].

6.2.2 Reduced problem

A second Branch base V T is used for the temperature �eld (�g. 11)

Figure 11: Temperature basis

The reduced modal expression of the thermal problem de�ned by the equation (10) is then:

L
˙̃
X(T) = MX̃

(T)
+DX̃

(ϕ)
(65)

with D = Ṽ
(T)t

W Ṽ
(ϕ)

6.2.3 space time identi�cation

We thus have a temperature model characterized by a few tens of excitation states of tem-
perature xT (instead of 67353 degrees of freedom of the initial mesh), to identify a few tens
of excitation states of �ux xϕ, instead of the 5945 degrees of freedom of the surface Γ1. The
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developed technique uses an iterative method of conjugate gradient descent, for which the
gradient is estimated by the adjoint method.
The obtained results (Figures 12 and 13) are satisfactory. It can be noted that no speci�c
regularization technique is used in this study (Tikhonov for example). Indeed, in addition to
the natural regularization obtained by using a whole time-domain approach and an iterative
method, an additional regularization appears, which is induced by the use of the two reduced
bases (one for the thermal problem and another for the heat �ux parametrization).

;

Figure 12: Identi�cation results along a segment or versus time
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Figure 13: Space-time identi�cation
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6.3 On-line indirect thermal measurement in a radiant furnace [3]

6.3.1 The physical problem

Let a heated object on a furnace (Figure 14) in which two radiant tubes dissipate an infra-red
radiative heat �ux. The power radiated by each tube is driven by the temperature Tgas (t) of
their intern gas whose value depends on time. The heat exchange between the gas and the
tube walls Ωtube is modeled by a global heat exchange coe�cient hgas = 10, 000W.m−2.K−1.
Given the high temperature level, heat exchange by radiation is preponderant. It is modelled
by the radiosity method, which relates the mean �ux ϕi exchanged by patch Ωe

i to the set of
mean temperatures T j , with j ∈ [1, Np] :

∀j ∈ [1, Np]

Np∑
i=1

[
δji
εi
−
(

1

εi
− 1

)
Fji

]
ϕi = −

Np∑
i=1

(δji − Fji)σT
4
i , (66)

where δji is the Kronecker delta and Fji are the view factors. This relation (66) can be written
in matrix form :

Aϕ = BT
4
. (67)

The mean �ux exchanged by a patch ϕj expresses as:

ϕj =

Np∑
i=1

rjiT
4
i , (68)

where rji are the elements of Rrad [Np, Np] = A−1 B.

This radian �ux is included in the heat equation de�ned on the solid domains of the scene
(wall, tubes, stand, etc) , whicb can be written after s(Figure 14) :

C
dT

dt
= [K + H]T + Ucpl Tint (T) + U0 + RradT

4
+ Tgas(t) Utube . (69)

In this equation:

� Vector T contains the temperature value at the N discretization points.

� C, K and H are [N ×N ] symmetric sparse matrices: C is the thermal inertia matrix,
K the conductivity matrix and H gathers the di�erent convection terms on Ω ext, Ω int

and Ω tube.

� Vector U0 corresponds to the external known solicitations and Ucpl represents the
convective exchange with the air inside the furnace, at temperature that depends on the
temperature of all internal surfaces Tint (T) :

Tint (T ) =

∫
Ωint

hint T dΩ∫
Ωint

hint dΩ
. (70)

We obtein after discretization :

Tint (T) = DT . (71)
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� Vector T
4
of dimension [Np] contains mean temperatures of every patch Ωe

i . Radiation
matrix Rrad [N ×Np] allots the mean heat �ux density from the Np patches to the N
nodes.

T = URT , (72)

� Finally, vector Utube of dimension [N ] stands for the heat source generated by the gas
combustion inside the radiant tubes.

6.3.2 Identi�cation and reconstruction of the thermal �eld

The goal is to recover the whole thermal �eld of the heated object from a few measurement
points (A, B and C on �gure 14). The radiant thermal source is �rst identi�ed via a low order
reduced model based on AROMM method (Figure 15).

From this identi�ed temperature, the thermal �eld is then recovered by direct simulation us-
ing a reduced model of higher order which leads to a better precision.

The whole identi�cation procedure lasts less than 5 000 s, which is ten times smaller the
duration of the thermal process (50 000 s). The whole thermal �eld of the heated object is
refreshed every 200 s with an average precision of σ̄ = 2.9K, which is below the measurement
noise.

Figure 14: The considered geometry
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Figure 15: Identi�cation results with
Ñ(rec) = 20 modes and σN = 5K.
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Figure 16: Temperature and error �elds at t = 6 000 s for reconstruction with Ñ(rec) = 150

modes in the case of identi�cation with Ñ(id) = 20 modes and σN = 5K.
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Abstract. This lecture presents some commonly-used numerical algorithms devoted to optimization, that is
maximizing or, more often minimizing a given function of several variables. The goal is function estimation.
At first, some general mathematical tools are presented. Some gradient-free optimization algorithms are
presented and then some gradient-type methods are pointed out with pros and cons for each method. The
gradient of the function to be minimized is presented according to three distinct methods: finite difference,
forward differentiation and the use of the additional adjoint-state problem. The last part presents some
practical studies where some tricks are given, along with some numerical results.

Keywords. optimization, convexity, zero-order method, deterministic method, stochastic method, gradient-
type method, conjugate gradient, BFGS, Gauss–Newton, Levenberg–Marquardt, gradients, direct differentia-
tion, adjoint-state
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1 Introduction

This lecture is devoted to the solution of inverse problems in heat transfer, specifically when function are to
be recovered. Usually, such problems are non-linear and may fall into the category of large-scale inverse
problems, so that specific optimization tools are to be developed.
The lecture first presents some basic examples of IHCP (Inverse Heat Conduction Problems) and points out
the distinction between estimation of parameters on the one hand, and functions in the other hand. Indeed,
as a simple example, we have the distinction between estimating i) λ as a parameter, ii) λ(x) as a function
of the space x (x = (x1, x2)

t for instance) and, iii) λ(T ) as a function of the state T .
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The lecture then presents the most usual optimization tools for the solution of different kinds of inverse
problems. It first gives notions on the functional to be minimized, and convexity. It gives definitions of
constraints (equality and inequality) added to the functional to be minimized, the added constraints being
related to either the state or the parameter/functional.
Then, before tackling the detailed iterative optimization algorithms, the most usual stopping criteria are
presented.
Zero-order, first-order and quasi-second order optimization methods are briefly presented with pros and
cons for each of them.
Concerning zero order methods, both deterministic and stochatic methods are very briefly presented with
some specific examples (Simplex, PSO, and GA).
Within the frame of first-order methods, one presents the steepest-descent method with and without line-
search, then the conjugate gradient method for quadratic and arbitrary functions.
Some quasi-Newton algorithms are then presented: the BFGS, the Gauss–Newton and the Levenberg–
Marquardt methods.
A comparison is given in terms of gradient needed for all previously presented methods along with the
convergence rate, if possible.
The next part presents the computation of the functional gradient: through the finite difference method,
through the direct differentiation of the PDEs (partial differential equations), and through the use of the
adjoint-state problem. Several ways to access the adjoint-state problems are given. A comparison of gradient
computations is given through examples to emphasize the differences.
Note that this lecture has been prepared with some well-known books such as [1, 2, 3, 4]. These books being
considered as “standard” popular books, some parts of this lecture are taken from these references.
Note also that this lecture is being continuously improved, starting from its very first version in 2005 [5].

2 Estimation in heat transfer – Optimization

2.1 Parameter and function estimation

The modeling of a physical system is based on several requirements. In addition to the physical modeling
equations that include some physical parameters (e.g. conductivity coefficients), the initial state and the
sources are also to be known if the physical problem is to be solved. If all these data is known, then the
so-called direct problem – or forward problem – can be solved.

Now, if some of the previously expressed quantities are missing, the physical problem cannot be solved
any longer, but some inversion procedure may evaluate the missing quantity, fitting the model output with
some real ones (i.e. obtained through experiments). The evaluation of such missing quantities needs an
inverse problem – or a backward problem – to be solved.

Depending on the nature of the missing quantity, the estimation is performed on parameters or on
functions.

These last years, a debate took place within the heat transfer community about the difference and the
meaning of, on the one hand, parameter identification and, on the other hand, function estimation. According
to the author, both are very different, though some similarities exist between both of them.

Let us work on following examples of physical properties estimation to back up our methodology.

i) If a single material conductivity λ is to be identified, then the problem clearly belongs to the category
of parameter estimation. In such a case, the number of unknowns (the parameters) is very low: only
one for a uniform isotropic medium, and only six at maximum for a uniform orthotropic medium. Due
to the low dimensionality of the inverse problem, any optimizer can be used (either gradient-free or
gradient-type). Moreover, such problems are likely to be well-posed, and the use of regularization tools
may not be necessary. These parameter estimation problems are not difficult both from mathematical
and computational points of view. The same comments can be drawn if different non-varying thermal
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conductivities are to be estimated in different locations (for example dealingwith the case of amulti-layer
medium).

ii) If several physical properties are to be estimated, for example a thermal conductivity λ [Wm−1 K−1]), a
heat capacity Cp [J K−1]), and a convective heat transfer coefficient h [Wm−2 K−1]), then we consider
a collection of elements that can be put together into a vector, such that classical optimizers can solve
this parameter estimation problem. However, taking a norm of such a vector would not make any
sense in a physical point of view. This is one of the reasons why some priors are used (in this specific
case λ0, C0

p and h0), and the estimation is performed on adimensionalized parameters (in this specific
case λ̃ = λ/λ0, C̃p = Cp/C0

p and h̃ = h/h0). Doing so, norms (on the collection of adimensionalized
parameters) are understandable by both mathematicians and physicists. Note that another reason why
it is preferable to adimensionalize parameters is that it usually slightly attenuates the ill-posed character
of the inverse problem, and thus the process of adimensionalization can be seen, somehow, as the very
first regularization tool.

iii) If a physical property now depends continuously on the state, (e.g. temperature-dependent conductivity
λ(T )), then one may think that the problem of conductivity estimation falls into the category of
function estimation. However, a parameterization of this function is anyway necessary to use numerical
algorithms, and the type of parameterization can make the difference between parameter and function
estimation. If – for example – a polynomial expansion is used, say λ(T ) ≈∑N

i αiT
i, then the collection

of the N coefficients αi is to be estimated, and, therefore, such a problem eventually falls into the
category of a parameter estimation problem (the parameters are the polynomial coefficients). Moreover,
because the number of unknowns is likely to be low (say less than ten), the choice of the optimizer
does not matter much. (Note however that this choice of polynomial expansion is unlikely to be a good
candidate for the parameterization; the one presented in the following item iv) is likely to be much
better.)

iv) If a space-dependent physical property is to be estimated, for example a thermal conductivity λ (x),
then the estimation is performed on a function. As in the previous case, a parameterization of this
function is anyway necessary to use any numerical algorithm. Building a basis {ξi}Ni=1 and using
it to project the function, i.e. with λ (x) =

∑
λiξi(T ), the estimation in the end is performed on

discrete parameters {λi}Ni=1, all of these having the same unit, say [Wm−1 K−1]. At this stage, one may
think we face again a parameter estimation problem. However, most often, the function has to satisfy
some regularity properties. For example, the conductivity is finite and varies continuously in space, so
λ(x) ∈ H1(D) = {λ ∈ L2(D), ∥λ∥ ∈ L2(D)}. Because such a regularity property is be satisfied, this
problem falls into the category of a function estimation problem, and specific regularization tools are to
be used to enforce the function to satisfy these constraints of regularity. Added to that, the dimension
of the discrete unknown, N , is very likely to be big. (As an example, a property defined in a cube
discretized with only 100 voxels per side gives 106 unknowns.) Therefore, some specific optimization
algorithms have been designed to cope with such high dimensions.

It could be seen from previous examples how function estimation is different from parameter estimation.
Main differences between both of them come from, on the one hand, the regularity of the functions to
be estimated, and, on the other hand, the high dimensionality of the optimization problem due to the
parameterization. The regularity issue demands specific regularization tools and a special care on the
parameterization, and the high dimensionality demands powerful optimization algorithms.

2.2 The function to be minimized

In an inversion process, one usually minimizes some errors between some experimental data (say ud) and
related model data (say u). The cost function (also called somewhere discrepancy function or objective
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function) is often expressed as the square of a norm of the difference between u and ud. The most often,
one uses the L2(·) norm if some “quasi-”continuous u and especially ud are available (i.e. ∥u− ud∥2L2(S) =∫
S(u − ud)2 dx but, when data ud is given only on specific locations (in space and/or time) , then the
squared euclidean norm is to be used: ∥u − ud∥22 :=

∑
i(u(xi) − ud(xi))2 =

∫
S δ

j
i (u − ud)2 dx where

δji = δ(xi−xj). Often, some function of the state and of the measure are used, for instance state derivation,
integration, weighted summation, etc. Moreover, some selection process is, most of the time considered. So,
in order to write down a general form for the cost function to be minimized, we use :

J (u) = ∥u− ud∥2X (1)
without specifying any choice for the norm on X at this early stage. Though the cost function is explicitly
given in terms of the state u, the cost function is actually to be minimized with respect to what it is searched,
i.e. the parameters ψ. Hence we write the equality (by definition):

j(ψ) := J (u, ψ) (2)
where the function j is often called the reduced cost function, as opposed to J which is the calculated cost
function. One actually computes the cost function in terms of the state (by eq. (1) for instance), but the cost
function is to be minimized with respect to another quantity, say ψ.

2.3 Elements of minimization

The function denoted j in eq. (2) is defined on K with values in R. K is a set of admissible elements of
the problem. In some cases, K defines some constraints on the parameters or functions. The minimization
problem is written as:

inf
ϕ∈K⊂V

j(ϕ).

According to [1], if the notation “inf” is used for a minimization problem, it means that one does not
know, a priori, if the minimum is obtained, i.e. if there exists ϕ ∈ K such that

j (ϕ) = inf
ψ∈K⊂V

j(ψ).

For indicating that the minimum is obtained, one should prefer the notations
ϕ = arg min

ψ∈K⊂V
j(ψ) and j(ϕ) = min

ψ∈K⊂V
j(ψ)

Let us now recall basic definitions needed for mathematical optimization [1]:
Definition 1. ψ is a local minimum of j on K if and only if

ψ ∈ K and ∃δ > 0, ∀ϕ ∈ K, ∥ϕ− ψ∥ < δ → j(ϕ) ≥ j(ψ).
Definition 2. ψ is a global minimum of j on K if and only if

ψ ∈ K and j(ϕ) ≥ j(ψ) ∀ϕ ∈ K.
Definition 3. A minimizing series of j in K is a series (ψn)n∈N such that

ψn ∈ K ∀n and lim
n→+∞

j (ψn) = min
ϕ∈K

j(ϕ).

Definition 4. a set K ∈ V is convex if, for all ψ, ϕ ∈ K and ∀θ ∈ [0, 1], the element (θψ + (1− θ)ϕ) is in K
(see figure 1).

Definition 5. A function j is said to be convex when defined on a non-null convex set K ∈ V with values in R
if and only if

j (θψ + (1− θ)ϕ) ≤ θj (ψ) + (1− θ) j (ϕ) ∀ψ, ϕ ∈ K, ∀θ ∈ [0, 1] .

Moreover, j is said to be strictly convex if the inequality is strict when ψ ̸= ϕ and θ ∈ ]0, 1[ (see fig. 2).

Ending, if j if a convex function on K, the local minimum of j on K is the global minimum on K.
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ψ

ϕ

ψ

ϕ

Figure 1: Convex and non-convex domaine K

ψ

j(ψ)

ϕ

j(ϕ)

θj (
ψ) +

(1− θ
) j (

ϕ)

Figure 2: Convex function j(·)

2.4 Optimality conditions

For convex functions, there is no difference between local minima and global minimum. In the following we
are more interested in minimizing a function without specifying whether the minimum is local or global. It
will be seen in next sections that some gradient-free optimization algorithms may find the global minimum
even if the cost function contains local minima.

Let us derive here the minimization necessary and sufficient conditions. These conditions use the
first-order derivatives (order-1 condition), and second-order derivatives (order-2 condition) on the cost
function j. Using gradient-type algorithms, the first–order condition is to be reached, while the second-order
condition requires assuming a local convexity hypothesis, and then make a distinction between minima,
maxima and optima.

Let us assume that j(ψ) is continuous and has continuous first partial derivatives (∂j/∂ψi)(ψ) and
second partial derivatives (∂2j/∂ψi∂ψj)(ψ). Then a necessary condition for ψ̄ to be a minimum of j (at
least locally) is that:

i) ψ̄ is a stationary point, i.e. ∇j(ψ̄) = 0,

ii) theHessian∇2j(ψ̄) =
(
∂2j/∂ψi∂ψj

)
(ψ̄) is a positive semi-definitematrix, i.e. ∀y ∈ Rn,

(
∇2j(ψ̄)y, y

)
≥

0 where (., .) is a scalar product in Rn (we have dim(ψ) = n).

A point ψ̄ which satisfies condition item i) is called a stationary point. It is important to point out that
stationarity is not a sufficient condition for local optimality. For instance the point of inflexion for cubic
functions would satisfy the condition i), while there is no optimum. Hence the Hessian is not positive
definite but merely positive semi-definite.

The sufficient condition for ψ̄ to be a minimum of j (at least locally) is that
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i) ψ̄ is a stationary point, i.e. ∇j(ψ̄) = 0,

ii) the Hessian ∇2j(ψ̄) =
(
∂2j/∂ψi∂ψj

)
(ψ̄) is a positive definite matrix, i.e. ∀y ∈ Rn, y ̸= 0,(

∇2j(ū)y, y
)
> 0.

We remark that the condition item ii) amounts to assuming that j is strictly convex in the neighbourhood
of ψ̄.

2.5 Stopping criteria

Since the convergence of the iterative algorithms is, in general, not finite, a stopping criterion must be
applied. Here below are given some commonly used criteria. We denote ψp the vector parameter ψ at the
optimization iteration p.

∥∇j(ψp)∥ ≤ ε; (3)∣∣j(ψp)− j(ψp−1)
∣∣ ≤ ε; (4)∥∥ψp − ψp−1

∥∥ ≤ ε; (5)
j(ψp) ≤ v (6)

For each of the above criteria, it may be judicious to demand that the test is satisfied over several
successive iterations. The three first above-presented criteria are convergence criteria applied on the cost
function gradient, on the cost function evolution, or on the parameter evolutions. These criteria are very
commonly-used when dealing with optimization and optimal control problems.

The last criterion is, in one sense, more specific to inverse problems: when the cost function reaches a
critical value that depends on the variance of measurement errors, then the optimization algorithm should
stop [6, 7, 8]. It can be shown that the consequence of lowering the cost function below v affects the result
in dramatically highliting its inherent noise. This criterion is the “maximum discrepancy principle”.

Often, the maximum discrepancy principle eq. (6) is used together with the other criteria and also with
a maximum number of iterations.

2.6 Classification of optimization methods

The solution of the optimization problem may be performed in numbers of ways. Among numerous methods
found in the litterature, the classification of methods given below (see fig. 3) is based on our experience.
First, one can distinguish gradient-free methods from methods relying on gradients. Among gradient-free
methods, there are those deterministic and those stochastic (the latter introducing random in the search
of the optimum). Among gradient-based methods, one can distinguish between first and second-order
methods, and those in between.

3 Zero-order n–dimensional optimization algorithms

Zero-order methods, also called “derivative-free optimization” (DFO) or “gradient-free methods” are based
on a global vision of the cost function value j on the search space. The main interest of using such methods
is when the cost function gradient is not available, or when the cost gradient is not easy to compute, or
when the cost function presents local minima. There is an increasing number of computation tools to solve
optimization problems with no gradient [9]. In the sequel, we restrict our-self in very briefly presenting,
among the enormous number of existing methods, one deterministic algoritm which is the so-called simplex
method, and one probabilistic method which is the particle swarm optimization method.
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n-D Optimization Methods

Gradient Free

Deterministic

Simplex . . .

Stochastic

PSO AG . . .

With Gradient

Order 1

Steepest Conjugate gradients

Order between 1 & 2

GN, LM DFP (L-)BFGS

Order 2

Newton

Figure 3: Classification of optimization methods. PSO stands for “partcule swarm optimization”, AG stands
for “genetic algorithm”, GN stands for “Gauss–Newton”, and LM stands for Levenberg–Marquardt.

3.1 Simplex

We present here the Nelder-Mead simplex method (1965). This method is popular and simple to code.
Moreover, there exists a large number of freeware that can be used to minimize a function using such
an algorithm. Let a simplex S0 be a set of n + 1 “points” linearly independent (n = dimψ) with S0 ={
ψI , I = 1, . . . , n+ 1

}
. One iteration of the simplex optimization algorithm consists in generating a

new simplex closer to the minimum eliminating the point with the higher cost function value. The basic
operations of n = 2 are given in fig. 4: let ψ̄ the isobarycenter of

{
ψI , I = 1, . . . , n,

}
(without ψh =

argI=1,...,nmax j(ψI)), let the ordering so that

j(ψ1) ≤ j(ψ2) ≤ . . . ≤ j(ψn+1)

and let ψℓ = argI=1,...,nmin j(ψI). At each iteration, the simplex improvement is performed in three steps:

1. [Reflection] One builds ψR symmetry of ψh with respect to the segment [ψ̄, ψℓ]. According to the
value of the cost j(uR) with respect to j(ψℓ), the parametric space is then extended (step 2), or
contracted (step 3);

2. [Extension] if j(ψR) < j(ψℓ), one searches a new point in the same direction. The point ψE is such
that ψE = γψR + (1− γ)ψ̄ with γ > 1. If j(ψE) < j(ψR), ψh is replaced by ψR, otherwise ψh is
replaced by ψE ;

3. [Contraction] If j(ψR) > j(ψℓ), the point ψC such that ψC = γψh + (1− γ)ψ̄, γ ∈]0, 1[ is created.
If j(ψC) < j(ψR), ψh is replaced by ψC otherwise the simplex is contracted (inside contraction) in
all directions replacing ∀I ̸= L ψI by (ψI + ψℓ)/2.

◦ψh

◦
ψl

◦

×
ψ̄

ψR ◦ψh

◦
ψl

◦

×
ψ̄ ψR

ψE ◦ψh

◦
ψl

◦

×
ψ̄ ψR

ψC
◦ψh

◦
ψl

◦

×
ψ̄

Figure 4: Basic operations on a simplex for n = 2. From left to right: reflection, expansion, contraction, and
inside contraction.
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3.2 PSO

The particle swarm optimization is a stochastic algorithm described by Kennedy and Eberhart in 1995. One
considers an initial set of individuals (particles) located randomly. Each particle moves within the space K
interacting with other particles on their best locations. From this information, the particle shall change its
position ψi and its velocity δψi. The general formulation for this behavior is given by:

δψi = χδψi + λ1rand1
(
ϕg − ψi

)
+ λ2rand2

(
ϕi − ψi

)
ψi = ψi + δψi

(7)

whereψi is the position of the particle i, δψi is its velocity, ϕg is the best position obtained in its neighborhood,
and ϕi is its best position (see fig. 5). χ, λ1 and λ2 are some coefficients weighting the three directions of
the particule [9]:

• how much the particle trusts itself now;

• how much it trusts its experience;

• how much it trusts its neighbours.

Next, rand1 and rand2 are random variables following a uniform distribution in [0, 1]. There are several
configuration parameters for the method, see [10]:

• swarm size, usually between 20 and 30;

• initialization of both the position of the particles and their velocity ∼ U [0, 1];

• neighborhood topology such that a particule communicates with only some other particles;

• inertial factor χ which defines the exploration capacity of the particules;

• confidence coefficients λ1 and λ2 which are constriction coefficients;

• stopping criterion which is usually the maximum of iterations, or the critical value of the cost function
j(ψ).

◦ψi

ϕi

ϕg

δψi

Figure 5: PSO algorithm: a particle displacement.

Usually, a circular neighborhood topology is used, along with χ = 0.72 and λ1 = λ2 = 1.46. A large
number of free software are available, see for instance [10].
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4 One-dimensional unconstrained opimization – line search algorithm

In order to find the optimum of a function j of n variables, we shall describe in section 5 a number of
iterative methods which require, at each step, the solution of an optimization problem in one single variable,
of the type:

Find ᾱ = argmin
α>0

g(α) = j (ψp + αdp) , (8)

where ψp = (ψp1 . . . ψ
p
n)
t is the obtained point at iteration p and where dp = (dp1 . . . d

p
n)
t is the direction of

descent (see section 5). As a matter of fact we have the problem of finding the optimum of the function j,
starting from the guess ψ0 in the direction of descent d0. Since this problem must be solved a great number
of times, it is important to design efficient algorithms that deal with it.In any case, one has to keep in mind
that the main objective is not to solve eq. (8) but to find the minimum of j(ψ). Thus one has to design
efficient tools for the one-dimensional algorithm that finds the minimum of g(α), or approach it, in a not so
expensive way. Note that we always assume that g′(0) = (∇j(ψp), dp) < 0, which means that dp is indeed
a descent direction.

4.1 The dichotomy method

This method halves, at each step, the length of the interval which contains the minimum, by computing the
function g in two new points. By carrying out n computations of the function g, the length of the initial
interval [a0, b0] is reduced in a proportion of 2(n−3)/2. The general procedure is the following: starting from
the interval [a0, b0], and taking the midpoint c0 =

(
a0 + b0

)
/2, and the two points d0 =

(
a0 + c0

)
/2,

and e0 =
(
c0 + b0

)
/2, one obtains five equidistant points of length δ0 = (b0 − a0)/4; computing the cost

function values at these points, two of the four sub-intervals may be eliminated, while the two adjacent
sub-intervals remain; the same procedure is repeated within the selected interval [a1, b1], and so on. Since the
step length is divided by 2 at each iteration, the dichotomy method converges linearly to the minimum [2].

4.2 The Newton–Raphson method

Let us assume that the function g(α) is twice continuously differentiable. The search for a minimum of
g(α) is carried out by looking for a stationary point, i.e. ᾱ satisfying the possibly nonlinear relationship
g′(ᾱ) = 0. If αq is the point obtained at stage q, then the function g′(α) is approximated by its tangent,
and the next point αq+1 is chosen to be at the intersection of this tangent with the zero-ordinate axis. The
relationship to pass from one step to the next comes from g′

(
αq+1

)
= g′ (αq)+g′′ (αq)×

(
αq+1 − αq

)
= 0

which gives:

αq+1 = αq − g′ (αq)

g′′ (αq)
. (9)

It is of interest that this method has the property of finite convergence when applied to quadratic
functions. This is an interesting feature because any function which is sufficiently regular (at least twice
continuously differentiable) behaves as a quadratic function near the optimum [2]. On the other hand, the
main drawback of this method is that it requires the computation of the first and of the second derivative
of g at each stage. That is the reason why the secant method (next section) is also widely used, especially
when there is no way for computing the second order derivative, or when the exact second derivative is
complicated to compute or too time consuming.
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g′(α0)

α0 α1 α2

Figure 6: Schematic representation of the Newton–Raphson line search method.

4.3 The secant method

The second-order derivative g′′(α) is approximated by finite differences so that the Newton–Raphson’s
equation initially given by eq. (9) becomes eq. (10):

αq+1 ≊ αq − g′(αq) αq − αq−1

g′ (αq)− g′ (αq−1)
. (10)

This method is the so-called secant method. Applied to the search of g′(α) = 0, this method consists
in searching the intersection between the zero-ordinate axis and the straight line passing by the points[
αq−1, g′(αq−1)

]
and [αq, g′(αq)].

4.4 The quadratic interpolation

By comparison of those of sections 4.2 and 4.3, this method has the advantage of not requiring the com-
putation of first or second order derivatives of the function . Let three points α1 ≤ α2 ≤ α3 such that
g(α1) ≥ g(α2) ≤ g(α3) and let us approximate the function g on the related interval by a quadratic function
g̃ with the same values as those of g at the points α1, α2 and α3. The minimum of g̃ is obtained at the new
point α4 satisfying:

α4 =
1

2

r23g(α1) + r31g(α2) + r12g(α3)

s23g(α1) + s31g(α2) + s12g(α3)
, (11)

where rij = α2
i − α2

j and sij = αi − αj . This procedure may be repeated again with the three new selected
points. Under some regularity hypothesis, the convergence rate of this method is super-linear [2].

Another approach consists in differentiating the cost function towards the direction of descent with a
Taylor expansion, andin neglecting second order derivatives:

g′ (α) =
d

dα

∥∥∥u(ψk + αdk
)
− ud

∥∥∥2
X
=

d

dα

∥∥∥u(ψk)− αu′ (ψk; dk)− ud∥∥∥2
X
= 0 (12)

with u′
(
ψ, dk

)
= u′ the derivative of u at the point ψk and in the direction dk. This equation gives

straightforwardly: (
u′, u− ud

)
X + α

(
u′, u′

)
X = 0 (13)

α = −(u′, u− ud)X
(u′, u′)X

(14)

This latter method – which is widely used in the heat transfer community – can give easily an accurate
step size α when the cost function j is close to quadratic, i.e. when the state u varies almost linearly with ψ.
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4.5 Other methods – Inexact line-search

A great number of other one-dimensional optimization methods may be found in the literature. These
methods may be more or less complicated and some of them may be much more optimal than the above-
presented methods. In practice the Fibonacci method,the golden section search method and the cubic
interpolation method are also very widely used in practice (the reader may refer to [4, 2] for more details).
All these methods can be quite CPU-time consuming, and in fact, the convergence of some of the methods
presented afterwards in Section 5 (typically the BFGS method) can be reached without getting a point very
close to satisfying g (α) = 0. Well-accepted conditions used to build inexact line-search algorithms are
based on the two rules:

a) α must not be too large in order, for instance, to avoid oscillations,

b) α must not be chosen too small in order to prevent from premature convergence.

Among the large number of inexact line-search algorithms, one is based on the Goldstein rules (see
Figure 7) which first ensures condition a) by satisfying (15) choosing m1 ∈ [0, 1], and second ensures
condition b) satisfying (16) choosingm2 ∈ [m1, 1].

g (α) ≤ g (0) +m1αg
′ (0) (15)

g (α) ≥ g (0) +m2αg
′ (0) (16)

Other rules can be stated in similar ways. For instance, the Armijo’s method is a variant of the Golstein
method. Related algorithms are very simple and can be found in any book on optimization.

0

g′ (0) m2g
′ (0)

m1g
′ (0)

a b c d

Figure 7: Set of points satisfying the Goldstein’s rules: [a, b] ∪ [c, d].
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Algorithm 1: Typical method based on the Goldstein rules
input :αmin = 0, αmax =∞, ψ = ψk, ∇j, d = dk

output : ᾱ

1 Give some initial value to α;
Compute g′(0) = (∇j, d);

2 Compute g(α) = j(ψ + αd);
if g(α) ≤ g(0) +m1αg

′(0) then
go to 3)

else
set αmax = α and go to 5

end
3 Compare g (α) and g (0) +m2αg

′ (0);
if g(α) ≥ g(0) +m2αg

′(0) then
END

else
go to 4

end
4 Set αmin = α;
5 Look for new value in ]αmin, αmax[ and return to 2

5 Gradient-type n-dimensional optimization algorithms

Since in all cases, the stationarity of j is a necessary optimality condition, almost all unconstrained optimiza-
tion methods consist in searching the stationary point ψ̄ where∇j(ψ̄) = 0. The usual methods are iterative
and proceed this way: one generates a sequence of points ψ0, ψ1,. . .ψp which converges to a local optimum
of j. At each stage p, ψp+1 is defined by ψp+1 = ψp + αpdp where dp is a displacement direction which
may be either the opposite of the gradient of j at ψp (i.e. dp = −∇j(ψp)), or computed from the gradient,
or chosen in any another way, provided that it is a descent direction, i.e. satisfying (∇j(ψp), dp) < 0.

5.1 1st order gradient methods

5.1.1 The gradient with predefined steps method (1st order method)

At each iteration step p, the gradient ∇j(ψp) gives the direction of the largest increase of j. The procedure
consists in computing the gradient, and in finding the new point according to the predefined strictly positive
step size αp as:

ψp+1 = ψp − αp ∇j(ψ
p)

∥∇j(ψp)∥ . (17)

It may be shown that this iterative scheme converges to ψ̄ provided that αp → 0 (p → ∞) and∑∞
p=0 α

p = +∞. One can choose for instance αp = 1/p. The main drawback of this method is its very low
convergence rate.

5.1.2 The steepest descent method (1st order method)

In this frequently used method, αp is chosen at each iteration p so as to minimize the function g(α) =
j (ψp − α∇j(ψp)) on the set of α ≥ 0. The algorithm is thus the following. One chooses a starting point
ψ0 and set p = 0. At each iteration p, one computes the gradient and set dp = −∇j(ψp). One then solves
the one-dimensional problem (see section 4) and set ψp+1 = ψp + αpdp. This procedure is repeated until a
stopping test is satisfied (see section 2.5). The main disadvantage of the steepest descent method is the fact
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that the convergence can still be very slow. As a matter of fact, since αp minimizes g(α) = j (ψp + αdp)
then g′(αp) = (dp,∇j (ψp + αdp)) =

(
dp,∇j

(
ψp+1

))
. Hence

(
dp, dp+1

)
= 0. This means that two

successive displacements are strictly orthogonal. As a direct consequence, the number of steps to minimize
elongated valley-type functions for instance may be very high (see fig. 8 and then fig. 10d on page 22).

ψ0

d 0

ψ1

d 1

ψ2

d 2

Figure 8: When the steepest descent method is used, the two consecutive directions are orthogonal.

5.1.3 The conjugate gradient method for quadratic functions (1st order method)

In this section we shall firstly assume that the cost function is quadratic. The case of arbitrary functions
shall be dealt with in section 5.1.4. Let the quadratic functional be of the form:

j(ψ) =
1

2
(A ψ,ψ) , (18)

and let us recall the definition for two conjugate vectors. Let A be a given symmetric matrix (operator). Two
vectors x1 and x2 are A -conjugate if (A x1, x2) = 0. The general method to optimize j is the following.
Let us start with a given ψ0 and choose d0 = −∇j(ψ0). One may remark that for quadratic functions, the
one-dimensional minimization procedure may be analytically solved. Recalling that the minimization of
g(α) along the direction d0 should lead to the fact that this current direction (d0) would be orthogonal to
the next gradient ∇j(ψ1), one has: (

d0,∇j
(
ψ1

))
= 0. (19)

Using the relationship ∇j(ψ) = A ψ given by the differentiation of (18) and the reactualization
formulation ψ1 = ψ0 + α0d0, (19) becomes:(

d0,∇j
(
ψ1

))
=

(
d0,A ψ1

)
=

(
d0,A

(
ψ0 + α0d0

))
=

(
d0,A ψ0

)
+ α0

(
d0,A d0

)
.

(20)

Equaling (20) to zero gives the step size α0:

α0 = −
(
d0,A ψ0

)
(d0,A d0)

. (21)

Next, at stage p, we are at the point ψp and we compute the gradient ∇j(ψp). The direction dp is
obtained by combining linearly the gradient ∇j(ψp) and the previous direction dp−1, where the coefficient
βp is chosen in such a way that dp is A -conjugate to the previous direction. Hence:(

dp,A dp−1
)

=
(
−∇j (ψp) + βpdp−1,A dp−1

)
= −

(
∇j (ψp) ,A dp−1

)
+ βp

(
dp−1,A dp−1

)
.

(22)
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Next, choosing βp such that the previous equation equals zero yields to:

βp =

(
∇j(ψp),A dp−1

)
(dp−1,A dp−1)

. (23)

The algorithm based on the above relationships is given in algorithm 2. Also, it is proved, see [2], that
the conjugate gradient method applied to quadratic functions converges in at most n iterations, where
n = dimψ.

Algorithm 2: The conjugate gradient algorithm applied to quadratic functions

1. Let p = 0, ψ0 be the starting point,
compute the gradient and the descent direction, d0 = −∇j(ψ0),

compute the step size α0 = −
(
d0,A ψ0

)
(d0,A d0)

;

2. At step p, we are at the point ψp.
We define ψp+1 = ψp + αpdp with:

• the step size αp = −(dp,∇j(ψp))
(dp,A dp)

• the direction dp = −∇j(ψp) + βpdp−1

• where the coefficient needed for conjugate directions: βp =
(
∇j(ψp),A dp−1

)
(dp−1,A dp−1)

;

3. Stopping rule (see Section 2.5). If satisfied: End, otherwise set p← p+ 1 and return to step (2).

ψ0

d 0

ψ1

d 1

ψ2

Figure 9: When the conjugate gradient method is used, the two consecutive directions are conjugate instead
of orthogonal. Applied to a quadratic function, the method converges in at most n iterations (in this figure
two iterations are needed since dimψ = 2).

5.1.4 The conjugate gradient method for arbitrary (non quadratic) functions (1st order)

Before presenting the application of conjugate gradient methods on arbitrary functions, let us give some
properties inherent to quadratic functions. Differentiating eq. (18), and taking into account of the re-
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actualization relationship, one has:

∇j(ψp)−∇j(ψp−1) = A
(
ψp − ψp−1

)
= A

(
ψp−1 + αp−1dp−1 − ψp−1

)
= αp−1A dp−1,

(24)

which also gives the following relationship:

1

αp−1

(
∇j(ψp),∇j(ψp)−∇j(ψp−1

)
=

(
∇j(ψp),A dp−1

)
. (25)

On the other hand, substituting (25) into (23) gives

βp =

(
∇j(ψp),A dp−1

)
(dp−1,A dp−1)

=

(
∇j(ψp),∇j(ψp)−∇j(ψp−1)

)
(dp−1,∇j(ψp)−∇j(ψp − 1))

. (26)

Next, expanding the descent direction dp−1, (26) becomes:

βp =

(
∇j(ψp),∇j(ψp)−∇j(ψp−1)

)
(−∇j(ψp−1) + βp−1dp−2,∇j(ψp)−∇j(ψp−1))

; (27)

βp =

(
∇j(ψp),∇j(ψp)−∇j(ψp−1)

)
(−∇j(ψp−1)− βp−1∇j(ψp−2) + Λ,∇j(ψp)−∇j(ψp−1))

, (28)

where Λ is the series given from the re-actualizations. All the gradients being orthogonal to each other, (28)
becomes:

βp =

(
∇j(ψp),∇j(ψp)−∇j(ψp−1)

)
(∇j(ψp−1),∇j(ψp−1))

, (29)

and also:
βp =

(∇j(ψp),∇j(ψp))
(∇j(ψp−1),∇j(ψp−1))

. (30)

It is pointed out that in the neighborhood of the optimum, non-quadratic functions may always be
approximated by quadratic functions. The Fletcher and Reeves’ method consists in applying (30) to access
βp while the Polak and Ribiere’s method consists in applying (29) to access βp. Taking into account of
above remarks, the conjugate gradient algorithm applied to arbitrary functions is given in Algorithm 3. It is
important to note that the global convergence of the presented methods is only ensured if a periodic restart
is carried out . The restart dn = −∇j(un) is usually carried out every n iterations, at least.

Algorithm 3: The conjugate gradient algorithm applied to arbitrary functions

1. Let p = 0, ψ0 be the starting point, d0 = −∇j(ψ0);

2. At step p, we are at the point ψp; we define ψp+1 = ψp + αpdp with:

• the step size αp = arg min
α∈R+

g(α) = j (ψp + αdp) with:

• the direction dp = −∇j(ψp) + βpdp−1 where
• the conjugate condition βp satisfies either (29) or (30) depending on the chosen method;

3. Stopping rule (see subsection 2.5). If satisfies: End, otherwise, set p← p+ 1 and return to step (2).
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5.2 The Newton’s method (2nd order)

Let us assume that the cost function j(ψ) is now twice continuously differentiable and that second derivatives
exist. The idea is to approach the next cost function gradient by its quadratic approximation through a
Taylor development:

∇j(ψp+1) = ∇j(ψp) +
[
∇2j(ψp)

]
δψp +O (δψp)2 , (31)

and equaling the obtained approximated gradient to zero to get the new parameter ψp+1 = δψp + ψp:

ψp+1 = ψp −
[
∇2j (ψp)

]−1∇j(ψp). (32)

Note that while using second-order optimization algorithms, the direction of descent as well as the step
size are obtained from (32) in one go. Another interesting point is the fact that the algorithm converges to ψ̄
in a single step when applied to strictly quadratic functions. However, for arbitrary functions,O (δψp)2 may
be far from zero in eq. (31); yielding to some errors in the displacement δψp, and thus in the new point ψp+1.
As a consequence, if the starting point ψ0 is too far away from the solution ψ̄, then the Newton method
may not converge. On the other hand, since the approximation of j(ψ) by a quadratic function is almost
always valid in the neighborhood of ψ̄, then the algorithm should converge to ψ̄ if the starting point ψ0 is
chosen closely enough to the solution. Moreover, it is very common to control the step size this way. One
first calculates the direction dp = −

[
∇2j(ψp)

]−1∇j(ψp) and control the step size through an iterative
one-dimensional minimization problem of the kind min g(α) = j (ψp + αdp) before the actualization
ψp+1 = ψp + αdp. One limitation of the Newton’s method is when the Hessian ∇2j(up) is not positive
definite. In these cases, the direction given by dp = −

[
∇2j(ψp)

]−1∇j(up) may not be a descent direction,
and the global convergence of the algorithm may not be guaranteed any more. Moreover, and above all, the
Hessian is usually very difficult to compute and highly time consuming. To overcome these difficulties, one
should prefer using one of the numerous quasi-Newton methods detailed afterwards.

5.3 Quasi-Newton methods

Quasi-Newtonmethods consist in generalizing the Newton’s recurrence formulation (32). Since the limitation
of the Newton’s method is the restriction of the Hessian∇2j(up) to be positive definite, the natural extension
consists in replacing the inverse of the Hessian by an approximation to a positive definite matrix denoted
Hp. Obviously, this matrix is modified at each step p. There is much flexibility in the choice for computing
the matrix Hp. In general, the condition given by (33) is imposed:

H
[
∇j(ψp)−∇j(ψp−1)

]
= ψp − ψp−1. (33)

Various corrections of the type
Hp+1 = Hp + Λp (34)

may be found in the literature [2]. Depending on whether∆p is of rank 1 or 2, we shall speak of a correction
of rank 1 or 2.

5.3.1 Rank 1 correction

The point is to choose a symmetric matrix H0 and to perform the corrections so that they preserve the
symmetry of the matrices Hp. The rank 1 correction matrix consists in choosing ∆p = αpvpvp⊤ where vp
is a vector and αp is a scalar such that, from a symetric matrix H0, the correction preserves the symetry of
matrices Hp. Denoting

δp = ψp+1 − ψp (35)
γp = ∇j(ψp+1)−∇j(ψp) (36)
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one chooses αp and vp such that Hp+1γp = δp, thus:[
Hp + αp(vpvpt)

]
γp = δp, (37)

and
γp⊤Hpγp + αp

(
γp⊤vp

)(
vp⊤γp

)
= γp⊤δp, (38)

thus
αp

(
vp⊤γp

)2
= γp⊤ (δp −Hpγp) . (39)

Using the identity

αp
(
vpvp⊤

)
=

(
αpvpvp⊤γp

) (
αpvpvp⊤γp

)⊤
αp

(
vp⊤γp

)2 , (40)

and using (37) and (38) to get

αpvpvp⊤γp = δp −Hpγp, (41)

αp
(
vp⊤γp

)2
= γp⊤ (δp −Hpγp) , (42)

one obtains the correction (of rank 1) of the inverse Hessian:

Hp+1 −Hp = αp
(
vpvp⊤

)
=

(δp −Hpγp) (δp −Hpγp)⊤

γp⊤ (δp −Hpγp)
. (43)

5.3.2 The rank 2 Davidon-Fletcher-Powell (DFP) algorithm

The Davidon-Fletcher-Powell algorithm (in short DFP) consists in modifying the inverse Hessian with the
correction formulation of rank 2:

Hp+1 = Hp +
δp(δp)⊤

(δp)⊤γp
− Hpγp(γp)⊤Hp

(γp)⊤Hγp
(44)

where we have defined above δp = ψp+1 − ψp and γp = ∇j(ψp+1)−∇j(ψp), and where the new point
ψp+1 is obtained from ψp through the displacement

dp = −Hp∇j(ψp). (45)

The global DFP method is presented in algorithm 4.

5.3.3 The rank 2 Broyden – Fletcher – Goldfarb – Shanno (BFGS) algorithm

The Broyden – Fletcher – Goldfarb – Shanno algorithm (in short BFGS) developped in 1969-1970 uses a
rank 2 correction matrix for the inverse Hessian that is derived from eq. (44). It can be shown [2] that the
vectors δp and γp can permute in eq. (44) and in the relationship Hp+1γp = δp. The correction eq. (44) can
thus also approximate the Hessian itself, and the correction for the inverse HessianHp+1 can thus be given
from Hp through the correction formulation:

Hp+1 = Hp +

[
1 +

γptHpγp

δptγp

]
δp(δp)t

(δp)tγp
− δpγptHp +Hpγpδpt

δptγp
. (47)

When applied to a non purely quadratic function, one has, as for the conjugate gradient method and
the DFP method, to carry out a periodic restart in order to ensure the convergence [4, 11]. It is known that
the BFGS algorithm is superior than the DFP algorithm is the sense that it is much less sensitive on the
line-search inaccuracy, allowing the use of economical inexact line-search algorithms [2].
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Algorithm 4: The Davidon – Fletcher – Powell (DFP) algorithm

1. Let p = 0, ψ0 be the starting point. Choose any positive definite matrixH0 (often the identity
matrix);

2. at step p, compute the displacement direction dp = −Hp∇j(ψp), and find ψp+1 at the minimum of
j(ψp + αdp) with α ≥ 0;

3. set δp = ψp+1 − ψp and compute γp = ∇j(ψp+1)−∇j(ψp) to actualize:

Hp+1 = Hp +
δp(δp)t

(δp)tγp
− Hpγp(γp)tHp

(γp)tHγp
; (46)

4. Stopping rule (see section 3.4). If satisfies: End, otherwise, set p← p+ 1 and return to step item 2.

Algorithm 5: The BFGS algorithm

1. Let p = 0, ψ0 be the starting point. Choose any positive definite matrixH0 (often the identity
matrix);

2. at step p, compute the displacement direction dp = −Hp∇j(ψp), and find ψp+1 at the minimum of
j(ψp + αdp) with α ≥ 0;

3. set δp = ψp+1 − ψp and compute γp = ∇j(ψp+1)−∇j(ψp) to actualize:

Hp+1 = Hp +

[
1 +

γptHpγp

δptγp

]
δp(δp)t

(δp)tγp
− δpγptHp +Hpγpδpt

δptγp
(48)

4. Stopping rule (see section 3.4). If satisfies: End, otherwise, set p← p+ 1 and return to step item 2.

5.3.4 Gauss–Newton

When the cost function is explicitly a square norm of the error between the prediction and the state, that is
of the form

j(ψ) := J (u) = ∥u− ud∥2X , (49)

then the Gauss–Newton method or some derivatives or it (e.g. Levenberg–Marquardt) may be interesting
to deal with, especially if the number of parameters is small. Before going deeper into the cost function
gradient computation (see section 6), defining u′(ψ; δψ) as the derivative of the state at the point ψ in the
direction δψ as:

u′(ψ; δψ) := lim
ϵ→0

u(ψ + ϵδψ)− u(ψ)
ϵ

, (50)

then the directional derivative of the cost function writes out as:

j′(ψ; δψ) =
(
u− ud, u′(ψ; δψ)

)
X , (51)

where j′(ψ; δψ) = (∇j(ψ), δψ). In the analogue way, the second derivative of j(ψ) at the point ψ in the
directions δψ and δϕ is given by:

j′′(ψ; δψ, δϕ) =
(
u− ud, u′′(ψ; δψ, δϕ)

)
X +

(
u′(ψ; δψ), u′(ψ; δϕ)

)
X . (52)
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Neglecting the second-order term (this is actually the Gauss–Newton approach), we have:

j′′(ψ; δψ, δϕ) ≈
(
u′(ψ; δψ), u′(ψ; δϕ)

)
X . (53)

In order to build up the gradient vector of cost function and the approximated Hessian matrix, one
has to choose the directions for the whole canonical basis of ψ. Doing so, one can use the so-called
sensititivity matrix S which gathers the derivatives of u in all directions δψi, i = 1, . . . ,dimψ, and the
product (u′(ψ; δψi), u′(ψ; δψj)) involved in (53) is the product of the so-called sensitivity matrix with its
transposed. The Newton relationship is thus approximated as:

StSδψk = −∇j(ψk). (54)

The matrix system StS is obviously symmetric and positive definite with a dominant diagonal yielding thus
to interesting features (Cholesky factorization, etc.). Though the Gauss–Newton system eq. (54) presents
inherent interesting features (it almost gives in one step the descent direction and the step size), the matrix
StS is likely to be ill-conditionned. One way to decrease significantly the ill-condition feature is to “damp”
the system, using: [

StS + ℓI
]
δψk = −∇j(ψk), (55)

or better: [
StS + ℓdiag(StS)

]
δψk = −∇j(ψk). (56)

Note that ℓ → 0 yields the Gauss–Newton algorithm while ℓ bigger gives an approximation of the
steepest descent gradient algorithm. In practice, the parameter ℓ may be adjusted at each iteration.

5.4 Elements of comparison between some presented methods

Some of the presented methods are below tested on the well-known Rosenbrock function:

f(x, y) = (x− α)2 + β(x2 − y)2. (57)

For the considered case, the chosen parameters are α = 1 and β = 100, so that the optimum is at (1, 1).
Figure 10a on page 22 presents the function. This function presents a long elongated valley where the
function gradient is very low. Next, the PSO algorithm is the one from [10].

The deterministic simplex method from the GSL library starting from the point x0 = −1, y0 = 1
needs 64 evaluations of the cost function. The stopping criterion is based on the simplex characteristic size
equal to 10−2. The PSO algorithm taken from [10] with 20 particles with 3 informed particles, ϕ = 4.14,
χ = 2

ϕ−2+
√
ϕ2−4ϕ

, λ1 = λ2 = 0.5χϕ. The stopping criterion is based on the cost function equal to 10−5.
With these parameters, around 6,000 evaluations of the cost function is needed for the minimization. For
the Steepest descent, the conjugate gradient and the BFGS algorithms, the stopping criterion is based either
on the gradient norm equal to 10−3, or on a maximum number of iterations equal to 10,000. For the steepest
descent method, the maximum of iteration criterion is achieved. For the conjugate gradient, and the BFGS
method, 49 and 11 iterations are needed, respectively.

To sum up about this numerical optimization test case in which we were searching the minimum of the
Rosenbrock function, we can give the following comments and conclusions:

• The PSO method, which is a stochastic zero-order method – as genetic algorithms are also – does
converge to the minimum, but at a huge expense. In fact, usually, such stochastic methods are even
able to find the minimum of non-convex functions, which is their most important advantage, but
anyway at the price of being very expensive.
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• When the function is likely to be convex (which is not the case of the Rosenbrock function), one
should prefer less expensive deterministic optimization algorithms. Among those, the simplex method
is also a gradient-free (zero-order optimizer) so it finds the minimum of the convex function at a more
moderate expense, because it is deterministic. But we are here – in this simple example – handling a
function of only two parameters, which is very few, and tens of function evaluations are necessary.
With more parameters, say hundreds or thousands (this is at least what one usually has in function
estimation), zero-order gradient-free are still too expensive and thus cannot be used in practice;
gradient-based optimizers should be prefered.

• When the function is likely to be convex, and when the cost function depends on some states – solution
of partial differential equations –, then the model itself is likely to be differentiated. In such cases,
gradient-based optimizers are to be chosen. Among those, with respect to the most basic steepest
descent algorithm, the numerical effort of implementing the conjugate gradient, or better the BFGS,
is highly recommended.

• The example presented here, on the only two-dimensional Rosenbrock function, has demonstrate this
result. Such conclusions are of course much solid when it comes to function estimation where higher
dimensions are encountered.

6 Cost function gradient

We recall here that the function to be minimized is the cost function J (u), expressed in terms of the state u,
but minimized with respect to the parameters ψ. We thus have the equality (by definition) between the
cost function and its reduced version: j(ψ) := J (u). The state u is related to the parameters ψ through
an operator (which may be linear, or not) that combines the partial differential equations along with the
boundary conditions, initial conditions, etc. This operator is denoted as S for the state problem. To be
concise, one writes down

S(u, ψ) = 0, (58)

where we have the mapping ψ 7→ u(ψ). Often, the space (and time) is discretized so that the state operator
S is approximated in some matrix formulation. In this case, we have R(u, ψ) = 0, with dimR = dimu.
Note that u involved in (58) is continuous while u involved inR(u, ψ) = 0 is likely to be already discretized
(using finite difference, finite elements, etc.). We now need the definition of the directional derivative of
j(ψ) in the direction δψ (see definition 6). Other kinds of derivatives can also be used, such as the Gâteaux
or Fréchet derivatives, see [1] for technical definitions.

Definition 6 (Directional derivative). Let a point ψ ∈ K and a direction ϕ ∈ K. One defines ℓ(t) := ψ + tϕ
and the function J (t) := j(ℓ(t)). The directional derivative of j at the point ψ in the direction ϕ is:

j′(ψ;ϕ) := J ′(0) = lim
t→0
t>0

j(ψ + tϕ)− j(ψ)
t

. (59)

It has been seen before (see eq. (51)) that we have the equality

j′(ψ; δψ) =
(
u− ud, u′(ψ; δψ)

)
X , (60)

and, because of linearity of both u′(ψ; δψ) and j′(ψ; δψ) in δψ:

j′(ψ; δψ) = (∇j(ψ), δψ)Z . (61)

where Z is most of the time chosen equal to Y but it can be chosen differently for regularization purposes.
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(a) 2–D Rosenbrock function.
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(b) PSO algorithm: ≈ 6,000 cost function evaluations.
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(c) Simplex algorithm: 64 cost function evaluations.
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(d) Steepest descent algorithm: more than 100 cost func-
tion evaluations.
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(e) Conjugate gradients descent algorithm: 45 cost func-
tion evaluations.
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(f) BFGS descent algorithm: 11 cost function evaluations.

Figure 10: Numerical comparison of optimizers on the 2-D Rosenbrock function.
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6.1 Finite difference

The finite difference approach consists in approaching the cost function gradient through a substraction
of the cost function with a perturbed cost function for the whole canonical base of ψ, that is δψ =
δψ1, δψ2, . . . , δψdimψ . For the ith component, we have:

(∇j(ψ))i = (∇j(ψ), δψi)Z ≈
j(ψ + ϵδψi)− j(ψ)

ϵ
. (62)

Usually, in order to perform the same relative perturbation on all components ψi, one rather uses ϵi ← ε|ψi|,
where the positive scalar ε is fixed. The very simple related algorithm is described in algorithm 6.

Algorithm 6: The finite difference algorithm to compute the gradient of the cost function
Set the length ε > 0;
At iteration p, compute the state u(ψp), compute j(ψp);
foreach i = 1, . . . ,dimψ do

Compute the cost j(ψp + ε|ψi|δψi);
Set the gradient (∇j(ψ))i ←

j(ψp + ε|ψi|δψi)− j(ψp)
ε|ψi|

end
Integrate the gradient within the optimization methods that do not rely on the sensitivities
(conjugate gradient or BFGS for instance among the presented methods)

In practice, the tuning parameter ε has to be chosen within a region where variables depend roughly
linearly on ε. Indeed for too small values, the round-off errors dominate while for too high values one gets a
nonlinear behavior. Even though the finite difference method is easy to implement, it has the disadvantage of
being highly CPU time consuming. Indeed, the method needs as many integrations of the model S(u, ψ) = 0
as the number of parameters, dimψ. The gradient computed this way can be integrated to the previously
presented optimization methods that do not rely on u′, such as the conjugate gradient methods, or better
the BFGS.

When performing the finite differenciation with respect to ψi, one also accesses the approximated
perturbed state u′(ψ; δψi). This way, one can use again the conjugate gradient methods or the BFGS method
for instance, but also the Gauss–Newton-type methods based on matrix inversion and which do rely on the
sensitivities u′(ψ; δψi), i = 1, . . . ,dimψ. Doing so, the related optimization is given in algorithm 7.

6.2 Forward differentiation

The forward differentiation approach consists in computing u′(ψ; δψi) differentiating the state equations
S(u, ψ) = 0, to get:.

S ′u(u, ψ)u′ + S ′ψ(u, ψ)δψ = 0. (63)

As in the previous section, the gradient computation needs one integration of eq. (63) per parameter ψi;
so one needs dimψ integrations in total to access the full gradient ∇j(ψ). However, in this case, eq. (63) is
linear, while eq. (58) was not linear.

As for the finite difference approach, one may use the sensitivities u′ and integrate them into the
Gauss–newton-type methods, or simply use the cost function gradient, and then use the methods that do
not rely on the sensitivities.

When compared to the finite difference approach, the forward difference method leads to exact cost
function gradient components. Moreover, though S is likely to be a nonlinear operator, the system given
by eq. (63) is linear, thus yielding to much less CPU time. Another singularity is that the discrete version
of S ′u(u, ψ), i.e. R′

u, is the tangent matrix that is to be used anyway for solving the “forward” problem
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Algorithm 7: The finite difference algorithm to compute the gradient of the cost function and the
sensitivities
Set the step ε > 0;
At iteration p, compute the state u(ψp), compute j(ψp);
foreach i = 1, . . . ,dimψ do

Compute the perturbed state u(ψp + ε|ψi|δψi) and the cost j(ψp + ε|ψi|δψi);
Set the state sensitivity u′(ψ; δψi)←

u(ψp + ε|ψi|δψi)− u(ψp)
ε|ψi|

;

Set the gradient (∇j, δψi) with either (u− ud, u′(ψ; δψi)) or as in previous algorithm with
j(ψp + ε|ψi|δψi)− j(ψp)

ε|ψi|
.

end
Integrate the gradient within the optimization methods that do not rely on the sensitivities
(conjugate gradient or BFGS among the presented methods) or within optimization methods that
do rely on the sensitivities (Gauss–Newton or Levenberg–Marquardt).

S(u, ψ) = 0. The computation of this linear tangent matrix is most often the task that takes the longer time
in solving S(u, ψ) = 0. The optimized procedure is thus the one given in algorithm 8.

Algorithm 8: The forward differentiation algorithm to compute the cost gradient and the sensi-
tivities
At iteration p, solve iteratively S(u, ψp) = 0, compute j(ψp) and save the discrete version of the
linear tangent operator S ′u(u, ψp);
foreach i = 1, . . . ,dimψ do

Solve S ′u(u, ψ)u′ + S ′ψ(u, ψp)δψi = 0;
Set (∇j, δψi)Z = (u− ud, u′(ψ; δψi)X ;

end
Integrate the gradient within the optimization methods that do not rely on the sensitivities
(conjugate gradient or BFGS among the presented methods) or within optimization methods that
do rely on the sensitivities (Gauss–Newton or Levenberg–Marquardt).

Note: the linear tangent matrix which is to be assembled for the solution of the “forward” model can
be re-used for all canonical components δψi.

Remark. Equation (63) is often called the sensitivity equation.

Example. Let us consider the unsteady heat conduction equation, with known heat capacity C , conductivity λ,
volume source term f , initial condition u0, and Dirichlet condition on a part of the boundary, e.g. u0 on ∂DD .
The unknown ψ is the flux ϕ on the rest of the boundary, i.e. on ∂DN = ∂D\∂DD .
The unperturbed and perturbed models are:

S(u, ψ) ≡


C ∂u
∂t −∇ · λ∇u = f in D

u(x, t = 0) = u0 in D
u(x, t) = u0 on ∂DD

−∇u(x, t) · n = ϕ on ∂DN

; S(u+, ψ+ϵδψ) ≡


C ∂u+

∂t −∇ · λ∇u+ = f in D
u+(x, t = 0) = u0 in D
u+(x, t) = u0 on ∂DD

−∇u+(x, t) · n = ϕ+ ϵδψ on ∂DN

(64)
Substracting the equations involved in these two models, dividing by ϵ, and searching the limit when ϵ→ 0
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gives:

lim
ϵ→0

S(u+, ψ + ϵδψ)− S(u, ψ)
ϵ

≡


limϵ→0C

∂ u+−u
ϵ
∂t −∇ · λ∇u+−u

ϵ = 0 in D
limϵ→0

u+−u
ϵ (x, t = 0) = 0 in D

limϵ→0
u+−u
ϵ (x, t) = 0 on ∂DD

limϵ→0−∇u+−u
ϵ (x, t) · n = δψ on ∂DN

(65)

that gives:

S ′u(u, ψ)u′ + S ′ψδψ ≡


C ∂u′

∂t −∇ · λ∇u′ = 0 in D
u′(x, t = 0) = 0 in D
u′(x, t) = 0 on ∂DD

−∇u′(x, t) · n = δψ on ∂DN

(66)

6.3 Adjoint state

In this section we present the use of an additional problem – the so-called adjoint-state problem – that gives
also the exact cost function gradient, but in a computational cheap way. We present one method based on the
identification procedure (section 6.3.1), and another one that uses the Lagrange function (section 6.3.2). For
the latter method, the model equation is treated as an equality constraint for the optimization. Both methods
can deal with either the continuous equations or the discrete ones. One has to keep in mind that when
the continuous method is used, all the obtained equations have later on to be discretized. Both strategies
are equivalent in usual, but if the cost is computed through the integration of some discretized equations,
then we consider that the discretized equations have to be differented (it is the so-called “discretize-then-
differentiate” method). The other way is to deal with the continuous equations, then discretize the state
model, etc. (it is the so-called “differentiate-then-discretize” method). Some examples of adjoint derivation
will be given in the last sections.

6.3.1 Identification method

In this first part, we derive the adjoint-state method using the identification method. From the definition of
the functional gradient, one writes the gradient:

(∇j, δψ)Z = j′(ψ; δψ) =
(
u− ud, u′(ψ; δψ)

)
X . (67)

One then introduces a new variable (the adjoint-state variable u∗) such that the gradient equation given
by eq. (67) also satisfies the “easier–to–compute”:

j′(ψ; δψ) =
(
S ′ψ(u, ψ)δψ, u∗

)
U . (68)

On the other hand, since we have the relationship S(u, ψ) = 0, then

S ′u(u, ψ)u′ + S ′ψ(u, ψ)δψ = 0 (69)

and thus, we have:
j′(ψ; δψ) = −

(
S′
u(u, ψ)u

′, u∗
)
U . (70)

Identifying eq. (67) and eq. (70), we obtain the adjoint-state problem that must satisfy the equality:

−
(
S ′u(u, ψ)u′, u∗

)
U =

(
u− ud, u′(ψ; δψ)

)
X . (71)

Next, if the adjoint problem given by eq. (71) is satisfied (it means that we accessed the adjoint state u∗),
then the cost function gradient is very simply given by eq. (68). We then use the inner product property
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(A u, v) = (u,A ∗v) where A ∗ is the transposed conjugate operator of A (adjoint) to modify the adjoint
equation given by eq. (71) to:

S∗(u, ψ)u∗ + (u− ud) = 0, (72)
where S∗ is the conjugate transposed of the linear tangent operator S ′u, i.e., we used:(

S ′u(u, ψ)u′, u∗
)
U =

(
S∗(u, ψ)u∗, u′

)
U + [· · · ] (73)

where the term [· · · ] may contain some additional terms coming from some integrations by parts. Figure 11
schematically represents the process of identification method.

j′(ψ; δψ)

(∇j, δψ)Z

we have

(
R′
ψ(u, ψ)δψ, u

∗
)
U

⇓
− (R′

u(u, ψ)u
′, u∗)U

we want

(u− ud, u′(ψ; δψ))X

we compute

the gradient

the adjoint

unused

Figure 11: Schematical representation of the adjoint-state method.

Remark. The inner product (v, w)U is performed on the whole domain of definition of u. For instance if
u ∈ L2(0, T ;L2(D)), then (v, w)U =

∫ T
0

∫
D vw dx dt.

Algorithm 9: The adjoint state problem to compute the cost function gradient with integration
within an optimization algorithm
At iteration p, solve iteratively S(u, ψ) = 0;
Compute j(ψp);
Save the solution u;
Compute the adjoint state problem S∗(u, ψ)u∗ + (u− ud) = 0;
Compute the gradient (∇j(ψ); δψ)Z =

(
S ′ψ(u, ψ)δψ, u∗

)
U
;

Integrate the gradient within the optimization methods that do not rely on the sensitivities
(conjugate gradient or BFGS among the presented methods)

6.3.2 Lagrange formulation

The use of a Lagrange formulation means that the state equations are taken as constraints in the optimization
problem. To do so, let us introduce the Lagrange function [12, 13]:

L (u, u∗, ψ) = J (u) + (S(u, ψ), u∗)U (74)
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The Lagrange function introduced in this section is a function of three variables, namely the state u ,
the parameter to be to be identified ψ, and the adjoint state variable u∗. This means that both variables
u and ψ are somehow considered to be independent, even though there exists, at least implicitly, the
relationship S(u, ψ) = 0 that maps ψ to u. Moreover, since u is the solution of the forward model, then the
Lagrange function L is always equal to the cost function J (u), and the constraints – which represent the
partial differential equations of the forward problem – are always satisfied. We now show that a necessary
condition for the set ψ to be solution of the optimization problem eq. (1) is that there exists a set (u, ψ) such
that (u, ψ, u∗) is a saddle point (stationary point) of L . Indeed, let us show that the necessary condition
j′(ψ; δψ) = 0, ∀δψ, is equivalent to:

∃ (u, u∗, ψ) |L ′
u (·) δw = 0; L ′

u∗ (·) δw = 0; L ′
ψ (·) δw = 0, (75)

for all directions δw taken in appropriate spaces (u′, δu∗ and δψ). First, since the state is satisfied, then:

L ′
u∗ = S(u, ψ) = 0.

Moreover, since we have also S ′u(u, ψ)u′ + S ′ψ(u, ψ)δψ = 0, we get:

L ′
ψ (·) δψ =

(
S ′ψ(u, ψ)δψ, u∗

)
U = −

(
S ′u(u, ψ)u′, u∗

)
U . (76)

In another hand, the differentiation of the Lagrange function with respect to the state gives:

L ′
u (·)u′ =

(
u− ud, u′

)
X +

(
S ′u(u, ψ)u′, u∗

)
U . (77)

So far, the choice for the adjoint variables u∗ has not been fixed yet. However, choosing the adjoint
variable such that L ′

u (·)u′ = 0 ∀u′ considerably simplifies the relationship between the differentiated
lagrangian with respect to ψ and the cost function gradient. One actually chooses u∗ such that it satisfies
the adjoint-state equation: (

S′
u(u, ψ)u

′, u∗
)
U +

(
u− ud, u′(ψ; δψ)

)
X = 0. (78)

This way we obtain the cost function gradient:

L ′
ψ (·) δψ =

(
u− ud, u′(ψ; δψ)

)
X = j′(ψ; δψ) = (∇j, δψ)Y (79)

The adjoint-state equation is thus:

S∗(u, ψ)u∗ + (u− ud) = 0, (80)

and the gradient is given by:
∇j =

(
S ′ψ(u, ψ), u∗

)
Y . (81)

Summarizing, the minimum of the cost function is to be found at the stationary point of the Lagrange
function eq. (74). When the adjoint-state equation eq. (80) is satisfied, then the components of the cost
function gradient are simply given through the inner product eq. (81).

6.3.3 Examples

In the examples presented below, we do not specify what the parameters are. We just give the form of the
adjoint-state problem related to the “forward” state problem form.
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Case of ODE Let us start with the case where the state model is simplified to a single linear continuous
ordinary differential equations integrated in time I = (0, tf ]. The forward problem thus writes:

S (u, ψ) = C u̇−B = 0 for t ∈ I
u = u0 for t = 0,

(82)

where C is an inertial scalar term and B contains the loadings. Injecting the differentiated time-dependent
relationship eq. (82) into the adjoint-state relationship eq. (78) gives:(

C u̇′, u∗
)
U +

(
u− ud, u′

)
X = 0

where the inner must be understood as (a, b)U =
∫
I abdt. One then integrates by part the first term to get:

−
(
u′,C u̇∗

)
U +

[
u′Cu∗

]tf
0
+
(
u− ud, u′

)
X = 0

Since there is no reason that the initial state depend on the parameters ψ (except if the initial state is
searched), then the derivatives u′ of u at initial time is zero. The adjoint-state problem is eventually:

−C u̇∗ + (u− ud) = 0 for t ∈ I
Cu∗ + (u− ud) = 0 for t = tf .

(83)

Remark. There is a minus sign just before the operator C involved in the first equation. At the same time, the
boundary-time condition is given at final time tf . Therefore, when considering these two points, there is no
way to solve the adjoint problem forwardly, i.e., from t = 0 to tf . The trick consists in introducing a new time
variable τ = tf − t (the dual time). Doing so, the initial condition is given at the initial time τ = 0, and the
time-dependent equation eq. (83) is solved in the forward way in the dual time variable τ – which corresponds
to the backward way in the primal time variable t.

Remark. The loading component (u−ud) involved in eq. (83) is non-zero only at times where the cost function
j is to be integrated, i.e., in accordance with the definition of the X -norm.

Remark. Inherently, the adjoint-state problem is linear: even though the forward problem is likely to be
nonlinear (it was not the case in the considered exemple), the adjoint-state problem is still linear since the
operators do not depend on the adjoint-state variables. An equivalent remark was given for the forward
differentiation method which used the linear tangent operator.

Case of elliptic PDE This second example concerns the case where the state model is simplified to a
diffusive-type continuous partial differential equation independent of time:

S (u, ψ) = −∇ · λ∇u− f = 0 in D. (84)

Injecting the differentiated space-dependent relation eq. (84) into the adjoint eq. (78) gives:(
−λ∆u′, u∗

)
U +

(
u− ud, u′

)
X = 0.

with (a, b)U =
∫
D ab dx. Using twice the Green theorem on the first integral, one gets:(

u′,−λ∆u∗
)
U + (. . .)∂U +

(
u− ud, u′

)
X = 0. (85)

Owing to be verified for all directional derivatives u′, the general adjoint-state problem becomes:

−λ∆∇u∗ + (u− ud) = 0. (86)

Remark. The second term, (. . .)∂U comes in eq. (85) because of the integration by parts. These terms depend
on the boundary conditions associated to eq. (84) that formed the complete forward model. Taking into account
of these terms will also complete the definition of the adjoint-state model, yielding the boundary conditions
associated to the adjoint-state equation eq. (86).
Remark. The loading component u− ud involved in the space-dependent equation is non-zero only at the
selected locations where the cost function j is to be integrated, i.e., in accordance with the definition of the
X -norm.
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Case of parabolic PDE The discretization of the space and time dependent diffusive model yields to the
so-called parabolic problem. It is somehow the union between both just above presented cases:

S (u, ψ) = C u̇−∆u−B = 0 for t ∈ I, x ∈ D
u = u0 for t = 0,

(87)

with associated boundary conditions. Injecting the differentiated operators involved in eq. (87) into the
adjoint eq. (78) gives: (

C u̇′, ψ
)
U −

(
∆u′, ψ

)
U +

(
u− ud, u′

)
X = 0

with (a, b)U =
∫
T
∫
D abdx dt. Transposing all operators through integration by parts (once in time and

twice space) gives:

−
(
u′,C u̇∗

)
U +

[(
u′,Cu∗

)
D
]T
0
−
∫
I
[...]∂D dt+

(
u− ud, u′(ψ; δψ)

)
X = 0

Eventually, the adjoint problem becomes:

−C u̇∗ −∆u∗ + J ′(u) = 0 for t ∈ I
u∗ = 0 for t = tf .

(88)

along with associated spatial boundary conditions.

Remark. A more detailed example given later on in section 9.2 provides the full calculation of the boundary
condition for a similar case.

6.4 The global optimization algorithm

The general algorithm is given in algorithm 10. The global procedure described in this algorithm is run
until (at least) one of the stopping criteria presented in section 2.5 is reached.
Algorithm 10: The global optimization algorithm

1. Integrate the cost function value through integration of the forward (maybe nonlinear) problem;
Store all state variables to reconstruct the tangent matrix (or store the tangent matrix);

2. Integrate the backward linear adjoint-state problem, all matrices being possibly stored or recomputed
from stored state variables

3. Compute the cost function gradient;
Compute the direction of descent

4. Solve the line-search algorithm

6.5 Continuous gradient and discretized continuous gradient

In previous examples as well as in the derivation of both forward differentiated and adjoint-state models, all
derivations were performed on continuous equations. To be solved, such equations will have later on to be
discretized, for example with finite elements or any other method. This ordinary process yields the so-called
continuous gradient. For example, refering to fig. 12, the continuous state equation for the continuous
variable u is first differentiated, yielding a continuous differentiated state u′, solution of a continuous
differentiated partial differential equation. Then, after discretization (which is an approximation process),
one has the discretized differentiated state (u′)h, such that the discretized continuous gradient j′|DCG can
be computed.
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The other way round consists in first discretizing, then differentiating. All partial differential equations
are discretized, so that the forward state is uh, and the corresponding cost function, based on this approxi-
mated state is jh. This approximated model can then be differentiated so that the derivative we get is (uh)′,
which gives the discrete gradient j′|DG.

Both gradients j′|DCG and j′|DG are different because the approximations are not performed on the same
operators. The cost function is always jh because a numerical solver is used to compute uh. The minimum
of jh corresponds to j′|DG = 0 but at this minimum, it is likely that we have j′|DCG ̸= 0. This means that the
discrete gradient is compatible with the cost function which is calculated while the discretized continuous
gradient is not. However, one has to keep in mind that errors coming from discretization are likely to be
negligible when compared to measurement errors of the inverse problem. As such, the computation of
discretized continuous gradients is – according to the author – the better strategy because all derivations are
performed on partial differential equations, and differentiated models are also partial differential equation
very similar to model equation, and such similarity is the easiest way to go: similar equation, re-use the
forward solver for the differentiated model or for the adjoint-state, etc.

u 1. discretize uh → jh

2. differentiate

(uh)
′ 7→ j′|DG

1. differentiate

u′ 2. discretize (u′)h 7→ j′|DCG

Figure 12: Discrete gradient vs discretized continuous gradient

7 Elements of comparison

We give in this section some elements of comparison between the previously presented optimization
algorithms and between the different gradient computation strategies.

7.1 Convergence speed

The optimization algorithms presented in section 5 yield to a series {ψk}k≥1 that converges to ψ̄. Hereafter
are some some convergence rate definitions [3, 2].

Definition 7. The convergence rate of the series {ψk}k≥1 is said to be linear if

∥ψk+1 − ψk∥
∥ψk − ψ̄∥

≤ τ, τ ∈ (0, 1). (89)

This means that the distance to the solution ψ̄ decreases at each iteration by at least the constant factor τ .

Definition 8. The convergence rate of the series {ψk}k≥1 is said to be superlinear in n steps if

lim
k→∞

∥ψk+n − ψk∥
∥ψk − ψ̄∥

= 0. (90)
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Definition 9. The convergence rate of the series {ψk}k≥1 is said to be quadratic if

∥ψk+1 − ψk∥
∥ψk − ψ̄∥2

≤ τ, τ > 0. (91)

Quasi–Newtonmethods usually converge super-linearly and theNewtonmethod converges quadratically.
The steepest descent method converge linearly. Moreover, for ill-posed problems, this method may converge
linearly with a constant τ close to 1. Next, the conjugate-gradient method converges superlinearly in n
steps to the optimum [2].

Thus the quasi-Newton methods convergence-rate is much higher than the conjugate gradient methods
convergence-rate which need approximately n times more steps (n times more line-search) at the same
convergence behavior. However, for the quasi-Newton method, the memory place is proportionnal to n2.

7.2 Gradient computation cost

Let S(u, ψ) = 0 the state problem that mapsψ 7→ u,R being possibly nonlinear (for highlighting differences
between the distinct strategies), and dimψ the number of parameters to be evaluated. We compare the
number of times the model S , the differentiated model and/or the adjoint-state model are computed to
access the full gradient of the cost function.

1. Finite difference method:
(dimψ + 1) nonlinear computation of S(u, ψ) = 0.

2. Forward differentiation method:
1 nonlinear computation of S(u, ψ) = 0,
dimψ linear computation of S ′u(u, ψ)u′ + S ′ψ(u, ψ)δψ = 0.

3. Adjoint state method:
1 nonlinear computation of S(u, ψ) = 0,
1 linear computation of S∗(u, ψ)u∗ + u− ud = 0.

Thus, the finite difference method is very time consuming, though it is easy to use. Next, comparing
the two latter methods, the operator involved in the adjoint-state method is almost the same as the one
involved in the forward differentiation method, though the adjoint-state method yields to higher algorithmic
complexity (backward time integration, memory, etc.). When dimψ is high (even if dimψ is bigger than
say 100), the use of the direct differentiation method becomes cumbersome and computationally expensive;
the adjoint-state method is, in fact, the only acceptable method.

7.3 Gradient computation needs

We recall in the following table the way (the required needed steps) one computes the cost function gradient.

Steepest, conjugate-gradients, Newton Gauss–Newton,
BFGS, DFP, . . . Levenberg–Marquardt, . . .
u← S(u, ψ) = 0 u← S(u, ψ) = 0 u← S(u, ψ) = 0
j ← u j ← u j ← u

∇j ←


Forward diff.
or
Adjoint state

∇j ←


Forward diff.
or
Adjoint state

∇j ← StS ← S ← u′ (Forward diff.)

∇2j (complicated)
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8 Regularization

When the inverse problem is ill-posed (which is likely to be the case in real cases, especially when the
control space dimension is big), regularization is needed and sometimes compulsary. Regarding function
estimation, for instance space-dependent physical properties or sources, specific regularization strategies
different from the ones used in parametric estimation are required. Regularization may be viewed as adding
a priori information, but other means can also be used, including (see [14] for elements of comparison on
applications of optical tomography):

• choose of specific X -norm for the cost function expression according to the prior knowledge of the
unknown (use for instance the L1(D)-norm instead of the ordinary L2(D)-norm).

• add prior information through Tikhonov penalization, If some Tikhonov-type regularization terms
are added to the cost function, the cost function jϵ(ψ) := J (u)+ ϵJ +(ψ) is the one to be minimized,
with:

J + := ∥Dψ∥2Y (92)

where D is often a differential operator acting on the function ψ and ∥·∥Y is another norm to be
defined according to the chosen control space.

• choose an appropriate Z-norm for extracting the cost function gradient. The use of specific inner
products when extracting the cost function gradient is a recent regularization tool. In order to present
this regularization strategy, let us work on the example where a space-dependent physical property
in D is to be estimated. In such a case it is usual to use the ordinary L2(D)-inner product, i.e., one
uses j′(ψ;ϕ) = (∇j, ϕ)L2(D); this gives the ordinary L2(D) cost function gradient, denoted here as
∇L2j(ψ). Besides, the Sobolev inner product can give much better (smoother) results when the noise
has propagated to the adjoint-state variable and then to the cost function gradient. Even better, the
weighted version has recently proven to give excellent results. This one defined as:

(u, v)Z = (u, v)H1(ℓ)(D) :=

∫
D

(
uv + ℓ2∇u · ∇v

)
dx (93)

is used in the cost function gradient extraction relationship j′(ψ;ϕ) = (∇j, ϕ)H1(ℓ)(D) in order to
compute the weighted Sobolev cost function gradient ∇H1(ℓ)

j(ψ).

• choose an appropriate functional space for the control space parameterization. In practice, the control
space must be approximated in order to be finite. Often, the finite element method is used so that
one searches ψ that belongs to a finite dimensional subspace, say V . Let us consider a triangulation
M of the computational domain D, and let us note np the number of vertices inM. It has been
shown, through numerical means on a specific OT problem that, among the large number of tested
possibilities, the piecewise linear continuous functions (dimψ = np) are the most appropriate for the
estimation of space-dependent functions.

• choose an appropriate dimension dimψ of the control space parameterization. Usually the finite
element space used to solve the forward model (58) has to be fine enough to ensure that numerical
errors stay small enough. Most often, the triangulation chosen for the control space is the one chosen
for the state. It has been shown again, through numerical means, that both the convergence and the
quality of the reconstructions are much improved when dimψ is lowered, up to a certain limit, at
least for quasi-Newton algorithms.

• Multi-scales approaches is also a fabulous opportunity to regularize solutions and in the same time
accelerate the convergence and avoid converging to local minima. Coupled with wavelets on one
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side, and the BFGS in the other side, this method relies on a reformulation of the original inverse
problem into a sequence of sub-inverse problems of different scales using wavelet transform, from
the largest scale to the smallest one. Successful applications of this method include the estimation of
space-dependent absorption and scattering coefficients in optical tomography [15].

9 Examples

9.1 Parametric conductivities in a transient heat conduction problem

This first simple example deals with the estimation of uniform conductivity coefficients in different sub-
domains. Heat transfer is considered. Initial temperature is assumed to be known and equal to T0. T0 is
also the Dirichlet temperature for positive time on the whole boundary ∂D. The domain has the shape
of a head with two eyes, one nose and one mouth. The geometry being known, as well as the initial and
boundary conditions, the heat capacity and the time-dependent heat source, the inverse heat conduction
problem consists in estimating, through infra-red like temperature measurements on D × I , the set of
conductivities λi, i = 1, · · · , 4 (1, 2, 3, 4 corresponding to the left eye, the right eye, the noze and the mouth,
respectively). Noisy (1 % white noise) synthetic data was generated with conductivities equal to 20, 30, 40
and 50, respectively. Guessed conductivities were all equal to 10.

If optimization methods based on sensitivities are chosen, one will have to compute, sucessively:

ρC
∂T ′

∂t
−∇ ·

(
λT ′) = ∇ · (λ′∇T ) (94)

with null initial and boundary conditions. In the sensitivity model, the direction λ′ equals 0 or 1 depending
on the location for the four considered sensitivity problems. Corresponding sensitivities are presented
in fig. 13.

With so few parameters to identify (4 in total in this example), it is not really necessary to use the
adjoint-state method to compute the cost gradient. We however give in fig. 13 the evolution of the adjoint-
state variable which is solved backwardly from final time to initial time, while integrating along time the
errors integrated within the cost function (this first application was actually chosen for this purposes : small
number of unknowns, and possible visualization).

From the knowledge of these temperature sensitivities, one can compute the sensitivity matrix S such
that si×k,j gathers for instance the sensitivity of temperature on the (finite element) node i at time k
with respect to λj . In the same manner, the error vector ei×k gathers the error (difference between the
predictions and the measurements) at the (FE) node i, and at time tk. Consequently, the cost gradient is
computed straightforwardly through ∇j = S⊤e, and the Gauss–Newton algorithm can be used without
any regularization because this parametric problem is not ill-posed. Very few Gauss–Newton iterations are
needed to converge as can be seen in fig. 14.

9.2 Space-dependent convection coefficient in a transient heat conduction problem

In this section, we consider an application of a nonlinear transient heat transfer inverse problem arising in
thermal treatment for instance. D being an open bounded set of R2 and I =]0, tf ], the modeling equation
in D × I is

C
∂T

∂t
−∇ · (λ∇T ) = f for (x, t) ∈ D × I (95)
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Figure 14: Evolution of the parameters and of the cost function with respect to the G-N iterations.

where the temperature-dependent physical properties are considered. We also consider the following initial
and boundary conditions with ∂D1 ⊕ ∂D3 ⊕ ∂D3 forming a partition of ∂D:

T = T0 at t = 0
−λ∇T · n = h (T − T∞) for x ∈ ∂D1

∇T · n = 0 for x ∈ ∂D2

−λ∇T · n = εσ
(
T 4 − T 4

∞
)

for x ∈ ∂D3

(96)

The estimation of the heat transfer function h(x, t), x ∈ ∂D1, t ∈]0, tf ] is performed through the
minimization of the cost function:

j(h) := J (T ) =
∫ tf

0

N∑
j=1

(T (xj , t)− Td(xj , t))2dt (97)

where T (xj , t) and Td(xj , t) represent respectively the predicted and measured temperatures at N various
locations x := (rj , zj) in the material. For such application, the minimization can be carried out by using
conjugate gradients or better quasi-Newton methods. In any case, the optimization is based on the gradient
computation.

The cost function gradient is obtained for all values x ∈ ∂D1, t ∈]0, tf ] by the following relationship:

∇j(h) = T ∗ × (T − T∞) (98)

where T ∗ is the solution of the adjoint problem:

−C∂T
∗

∂t
−∇ · (λ∇T ∗) =

∑
j

(T − Td)× δ (x− xj) (99)

with the condition T ∗ = 0 at final time tf and the conditions on the boundaries:

−λ∇T ∗ · n = hT ∗ for x ∈ ∂D1

∇T ∗ · n = 0 for x ∈ ∂D2

−λ∇T ∗ · n = 4εσT 3T ∗ for x ∈ ∂D3

(100)

Remark. The following notations are used: U := L2(I;L2(D)), Ui := L2(I;L2(∂Di)), ∀i = 1, 2, 3 and
U∗ := L2(I;L2(∪i∂Di)).
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Proof. The derivative of the state T at the point h and towards δh, T ′(h; δh) is defined by:
C ∂T ′

∂t −∇ · λ∇T ′ = 0 x ∈ D, t ∈ I
T ′ = 0 x ∈ D, t = 0
λ∇T ′ · n+ hT ′ + δh(T − T∞) = 0 x ∈ ∂D1, t ∈ I
∇T ′ · n = 0 x ∈ ∂D2, t ∈ I
λ∇T ′ · n+ 4εσT 3T ′ = 0 x ∈ ∂D3, t ∈ I

(101)

The Lagrange function is formally defined as:

L (T, {T ∗, γ, ξ,ϖ}, h) = J (T ) +
(
C ∂T

∂t −∇ · (λ∇T )− f, T ∗)
U

+(λ∇T · n+ h (T − T∞) , γ)U1

+(∇T · n, ξ)U2

+
(
λ∇T · n+ εσ

(
T 4 − T 4

∞
)
, ϖ

)
U3

(102)

The differentiated Lagrange function with respect to h in the direction δh is:

(L ′
h(·), δh) = (T − Td, T ′)X

+
(
C ∂(T ′)

∂t −∇ · λ∇T ′, T ∗
)
U

+(λ∇T ′) · n+ hT ′ + δh(T − T∞), γ)U1

+(∇T ′ · n, ξ)U2

+
(
λ∇T ′ · n+ 4εσT 3T ′, ϖ

)
U3

(103)

We then use the following integrations by parts to express some particular terms:(
C ∂T ′

∂t , T
∗
)
U
=

(
T ′,−C ∂T ∗

∂t

)
U + (CT ′, T ∗)D (t = tf )− (CT ′, T ∗)D (t = 0)

(λ∆T ′, T ∗)U = (λ∆T ∗, T ′)U + (λ∇T ∗ · n, T ′)U∗
− (λT ∗,∇T ′ · n)U∗

(104)

We bring together similar terms to get:

(L ′
h(T, {T ∗, γ, ξ,ϖ}, h), δh) = (T − Td, T ′)X + (δh (T − T∞) , γ)U1

+
(
−C ∂T ∗

∂t − λ∆T ∗, T ′)
U + (CT ∗, T ′)D (t = tf )

+ (λ∇T ∗ · n, T ′)U∗
− (λT ∗,∇T ′ · n)U∗

+(λ∇T ′) · n+ hT ′, γ)U1
+ (∇T ′ · n, ξ)U2

+
(
λ∇T ′ · n+ 4εσT 3T ′, ϖ

)
U3

(105)

Choosing γ = T ∗ on ∂D1, ξ = λT ∗ on ∂D2 and ϖ = T ∗ on ∂D3, the adjoint problem can eventually
be written as: 

−C ∂T ∗

∂t − λ∆T ∗ = −∑
j(T − Td)× δ(x− xj) x ∈ D, t ∈ I

T ∗ = 0 x ∈ D, t = tf
−λ∇T ∗ · n = hT ∗ x ∈ ∂D1, t ∈ I
∇T ∗ · n = 0 x ∈ ∂D2, t ∈ I

−λ∇T ∗ · n = 4ϵσT 3T ∗ x ∈ ∂D3, t ∈ I

(106)

and the cost gradient is written as:
∇j = − (T − T∞)T ∗. (107)

From the integration of the adjoint-state, the cost function gradient is computed. From the knowledge
of the cost function gradient, the direction of descent is computed, for instance with the conjugate gradient
method, or with any other faster method if a fine parameterization for h is required. It is also to be pointed
out that the temperature state being varying almost linearly with the convection property, the line-search
equation can be for instance given by the solution of (14).
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9.3 Adjoint RTE

This last example aims at developping adjoint-state equation of the radiative transfer equation (RTE). The
main objective behind this developments is the solution of optical tomography problems, in which the
problem is the reconstruction of radiative properties (κ(x) and σ(x)) within the medium, input intensity
being prescribed on the boundary, and measurements being also performed on boundaries. Some of the
difficulties for solving such problems include:

i) the dimension of the discrete control space is likely to be high, in 2-D and especially in 3-D. This means
that efficient optimizers such as the ones based on the gradient-type BFGS are the only ones to be
used. Others such as the conjugate gradients for instance may be too slow and gradient-free are not
appropriate at all;

ii) the RTE is integro-differential, so appropriate inner products must be used through all the derivations.
Therefore, mathematical developments for the derivation of the adjoint-state as well as for the cost
function gradient must be undertaken very carefully. In the same spirit, numerical algorithm and
implementation must be undertaken very carefully;

iii) the state being non linear with respect to the physical properties and overall the nonlinear inverse
problem being ill-posed, several regularization strategies must be used and combined together.

Let the radiative transfer equation (RTE) being written as, ∀ (x, s) ∈ Dπ:

(s · ∇+ κ+ σ) I(x, s) = σ

∮
4π
I(x, s)Φ(s, s′) dω(s′), (108)

where s is the considered direction of propagation,Φ(s, s′) is the phase function representing the probability
that a photon arriving from the direction s′ is scattered to the direction s, and κ and σ are the absorption
and diffusion space-dependent functions, respectively. On a part of the boundary, there is a prescribed
Dirichlet condition:

I(x, s) = Ī for x ∈ ∂Ds and s · n < 0. (109)
Also, let a cost function measuring the misfit between predictions and measurements somewhere on the

boundary, i.e., ∂Ωd ⊂ ∂Ω, the misfit being expressed (it is actually a norm) in terms of the radiance,

e = I(x, sd)− Id(x, sd) for x ∈ ∂Dd and sd · n > 0. (110)

In order to make the derivation of the adjoint-state, the tools described in previous sections are used.
Additionally, the state variable I being defined in (x, s) ∈ D × 4π, the inner product U defined in eq. (68)
and in following equations is:

(u, v)U =

∫
4π

∫
D
uv dxds. (111)

After integration by parts and some – technical – manipulations in the inner products, one finds the
adjoint RTE to be:

(−s · ∇+ κ+ σ) I∗(x, s) = σ

∮
4π
I∗(x, s)Φ(s, s′) dω(s′) (112)

coupled with the Dirichlet boundary condition:

I∗(x,−sd) = (sd · n)−1 (I − Id) (x,−sd) for x ∈ ∂Dd and sd · n > 0 (113)

The adjoint-state being computed, the cost function gradient, here as an implicit function of x can be
computed:

∇κj(x) =
∮
4π
I(x, s)I∗(x, s) ds

∇σj(x) =
∮
4π

(
I(x, s)I∗(x, s)−

∮
4π
I(x, s′)Φ(s, s′) ds′ I∗(x, s)

)
ds

(114)
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This continuous version of the components of the cost function gradient is then projected onto the basis
used to parameterize the control-space. A very detailed derivation of the adjoint RTE can be found in [16],
for instance.

10 Concluding remarks

This lecture was devoted to the presentation of mathematical and numerical algorithms used in the estimation
of functions while solving inverse heat transfer problems. Contrarily to parameter estimation problem,
the dimension of the “control space” is likely to be big after the process of parameterization, this being an
essential issue and reason of why using efficient optimization algorithms. Among those efficient algorithms,
the ones based on the cost function gradient as well as on adjoint-states are of first importance. Functions
to be estimated usually contain several regularity requirements and thus, the use of efficient regularization
tools are compulsory to cope with the ill-posed character of the inverse problem.
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Lecture 9: The Use of Techniques within the Bayesian 
Framework of Statistics for the Solution of 
Inverse Problems 
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  Cx. Postal: 68503, Rio de Janeiro, RJ, 21941-972, Brazil 
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Abstract. In this lecture, techniques for the solution of inverse problems through 
statistical inference on the posterior probability density are presented. Such 
density is obtained through Bayes' theorem and is proportional to the product of 
the likelihood function, which models the measurement errors, by the prior 
distribution, which models the information known about the parameters before 
the experimental data is available. The focus of this lecture is on Markov Chain 
Monte Carlo (MCMC) methods. Basic concepts, as well as practical issues 
regarding the implementation of MCMC methods, are presented. The 
Metropolis-Hastings algorithm, as well as its alternative version that samples 
the parameters by blocks, are described in detail. Monte Carlo methods usually 
involve large computational times. The Approximation Error Model approach 
and the Delayed Acceptance Metropolis-Hastings algorithm are thus presented 
for computational speed up.    

 
 
List of acronyms: 
 

• AEM: Approximation Error Model 

• DAMH: Delayed Acceptance Metropolis-Hastings  

• MAP: Maximum a Posteriori 

• MCMC: Markov Chain Monte Carlo 

• MH: Metropolis-Hastings 

• ML: Maximum Likelihood 
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1. Introduction 
 
The term Bayesian is commonly used to refer to techniques for the solution of inverse problems 
that fall within the framework of statistics developed by the Presbyterian minister Rev. Thomas 

Bayes ( 1702 - † 1761) [1]. Such framework was actually established after Bayes' death, 

when his friend, Richard Price, published Bayes' famous paper, which dealt with the following 
problem: "Given the number of times in which an unknown event has happened and failed: 
Required the chance that the probability of its happening in a single trial lies somewhere 
between two degrees of probability that can be named."[2]. On the other hand, it is attributed 
to Laplace the mathematical formulation that is known today as Bayes' theorem [3].  
 
The term Bayesian was first used by R. A. Fisher, but in a pejorative context. Although born 
more than 120 years after the death of Bayes, Fisher was Bayes biggest intellectual rival [3]. 
The major issue by Fisher against Bayes and Laplace was that they used the concept of a 
prior probability, which represents the information about an unknown quantity before the 
measured data is available [3]. Fisher's theory relies solely on the measured data and on 
modelling of their associated uncertainty, aiming at unbiased inference and/or decision; 
therefore, it is usually referred to as the frequentist framework for statistics [1,3,4]. On the other 
hand, within the Bayesian framework credit is also given to previous information, in addition to 
that given to the measured data. Such previous information can even be qualitative, but needs 
to be represented in terms of a probability distribution function, and regretfully induces bias in 
the results [1,3,4]. Nevertheless, the use of prior information in the Bayesian framework does 
not mean that it completely overtakes the information provided by the measured data, unless 
the last one is too uncertain to be really taken into account. Interestingly, one may also argue 
that life is Bayesian: think about life as a sequential process and notice that everyday our past 
beliefs are combined with new observable data, in order to provide a better understanding 
about different matters of our interest, like the faster way to go to work, people, natural 
phenomena, industrial processes (and their effects on nature, like climate change), etc. 
 
Although not always considered in such a way, the solution of inverse problems can be 
appropriately formulated in terms of statistical inference [5]. Statistical inference refers to the 
process of drawing conclusions or making predictions based on limited information, beyond 
the immediate data that is available [4]. Note that this is exactly what is aimed with the solution 
of inverse problems, which can be broadly defined as those dealing with the estimation of 
unknown quantities appearing in mathematical models, by using measurements of some of 
their dependent variables (observable response of the problem) and their computational 
solution (estimated response of the problem) [5-27].  
 
There are many techniques for the solution of inverse problems, but the most general ones 
are usually related to the minimization of an objective function that involves the difference 
between measured and estimated responses of a problem [5-27]. If the objective function is 
derived based on statistical hypotheses for the measurement errors and for the unknown 
parameters/functions, the minimization procedure can be related to statistical inference, thus 
resulting in point estimates for the unknowns that allow for estimations of their associated 
uncertainties [5,8]. Unfortunately, such is generally not the case, in special when the objective 
function is penalized with regularization terms.  
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The solution of inverse problems within the Bayesian framework of statistics is recast in the 
form of inference on the so-called posterior probability density, which is the model for the 
conditional probability distribution of the unknown parameters given the measurements. The 
measurement model incorporating the related uncertainties is called the likelihood, that is, the 
conditional probability of the measurements given the unknown parameters. The model for the 
unknowns that reflects all the uncertainty of the parameters without the information conveyed 
by the measurements, is called the prior distribution [5,8,20,22,25-29]. The prior distribution is 
combined with the likelihood to form the posterior distribution by using Bayes' theorem 
[5,8,20,22,25-29].  
 
The objective of this text is to introduce some basic concepts regarding the solution of inverse 
heat transfer problems within the Bayesian framework of statistics. Emphasis is given to the 
use of Markov Chain Monte Carlo (MCMC) methods [1,4,5,20,22,25-29]. Monte Carlo methods 
are also designated as stochastic simulation techniques, since values simulated (sampled) 
from the distribution of interest, which in general is not completely known, are used for the 
computation of its statistics [28]. Simulation techniques rely on probabilistic results, such as 
the law of large numbers and the central limit theorem, which ensure that the approximate 
statistics tend to the actual ones as the number of simulations increase [28].    
 
This text is not aimed at a literature review about the subject, which would certainly include a 
very large number of works ranging from statistical, mathematical and computational aspects, 
to practical engineering applications. Indeed, an analysis of recent conferences on inverse 
problems clearly shows a trend of increasing number of papers that make use of solution 
techniques within the Bayesian framework of statistics, as faster computers become available. 
This text also does not cover Bayesian filters for the solution of state estimation problems.  
 
It is the author’s opinion that the most complete source for the solution of inverse problems 
within the Bayesian framework of statistics is the book by Kaipio and Somersalo [5]. The reader 
is referred to the book by Gamerman and Lopes [28] and to the book edited by Brooks et al. 
[29] for deeper details about Markov Chain Monte Carlo methods. Fundamental material on 
Bayesian statistics can be found in the books by Lee [1] and Winkler [4]. A very didactical 
series of videos presenting Monte Carlo Markov Chain methods can be found at 
https://www.youtube.com/watch?v=12eZWG0Z5gY.  Two interesting books, with historical 
aspects and practical applications of Bayesian statistics in layman’s terms, include references 
[3] and [30]. It is highly recommended that the reader consults the texts of Tutorials 9 and 14 
of this METTI School, for the implementation and computational speed-up of Markov Chain 
Monte Carlo methods.    
 
                                 
2. General Considerations 
 
Consider the mathematical formulation of a heat transfer problem, which, for instance, can be 
linear or non-linear, one or multi-dimensional, involve one single or coupled heat transfer 
modes, etc.  We denote the vector of parameters appearing in such formulation as: 

 

 1 2, ,...,T

NP P P=P     (1) 
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where N is the number of parameters. These parameters can possibly be thermal conductivity 

components, heat transfer coefficients, heat sources, boundary heat fluxes, etc. They can 
represent constant values of such quantities, or parameters in the representation of a function 
in terms of known basis functions. For example, we can consider a transient heat source term 

gp(t) parameterized as follows: 

 

1

( ) ( )
N

p j j

j

g t P C t
=

=      (2.a) 

 

where ( )jC t , j = 1,…,N, are linearly-independent basis functions that generate the space of 

the projected function gp(t) onto a space of finite dimension N. Note that ( )jC t  can also be 

functions with local support, such as,  
 

1 1
1 , for

( ) 2 2

0 , elsewhere

j j j j

j j
j

t t t t
t t t

C t
− +− −

−   +
= 




       (2.b) 

 

With the basis functions given by Eq. (2.b), each parameter jP  represents the local value of 

the function in the time interval 
1 1

2 2

j j j j

j j

t t t t
t t t

− +− −
−   + , that is, ( )p j jg t P=  as illustrated 

by Figure 1. 
 

 
Figure 1. Parameters representing local values of a function that varies in time. 

 
Consider also that transient measurements are available regarding the heat transfer processes 
being mathematically formulated. The vector containing the measurements is written as:  
 

 ( )1 2, , ... ,T

IY Y Y=Y
    

(3.a) 

where iY contains the data of M sensors at time ti, i = 1, …, I, that is,  
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( )1 2, , ... ,i i i iMY Y Y Y=

 
for  i=1,…,I   (3.b) 

 

Therefore, we have D M I=  measurements in total. Note that, in practice, the measured data 

are not limited to temperatures, but could also include heat fluxes, radiation intensities, etc.  
 
Throughout this tutorial, the measurement errors, ε , are assumed to be additive, that is, 

 
 ( )= +Y Τ P ε      (4) 

 

where T(P) is a highly accurate computational solution of the mathematical formulation of the 

problem under analysis, obtained with the vector of parameters P, that is, 

 

1 2( ) [ ( ) , ( ) , , ( ) ]T

IT T T=T P P P P
   

(5.a) 

where 
 

1 2( ) [ ( ) , ( ) , , ( )]i i i iMT T T T=P P P P
    

for i=1,…, I     (5.b)  

 

The mathematical formulation in T(P) is supposed to represent the problem of interest, that is, 

the experimental data Y, with the least possible amount of uncertainty. It is thus referred to as 

a high-fidelity model. Anyhow, approximation errors resulting from the replacement of the high-
fidelity model by a low-fidelity model for the solution of the inverse problem can be formally 
taken into account within the Bayesian framework of statistics [5]. An approach to deal with 
approximation errors will be described later in this text, and the reader should also refer to 
Tutorial 14 of this METTI School. 
 

By further assuming that the measurement errors, , are Gaussian random variables, with zero 

means, known covariance matrix W and independent of the parameters P, their probability 

density function, ( )p ε , is given by [5,8,20,22,25-29]: 

 

1/2/2 11
( ) (2 ) exp

2

D Tp 
−− − 

= − 
 

ε W ε W ε    (6.a) 

 
Due to the additive model for the measurement errors given by equation (4), equation (6.a) 
can be rewritten as  
 

1/2/2 11
( ) (2 ) exp [ ( )] [ ( )]

2

D Tp 
−− − 

= − − − 
 

ε W Y T P W Y T P   (6.b) 

 

Thus, ( ) ( )p p=ε Y P , which is the conditional probability density of different measurement 

outcomes Y with a fixed P, denoted as the likelihood function [5,8,20,22,25-29].  

 
A very common approach for the solution of inverse problems, dealing with the estimation of 

the parameters P by using the measurements Y, is to maximize the likelihood function. With 
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the above hypotheses regarding the measurement errors, this can be accomplished through 
the minimization of the absolute value of the term inside the exponential function of equation 
(6.b), resulting in the following maximum likelihood objective function: 
 

   1( ) ( ) ( )T

MLS −= − −P Y T P W Y T P
  

 (7) 

 
The least squares norm can be obtained as a particular case of Eq. (7), if the measurements 

are also considered as uncorrelated and with constant variances  2, in addition to the above 

hypotheses [8]. In this case, the covariance matrix W is given by: 

 
2=W I      (8) 

 

where I is the identity matrix. Then, the minimization of Eq. (7) is equivalent to the minimization 

of the least squares norm: 
 

   ( ) ( ) ( )T

OLSS = − −P Y T P Y T P     (9) 

 

The covariance matrix of the values estimated for the parameters P with the minimization of 

equation (7), is given by [8]: 
 

1 1cov( ) ( )T − −=P J W J     (10.a) 

  
which reduces to: 
 

1 2cov( ) ( )T −=P J J     (10.b) 

 

if W is given by equation (8). Equations (10.a,b) are exact for linear estimation problems, but 

can be used as approximations for nonlinear problems [8]. 
 
Therefore, in order to make use of the minimization of the least squares norm for obtaining 

point estimates for the parameters P that have some statistical meaning (for example, that 

allow estimates of the covariances of the estimated parameters with equation 10.b), all the 
statistical hypotheses stated above need to be valid [8]. Such a fact is quite often overlooked 
when an objective function is defined for the solution of an inverse problem via optimization 
techniques. Still, if the estimation problem is linear, the measurement errors are additive, with 
zero mean, and with a covariance matrix that is positive definite and known to within a 

multiplicative constant 
2 , that is,  

 
2ˆ =W W
    

 (11) 

 
the Gauss-Markov theorem [8,18] assures that minimum variance estimates can be obtained 
with the minimization of: 
 

   1ˆ( ) ( ) ( )T

GMS −= − −P Y T P W Y T P
  

 (12) 
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even if the measurement errors are not Gaussian. In such a case, if ˆ =W I  the minimization 

of the ordinary least squares norm provides minimum variance estimates. On the other hand, 

the covariance matrix of the values estimated for the parameters P cannot be computed with 

equations (10.a,b) since 
2 is not known. 

 
Different methods can be used for the minimization of equations (7), (9) or (12), after an 
analysis of the sensitivity coefficients of the parameters and an appropriate experimental 
design [8-26]. For a linear case, the minimization of equation (7) is obtained with: 
 

1 1 1( )T T− − −=P J W J J W Y     (13.a) 

 
while, for the nonlinear case the iterative procedure of Gauss' method gives:     
 

1 1 1 1( ) [ ( )]k k T T k+ − − −= + −P P J W J J W Y T P    (13.b) 

 

where the superscript k denotes the number of iterations and J is the sensitivity matrix.  
 
We note that other maximum a posteriori objective functions can be derived if the 
measurement errors follow density functions different from the Gaussian distribution examined 
above. 
 
 
3. Bayesian Framework of Statistics 
 
For the solution of inverse problems within the Bayesian framework of statistics, all variables 
included in the mathematical formulation of the physical problem are modelled as random 
variables. Techniques for the solution of inverse problems within the Bayesian framework of 
statistics can be summarized by the following steps [5]: 

1. Based on all information available for the parameters P before the measured data Y is 

taken, select a probability distribution function, p(P), that appropriately represents the 

prior information. 

2. Select the likelihood function, p(Y|P), that appropriately models the measurement 

errors. The likelihood function involves a relation between the experimental 
observations and the computed solutions of the high-fidelity mathematical model of the 
problem under analysis (see, for example, equation 6.b).  

3. Develop methods to explore the posterior density function, which is the conditional 

probability distribution of the unknown parameters given the measurements, p(P|Y). 

  
The formal mechanism to combine the new information (measurements) with the previously 

available information (prior) is known as Bayes’ theorem [5,8,20,22,25-29]. Let P and Y be 

continuous random variables. Then, we can write [4]: 
 

( , )
( )

( )

p
p

p
=

P Y
P Y

Y
    (14) 
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that is, the conditional density of the random variable P given a value of the random variable 

Y is the joint density of P and Y divided by the marginal density of Y, where: 

 

( ) ( , )
N

p p d= Y P Y P     (15) 

 

The joint density ( , )p P Y  is not generally known, but it can be written in terms of the likelihood 

and the prior as [4]: 
 

( , ) ( ) ( )p p p=P Y Y P P     (16) 

 
By substituting (16) into (14) we then obtain Bayes' theorem, which is given by: 

 

( ) ( )
( )

( )

p p
p

p
=

Y P P
P Y

Y   

 (17.a) 

 

where ( ) ( )posteriorp p=P P Y  is the posterior probability density, p(P) is the prior density, p(Y|P) 

is the likelihood function and p(Y) is the marginal probability density of the measurements (also 

called evidence), which plays the role of a normalizing constant. Since the computation of p(Y) 

with equation (15) is in general difficult, and usually not needed for practical calculations as 
will be apparent below, Bayes' theorem is commonly written as: 
 

( ) ( ) ( ) ( )posteriorp p p p= P P Y Y P P

  

 (17.b) 

 

 

4. Maximum a Posteriori Objective Function 
 

Consider a case with a Gaussian prior density model for the unknown parameters in the form: 
 

1/2/2 11
( ) (2 ) exp ( ) ( )

2

N Tp 
−− − 

= − − − 
 

P V P μ V P μ    (18) 

 

where  and V are the known mean and covariance matrix for P, respectively. By assuming 

normally distributed measurement errors with zero means and known covariance matrix W, 

which are also supposed additive and independent of the parameters P, the likelihood function 

is given by equation (6.b). By substituting equations (6.b) and (18) into Bayes’ theorem given 
by equation (17.b), we obtain: 
 

   
1

ln ( | ) ( ) ln 2 ln | | ln | | ( )
2

MAPp D N S − + + + +P Y W V P   (19) 

 
where 
 

   1 1( ) ( ) ( ) ( ) ( )T T

MAPS − −= − − + − −P Y T P W Y T P P V P    (20) 
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Equation (19) reveals that the maximization of the posterior distribution can be obtained with 
the minimization of the objective function given by equation (20), denoted as the maximum a 
posteriori (MAP) objective function for the statistical hypotheses made above [5,8,20,22,25-
29]. Equation (20) shows the contributions of the likelihood and of the prior distributions in this 
objective function, given by the first and second terms on the right-hand side, respectively. It 
is now interesting to notice that the maximum likelihood objective function (equation 7) is not 
a Bayesian estimator, since it does not contain information provided by the prior distribution 
for the parameters. Conspicuously, the least squares norm (equation 9) and other objective 
functions derived from equation (7), even those containing penalization terms (e.g., Tikhonov's 
regularization), are not Bayesian estimators, since they only explore the information provided 
by the measurements and, eventually, some characteristics of the parameters, like 
smoothness. Although the second term on the right-hand side of equation (20) is a quadratic 
form and resembles Tikhonov’s regularization, there is a fundamental difference between the 
two approaches. Tikhonov’s regularization focuses on obtaining a stabilized form of the original 
objective function and is not designed to yield uncertainty estimates that would have a 
statistical interpretation. In contrast, Bayesian inference assumes that the likelihood and prior 
statistical models reflect their actual uncertainties. Hence, uncertainties computed from 
equation (19) correspond to the actual posterior uncertainties only if this hypothesis is valid [5].  
 
Such as for the maximum likelihood objective function, different methods can be used for the 
minimization of equation (20) in order to obtain point estimates for the unknowns. For nonlinear 
problems, the Gauss method results in the following iterative procedure [5,8,20,22,25-29]:  
 

1 1 1 1 1 1[ ] { [ ( )] ( )}k k T T k k+ − − − − −= + + − + −P P J W J V J W Y T P V P   (21) 

 

Note in equation (21) that the conditioning of the matrix 
1T −

J W J  can be improved with the 

matrix 
1−

V , which is the inverse of the covariance matrix of the Gaussian prior for the 

parameters. Therefore, the estimation of the parameters can be stabilized by using prior 
information with small covariances. Despite such desired effect for the regularization of the 

estimation procedure, the MAP estimator is biased and the expected value of P is  [8]. Such 

a fact clearly shows the important requirement of modeling the prior information as accurately 
as possible for the success of the inverse analysis within the Bayesian framework of statistics. 
For a linear case, the covariance matrix of the posterior Gaussian distribution is given by [8]: 
 

1 1 1cov( ) ( )T − − −= +P J W J V     (22) 

  
which can be used as an approximation for nonlinear cases. 
 
A comparison of equation (22) with the covariance matrix related to the maximum likelihood 

objective function (equation 10.a) shows that the covariance of the prior, V , is reduced by 

solving the inverse problem if 
1T −

J W J  is well conditioned. Therefore, the solution of the 

inverse problem improves the information a priori available for the parameters, if the sensitivity 
coefficients are linearly independent and with large magnitudes, that is, the determinant of 

T
J J  is large and 

1T −
J W J  is well conditioned. 
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5. Markov Chain Monte Carlo (MCMC) Methods 
 
The Gaussian likelihood and the Gaussian prior examined in section 4 resulted in an 
expression for the posterior (equation 19) from which a MAP point estimate can be obtained 
for the parameters, provided that the minimum of equation (20) exists. In this particular case 
(Gaussian likelihood and Gaussian prior), the prior is conjugate to the likelihood [1,4,5,28]. A 

class  of prior distributions is said to form a conjugate family if the posterior density is in the 

same class  for all P, whenever the prior density is in  [1]. Although this property is valid for 

many cases that involve continuous distributions, in special those that belong to the 
exponential family [1,28], the posterior probability distribution may not allow an analytical 
treatment if non-conjugate prior probability densities are assumed for the parameters. 
Moreover, whereas the computation of the MAP estimate is an optimization problem, that is,  
 

arg max ( | )
NMAP p


=

P

P P Y      (23) 

 
other point and confidence estimates from the posterior distribution typically require numerical 
integration. For example, one common point estimate is the conditional mean defined as [5]: 
 

( ) ( | )
N

CM E p d= = P P P P Y P     (24) 

 

where E(.) denotes the expected value. In general, the dimension N of the parameter space is 

large enough to make the numerical integration in equation (24) impractical. Besides that, the 

computation of the normalizing constant in the denominator of ( | )p P Y  (see equations 14-17) 

already constitutes a challenging problem by itself.  
 
For those cases that the posterior is not analytical and/or numerical integrations required for 
estimates are not practical, Markov Chain Monte Carlo (MCMC) methods can provide a 
solution of the inverse problem, so that inference on the posterior probability density becomes 
inference on its samples [1,4,5,20,22,25-28]. For example, the Monte Carlo integration of 
equation (24) can be approximated by [5]: 
 

( )

1

1
( ) ( | )

N

n
t

CM

t

E p d
n =

= =  P P P P Y P P    (25) 

 

where ( )t
P  , for t = 1,…, n, are samples from ( | )p P Y . Markov Chain Monte Carlo methods 

are used to obtain such samples. 
  
Due to the simplicity in the application of MCMC methods, such a technique for the solution of 
inverse problems has been recently becoming quite popular, being applied even for cases 
where a MAP estimate would be feasible. One clear disadvantage on the application of Monte 
Carlo methods is the required large computational times. On the other hand, the use of 
computationally fast low-fidelity models can be appropriately accommodated within the 
Bayesian framework of statistics [5], so that the application of MCMC methods to many 
practical problems is nowadays possible. 
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Concepts and properties of Markov chains are presented in this section, which is then finished 
with a powerful, simple and popular MCMC algorithm. Some practical aspects and speedup 
techniques for the implementation of MCMC methods are delayed to other sections further 
below.      
 
 
5.1. Markov Chains 
 
Markov chains are named after the Russian mathematician A. A. Markov, who developed such 
concept by investigating the alternance of vowels and consonants in a Russian poem. 
Poincaré also dealt with sequences of random variables that were in fact Markov chains [28]. 
A Markov chain is a stochastic process that, given the present state, past and future states are 

independent. The collection of the random quantities 
( ){ : }t t TP  is said to be a stochastic 

process with state space S and index set T. The state space is a subset of N , that is, the 

support of the parameter vector P , while here T is the set of Natural numbers that index the 

states of the Markov chain [28].  
 
The stochastic process is a Markov chain if it satisfies the Markov condition [1,4,5,20,22,25-
29]: 
 

( 1) ( ) ( 1) ( 1) (0) (0) ( 1) ( )( | , , , ) ( | )t t t t t tq q+ − − += = = = = = =P y P x P x P x P y P x  

for all  
( 1) (0), , , ,t S− y x x x   (26) 

 

where q is a transition probability. Some concepts regarding Markov chains are now presented. 

The reader shall consult references [1,4,5,20,22,25-29] for further details.  
 

If the transition probability does not depend on t, that is, if: 

 
( 1) ( ) ( 1) ( )( | ) ( | )t m t m t tq q+ + + += = = = =P y P x P y P x   for all m T    (27) 

 
the Markov chain is said to be homogenous [22]. 
 

A distribution p* is said to be a stationary distribution of a chain if, once the chain is in p* it 

stays in this distribution. Suppose now that 
( ) *tp p→  as t →   for any

(0)p , where 
( )tp  is the 

distribution at state t of the chain. Then, p* is the equilibrium distribution of the Markov chain 

and the chain is said to be ergodic.  
 

Consider the sequence of states 
(1) (2) ( )t→ → → →x P P P y  so that the transition 

probabilities 
(1) (2) (1) ( )( | ) 0, ( | ) 0, , ( | ) 0tq q q  P x P P y P . Then, there is a sequence of 

states from x to y with a nonzero probability of occurring in the Markov chain. It is said that x 

and y communicate. If y and x also communicate through nonzero transition probabilities, it is 

said that these two states intercommunicate. If all states in S intercommunicate, then the state 

space is said to be irreducible under q. A Markov chain is reversible if 

( ) ( | ) ( ) ( | )p q p q=x y x y x y .  
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The period of a state x, denoted by dx, is the largest common divisor of the set 
( ){ 1: ( ) 0}mm q x,x . A state x is aperiodic if dx = 1. A chain is aperiodic if all its states are 

aperiodic.  
 
 
5.2. Metropolis-Hastings Algorithm 
 
The most common MCMC algorithms are the Gibbs Sampler and the Metropolis-Hastings 
algorithm [1,4,5,20,22,25-29]. The Gibbs Sampler is not presented here for the sake of brevity.  
The Metropolis-Hastings algorithm was first devised by Metropolis et al. [31] in 1953, who 
aimed at the calculation of the properties of substances composed of interacting molecules. It 
was, therefore, a work focused on statistical mechanics, not in statistics (or inverse problems!) 
itself. Although the paper has five co-authors [31], only the name of the first author became 
popular to designate the developed algorithm, which was lately generalized by Hastings in 
1970 [32]. In fact, there are some controversies about who actually contributed on the work by 
Metropolis et al. [33]. 
 
The above concepts about Markov chains allow the statement of the following result regarding 

the Metropolis-Hastings algorithm [22]: Let p be a given probability distribution. The Markov 

chain simulated by the Metropolis-Hastings algorithm is reversible with respect to p. If it is also 

irreducible and aperiodic, then it defines an ergodic Markov chain with unique equilibrium 

distribution p*.   

 
Unfortunately, it might not be possible to prove that the chain is irreducible and/or aperiodic for 
practical cases. In fact, parameters with linearly dependent sensitivity coefficients generally 
result on periodic and correlated chains and an equilibrium distribution is not reached. Similar 
to classical methods of parameter estimation, where the sensitivity coefficients directly 
influence the topology of the objective function based on the likelihood (see equation 7, for 
example) and a global minimum might not exist, such coefficients directly influence the 
posterior distribution, which is now sought via the implementation of a Markov chain. 
Therefore, the sensitivity coefficients need also to be carefully examined if the solution of the 
inverse parameter estimation problem is to be obtained within the Bayesian framework of 
statistics. In classical methods based on the maximum likelihood objective function, 
parameters with small and linearly dependent sensitivity coefficients are usually 
deterministically fixed, based on values known from previous experience and/or literature. In 
approaches within the Bayesian framework of statistics, uncertainties on such kind of 
parameters can be appropriately taken into account through their prior distribution functions. 
However, parameters with small and/or linearly dependent sensitivity coefficients require 
informative prior distributions for the success of the estimation procedure.   
 
The Metropolis-Hastings algorithm draws samples from a candidate density by following 
acceptance-rejection sampling [1]. The acceptance-rejection method is used to generate 

samples from a density ( ) ( ) /p p K=P P , where the normalizing constant K might be unknown, 

such as in the posterior distribution given by Bayes’ theorem (equation 17.a). Instead of 

sampling from ( )p P , assume that there exists a candidate density ( )h P  that is easy to 

simulate samples from, where ( ) ( )p chP P  and c is a known constant. The following steps 
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are then used to obtain a random variable P̂  from density ( )p P  with the acceptance-rejection 

method [1]: 

1. Generate a random variable *
P  from the density ( )h P ; 

2. Generate a random value ~ U(0,1)U , which is uniformly distributed in (0,1); 

3. If 
*

*

( )

( )

p
U

c h


P

P
, let 

*ˆ =P P . Otherwise, return to step 1. 

 
The implementation of the Metropolis-Hastings algorithm starts with the selection of a 

candidate or proposal distribution 
* ( )( | )tq P P , which is used to draw a new candidate sample 

*
P  given the current sample ( )t

P of the Markov chain. For the solution of the inverse problem 
within the Bayesian framework of statistics, one aims at simulating the posterior distribution 

( ) ( ) ( )posteriorp p pP Y P P  (see equation 17.b). Hence, the balance (reversibility) condition of 

the Markov chain of interest is given by: 
   

( ) * ( ) * ( ) *( ) ( | ) ( ) ( | )t t t

posterior posteriorp q p q=P P P P P P    (28) 

 

In order to avoid eventual cases that 
( ) * ( ) * ( ) *( ) ( | ) ( ) ( | )t t t

posterior posteriorp q p qP P P P P P , that is, 

the process moves from ( )t
P  to *

P more often than the reverse, a probability 
* ( )( | )t P P  is 

introduced in equation (28), so that [1]: 
 

( ) * ( ) * ( ) * ( ) *( ) ( | ) ( | ) ( ) ( | )t t t t

posterior posteriorp q p q =P P P P P P P P   (29) 

 
Therefore, 
 

* ( ) *

* ( )

( ) * ( )

( ) ( | )
( | ) min 1,

( ) ( | )

t

posteriort

t t

posterior

p q

p q


 
=  

  

P P P
P P

P P P
   (30) 

 

where 
* ( )( | ) 1t =P P  when the balance condition is satisfied.  

 
Equation (30) is also called the Metropolis-Hastings ratio. Notice that there is no need to know 
the normalizing constant that appears in the definition of the posterior distribution (see 
equations 17.a,b) for the computation of equation (30). Equation (29) shows that the probability 

of moving from the sample at the current state ( )t
P  to *

P is now given by 
* ( ) * ( )[ ( | ) ( | )].t tq P P P P  

 

In the Metropolis-Hastings algorithm, a candidate *
P  is accepted, such as in the acceptance-

rejection method described above. The Metropolis-Hastings algorithm can then be 
summarized in the following steps [1,4,5,20,22,25-29]: 
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1. Let 0t =  and start the Markov chain with sample (0)
P  at the initial state. 

2. Sample a candidate point *
P from a proposal distribution 

* ( )( | )tq P P . 

3. Calculate the probability
* ( )( | )t P P  with equation (30). 

4. Generate a random value ~ U(0,1)U , which is uniformly distributed in (0,1). 

5. If 
* ( )( | )tU  P P , set ( 1)t+

P = *
P . Otherwise, set ( 1)t+

P = ( )t
P . 

6. Make 1t t= +  and return to step 2 in order to generate the sequence 
(1) (2) ( ){ , , , }n

P P P . 

 
In this way, a sequence is generated to represent the posterior distribution and inference on 

this distribution is obtained from inference on the samples 
(1) (2) ( ){ , , , }n

P P P . We note that 

values of ( )t
P must be ignored from 0t =  until the chain has not converged to equilibrium (the 

burn-in period).  
 
For the computational implementation of the Metropolis-Hastings algorithm, the test in step 5 

is performed by taking the logarithm of both sides, that is, 
* ( )ln[ ] ln[ ( | )]tU  P P . This is 

required in order to avoid numerical errors, since ( )posteriorp P  commonly involve exponentials 

and the ratio in 
* ( )( | )t P P  may become a number that cannot be represented within the 

computer numerical limits if  
( ) * ( ) * ( ) *( ) ( | ) ( ) ( | )t t t

posterior posteriorp q p qP P P P P P . 

 
 
5.3. Proposal Distributions 
 
The proposal distribution plays a fundamental role for the success of the Metropolis-Hastings 

algorithm. Typical choices for 
* ( )( | )tq P P  are presented below. 

 

(i) Random Walk:  In this case * ( )t= +P P Ψ , where Ψ  is a vector of random variables with 

distribution 
1( )q ψ . Therefore, 

* ( )

1( | ) ( )tq q=P P Ψ . If the proposal distribution is symmetric, that 

is, 
1 1( ) ( )q q= −ψ ψ  or 

* ( ) ( ) *( | ) ( | )t tq q=P P P P , equation (30) reduces to 

  
*

* ( )

( )

( )
( | ) min 1,

( )

posteriort

t

posterior

p

p


 
=  

  

P
P P

P
   (31) 

 
Thus, for this choice of the proposal density, equation (31) shows that in step 5 of the 

Metropolis-Hastings algorithm the candidate point *
P  is always accepted if the move leads to 

a region of larger posterior probability. Furthermore, the candidate point can also be accepted 

if 
* ( )( ) ( )t

posterior posteriorp pP P  with probability 
* ( )( | )t P P , thus allowing that the state space 

be highly explored.  
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Uniform and Gaussian distributions are commonly used for 
1( )q ψ . Consider one single 

component jP  (j = 1,..., N) of the vector P . For a random walk proposal with a uniform 

distribution one can write: 
 

* ( ) (2 1)t

j j j jP P w u= + −     (32.a) 

 

where ju  is a random number with uniform distribution in (0,1), that is, ~ U(0,1)ju , while jw  

is the maximum variation to generate the candidate parameter at each state of the Markov 
chain. 
 
For a random walk proposal with a Gaussian distribution, we have: 
 

* ( )t

j j jP P r= +      (32.b) 

 

where now jr  is a Gaussian random number with zero mean and standard deviation j .  

 

The probability of accepting the candidate 
*

jP  increases with small variations jw   or with small 

standard deviations j , j = 1,..., N, in the random walk proposal with uniform and Gaussian 

distributions, respectively. Such is the case because it is more likely to move to regions of 

higher posterior around 
( )t

jP  with small jw  or j . With candidates generated from small 

perturbations of 
( )t

jP ,  the number of accepted states can thus be large and the resulting 

Markov chains may take too long to reach an equilibrium distribution for the parameters. On 

the other hand, large perturbations of  
( )t

jP  may lead to small acceptance rates, meaning that 

the parameter values at the current state may be repeated at many successive states in the 
Markov chain, in accordance with step 5 of the Metropolis-Hastings algorithm. Although large 

perturbations of  
( )t

jP can fast lead to an equilibrium distribution, long chains may still be needed 

to generate enough samples with different (and independent) values that can be used to 
represent the posterior distribution of the parameters.  
 
(ii) Independent Move: This choice for the proposal density is of the kind  

* ( ) *

2( | ) ( )tq q=P P P , that is, it does not depend on the current state ( )t
P . In this case, the 

proposal density 
* ( )( | )tq P P  can be conveniently selected as the prior density 

*( )p P . By 

utilizing equation (17.b), equation (30) is rewritten as      
 

* * ( )
* ( )

( ) ( ) *

( | ) ( ) ( )
( | ) min 1,

( | ) ( ) ( )

t
t

t t

p p p

p p p


 
=  

 

Y P P P
P P

Y P P P
  (33.a) 

 
Hence, the Metropolis-Hastings ratio is given by the ratio of the likelihoods, that is, 
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*
* ( )

( )

( | )
( | ) min 1,

( | )

t

t

p

p


 
=  

 

Y P
P P

Y P
    (33.b) 

 
Such as for the random walk proposal, candidates moving to regions of higher probability (in 
this case, the likelihood) are always accepted. Candidates moving to regions of lower 

likelihoods can be accepted as well, but with probability 
* ( )( | )t P P . Although the probability 

* ( )( | )t P P   given by equation (33.b) does not involve the prior distribution, the Markov chain 

still depends on the prior since it is used to generate the candidates in this case. This kind of 
proposal can be very effective for parameters with small prior variances. On the other hand, it 
may lead to very small acceptance rates if the prior has large variances. Also, it cannot be 
applied to an improper prior with unlimited variance.    
 
A Metropolis-Hastings algorithm with an adaptive proposal distribution was presented by 
Haario et al [34]. This algorithm is not Markovian, but results in ergodic distributions. In this 

adaptive algorithm, a Gaussian proposal with center at the sample of the current state, ( )t
P , 

is given by [34,35]: 
 

2
( )

* ( )

2 2
( ) ( )

0.1
N , 2

( | )
2.38 0.1

(1 )N , N , 2

t

t

t t

t

t N
N

q

t N
N N

 

  
  

  
= 

   
− +    

   

P I

P P

P Σ P I

  (34) 

where N(a,B) is a Gaussian distribution with mean a and covariance matrix B, N is the number 

of parameters, I is the identity matrix and tΣ is the covariance matrix of the posterior 

distribution up to the state t. The positive constant   (0 <   < 1) is used to promote the mixing 

between 

2
( ) 2.38

N ,t

t
N

 
 
 

P Σ  and 

2
( ) 0.1

N ,t

N

 
 
 

P I , in order to avoid that the algorithm halts if 

tΣ  is not well defined. 

 
5.4. Metropolis-Hastings Algorithm with Sequential Sampling by Blocks of Parameters 
 
Different modified versions of the Metropolis-Hastings algorithm can be found in the literature 
(see, for example, [29]). In particular, a modified version of the Metropolis-Hastings algorithm 
has been proposed for cases that involve groups of linearly dependent parameters [28,35]. In 
this modified version, the sampling procedure and the acceptance/rejection test are 
sequentially performed separately for each block of parameters, within one loop of the 
Metropolis-Hastings algorithm [28,35].  
 

As an example, consider a case where the vector of parameters P is split into two blocks of 

parameters 1P  and 2P , that is, 1 2[ ]T T T=P P P . The Metropolis-Hastings algorithm with 

sequential sampling by blocks of parameters can then be summarized by the following steps: 
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1. Let 0t =  and start the Markov chains with the sample 
(0)

P . 

2. Sample candidates 
*

1P  from the proposal distribution 
* ( )

1 1 1( | )tq P P  for the vector P1 

and make 
* ( )

2 2

t=P P . 

3. Compute the Metropolis-Hastings ratio 
* ( ) *

* ( ) 1 1 1
1 ( ) * ( )

1 1 1

( | ) ( | )
( | ) min 1,

( | ) ( | )

t
t

t t

p q

p q


 
=  

 

P Y P P
P P

P Y P P
  (35.a) 

4. Generate a random number with a uniform distribution in (0,1), 1 ~ U(0,1)U . 

5. If 
* ( )

1 1( | )tU  P P , make 
( 1)

1

t+
P = 

*

1P . Otherwise, make 
( 1)

1

t+
P = 

( )

1

t
P . 

6. Sample candidates 
*

2P  from the proposal distribution 
* ( )

2 2 2( | )tq P P  for the vector P2 

and make 
* ( 1)

1 1

t+=P P . 

7. Compute the Metropolis-Hastings ratio  
* ( ) *

* ( ) 2 2 2
2 ( ) * ( )

2 2 2

( | ) ( | )
( | ) min 1,

( | ) ( | )

t
t

t t

p q

p q


 
=  

 

P Y P P
P P

P Y P P
  (35.b) 

8. Generate a random number with a uniform distribution in (0,1), 2 ~ U(0,1)U . 

9. If 
* ( )

2 2 ( | )tU  P P , make 
( 1)

2

t+
P = 

*

2P . Otherwise, make 
( 1)

2

t+
P = 

( )

2

t
P . 

10. Let 1t t= +  and return to step 2 in order to generate the sequence
(1) (2) ( ){ , ,..., }.n

P P P  

 

6. Practical Issues regarding Markov Chain Monte Carlo (MCMC) Methods 
 
The objective of this section is to bring to the reader's attention some important aspects for the 
implementation of Markov Chain Monte Carlo methods. Although the discussion about 
likelihood and prior distributions is not limited to MCMC methods and is pertinent to Bayesian 
techniques in general, it was delayed until this section for the sake of organization of the text. 
Such is also the case regarding hierarchical models. In addition to these concepts, this section 
is also devoted to the analysis of the outputs of Markov chains.  
 
 
6.1. Likelihood and Priors 
 
The posterior distribution is proportional to the product of the likelihood function and the prior 
distribution (equation 17.b). As discussed in section 2, the likelihood function involves the 
solution of the mathematical formulation of the problem under analysis, that is, the solution of 
the direct or forward model, as well as the measurements and their related uncertainties. 
Measurement errors are modelled after the calibration of sensors and instruments used to 
collect the experimental data. The likelihood in section 2 was considered as Gaussian and 
given by equation (6.b). Such a model is in general appropriate for temperature measurements 
taken with thermocouples or infrared cameras.  For example, figure 2.b presents the histogram 
of the readings (see figure 2.a) of a plate maintained at the constant temperature of 23 oC, 
obtained with a SC7600 Flir infrared camera [36]. This histogram clearly approximates a 
Gaussian distribution. For other likelihood models more appropriate to different phenomena 
the reader is referred to [5].   
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A Gaussian prior was also considered in section 4, given by equation (18) for a multivariate 

case, with mean  and covariance matrix V, denoted as ~ N( , )P μ V . For one single 

parameter jP , a Gaussian prior with mean j and variance 
2

j , 
2~ N( , )j j jP   , is given by     

 
2

22

( )1 1
( ) exp

22

j j

j

jj

P
p P





 −
= − 

  

 in  jP−      (36) 

 
 

 
(a) 

 
(b) 

Figure 2. (a) Thermal image with an infrared camera of an isothermal plate;  

(b) Histogram of the temperature measurements [36]. 

 

Random variables modelled by the Gaussian prior have support in . Hence, they may 
assume negative values, although this might happen with small probabilities depending on the 

values of j  and 
2

j . On the other hand, several physical parameters only allow positive 

values, such as, for example, thermal conductivity, specific heat and thermal diffusivity.  
 
A very simple prior that allows lower and upper bounds for the parameter values is the Uniform 

distribution ~ U( , )jP a b   given by 

 

1
,

( )( )

0 , elsewhere

j

j

a P b
b ap P


 

−= 



    (37) 

 

Mean and variance of the uniform distribution are given by 
1

( )
2

a b+  and 
21

( )
12

b a− , 

respectively.  
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In the uniform distribution, any value in ja P b   is equally probable. If in this interval values 

around a known mean are more likely to occur than elsewhere, like in a Gaussian distribution, 

but the probability density is zero in jP a  and jP b , one possible prior can be obtained by 

combining equations (36) in (37), which is called truncated Gaussian distribution, that is,   
 

2

22

( )1 1
exp ,

2( ) 2

0 , elsewhere

j j

j

jj j

P
a P b

p P





  −
−    

=    



  (38) 

where ja b  . 

 
Other distributions that satisfy positive constraints are available. For example, the Rayleigh 

distribution 0~ R( )jP   is given by: 

 
2

2

0 0

1
( ) exp

2

j j

j

P P
p P

 

  
 = −      

 for  0jP    (39) 

 

and depends only on the scale parameter (centerpoint) 0 . The mean and the variance of 

Rayleigh's distribution are given by 0
2


  and 

2

0

4

2




−
, respectively. 

 

The Gamma distribution with parameters   and  , denoted as ~ G( , )jP   , has the 

following density: 
 

11
( ) exp

( )

j

j j

P
p P P

  

−
 

= −    

 for  0jP    (40) 

 

with mean  and variance
2 , where ( )  is the gamma function of argument  . For 

1 =  , the so-called one-parameter gamma distribution is obtained. The density that results 

by making 1 =  is called exponential distribution. 

 

The Beta distribution ~ Be( , )jP    has support in 0 1jP  . The density of this distribution 

is given by: 
 

1 1( )
( ) (1 )

( ) ( )
j j jp P P P  

 

− − +
= −

 
 in 0 1jP    (41) 
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with mean 


 +
and variance

2( ) ( 1)



   + + +
.  

 

Figure 3 illustrates the probability distributions U(0,1) , 
2N(0.5,0.5 ) , R(0.5) , G(1.5,1.5)  and 

Be(1.5,1.5) . These distributions were normalized by their maximum values to allow the 

comparison among them.  

 
Figure 3. Probability distributions 

 
The probability distributions given by equations (36) to (41) were written for one single random 
variable, but they can be easily extended for multivariate cases [1,4,5,8,28]. A multivariate prior 
is usually required for the solution of inverse problems in situations where the parameters 
represent point values of a function. Such is the case illustrated by Figure 1 for time varying 
functions. Another typical case involves spatially distributed functions, like a thermophysical 
property that varies within the medium.  
 
The multivariate Gaussian distribution is given by equation (18). The use of Gaussian priors 
for function estimation is of great interest, because they tend to smooth out the oscillations in 
the solution caused by the ill-posed character of the inverse problem. If the parameters are 
independent, the prior covariance matrix is diagonal, with elements given by the variances, 

2 ,i  that is, 

 
2

,

,

0 ,

i

i j

i j

i j

 =
= 


V     (42) 

 
However, rarely there is such independence in practice when the parameters are local function 
values. Consider, for example, a function that varies spatially. In this case, the parameters 
correspond to the mean values of the function inside finite volumes used for the discretization 
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of the spatial domain. The correlation between the parameters of different finite volumes must 
be taken into account in the covariance matrix of the prior information.  
 
Works related to imaging have demonstrated that the Matérn class [21] of covariance functions 
may be appropriate for taking into account the correlation between spatially distributed 
parameters. The elements of the Matérn covariance matrix for the Gaussian prior distribution 
can be written as [21]:  

 

 

2

1
, 2

,

2 22
,

( )

i

i j i ji j

i

i j

K i j
l l








 




−

 =


   = − −
    
       

V r r r r   (43) 

 

where ir  is the position vector of the finite volume i, 
i j−r r  is the distance between finite 

volumes i and j, 0   is a parameter that controls the smoothness of the random field, l is 

the characteristic length scale that controls the spatial range of correlation,  is the gamma 

function and K  is the modified Bessel function of the second kind of order  .  

 
With the Matérn covariance matrix, the correlation is more significant for neighbouring finite 
volumes and decreases for increasing distances between them. The correlation decay rate is 

controlled by the characteristic length scale l and the smoothness parameter .  
 
Markov Random Fields are also popular for priors in inverse problems of estimating spatially 

distributed functions or time varying functions [5]. A set 
1 2{ , , , }NP P P  is a Markov Random 

Field if the conditional distribution of jP  depends only on the set of its neighbours [28].  

 
A common use of a Markov Random Field is for priors that resemble Tikhonov's regularization 
[5], written in the following general form: 
 

21
( ) exp ( )

2
p 

 
 − − 

 
P D P P     (44) 

 
where ||.|| denotes the L2 norm. The constant   is a parameter associated with uncertainties 

in the prior and P  is a reference value for P . The vector P  is commonly taken as zero without 

loss of generality. As for the matrix D , it should be such that ( )−D P P  involves the parameter 

jP  and its neighbors, in order to characterize a Markov random field. For cases that P  

represent local values of a one-dimensional function (such as a function varying in time or in 
one single spatial coordinate), the following matrices can be used [5]: 
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1 1

1 1

1 1

− 
 

−
 =
 
 

− 

D  with size ( 1) xN N−   (45.a) 

 
or  
 

1 2 1

1 2 1

1 2 1

− 
 

−
 =
 
 

− 

D  with size ( 2)xN N−   (45.b) 

 
which are analogous to the matrices used in first-order and second-order Tikhonov´s 
regularization, respectively. 
 
Equation (44) can be rewritten as: 
 

1
( ) exp ( ) ( )

2

Tp 
 

 − − − 
 

P P P Z P P    (46) 

 
where 
 

T=Z D D     (47) 
 
Equation (46) is in a form similar to that of a Gaussian distribution. For this reason, it is also 
called a Gaussian Markov Random Field [28] or a Gaussian Smoothness Prior [5]. By 
comparing equation (46) with the canonical Gaussian multivariate distribution, one can notice 

that the mean and the covariance matrix of this prior are given by P  and 1 1 − −
Z , respectively. 

Therefore, we can write the Gaussian Smoothness Prior as: 
 

1/2
/2 /2 1 1

( ) (2 ) exp ( ) ( )
2

N N Tp   
−

− −  
= − − − 

 
P Z P P Z P P   (48) 

 

An important remark about this prior is that, with D  given by equations (45.a,b), its variance is 

unbounded, since the matrix Z  is singular and 1−
Z  does not exist. Densities with unbounded 

variances are denoted as improper [5,28]. 
 
We now discuss another Markov Random Field prior, which gives high probabilities for 
piecewise regular solutions with sparse gradients. The Total Variation (TV) prior satisfies these 
characteristics, being quite appropriate for spatially varying functions that contain large 
variations at few boundaries within the domain and with small variations within the regions 
limited by such boundaries [5]. The TV prior is given by [5]: 
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 ( ) exp ( )p TV −P P     (49) 

where  

1

( ) ( )
N

j

j

TV V
=

= P P  ; 
1

( )
2

j

j ij i j

i N

V l P P


= −P   (50.a,b) 

and jN  is the set of neighbors to jP , while ijl  is the length of the edge between neighbors.  

 
The TV prior is improper, such as the Gaussian smoothness prior. The representation of 
equation (49) in terms of a canonical probability density would require the derivation of an 

expression for the normalizing constant ( )
N

p d P P , or, at least, practical means for its 

computation.  
 
Although improper priors need to be used with caution, they do not pose difficulties for the 
application of the Metropolis-Hastings algorithm, since the normalizing constants of such 

densities are cancelled when 
* ( )( | )t P P  is computed with equation (30). On the other hand, 

both the Gaussian smoothness prior and the TV prior involve an additional parameter   that 

needs to be specified for the application of MCMC methods. The specification of a value for 
such parameter can be made by numerical experiments, by using simulated experimental data 
that serve as a reference for the inverse problem under analysis. On the other hand, if a 
parameter is not known it shall be regarded as part of the inference problem within the 
Bayesian framework of statistics, leading in the case of   to the use of hierarchical (hyperprior) 

models, as described below.    
 
 
6.2. Hierarchical Models 
 
The parameter   appearing in the Gaussian smoothness prior given by equation (46) can be 

treated as a hyperparameter, that is, be estimated as part of the inference problem [5]. 
Consider, for example, the hyperprior density for   in the form of a Rayleigh distribution (see 

equation 39), where the scale parameter 0  needs to be chosen in advance. Therefore, the 

posterior distribution, with the Gaussian likelihood given by equation (6.b), can be written as: 
 

2

( 2)/2 1

0

1 1 1
( , ) exp [ ( )] [ ( )] ( ) ( )

2 2 2

N T Tp


  


+ −
   

 − − − − − − −  
   

P Y Y T P W Y T P P P Z P P  

   

(51)

  
 
On the other hand, the parameter   appearing in the TV prior given by equation (49) cannot 

be treated as a hyperparameter. Such is the case because the normalizing constant of such 
prior is of difficult calculation and also depends on  . Therefore, without the computation of 

the normalizing constant for this case, the effects of   as a hyperparameter would not be 

correctly accounted for in the posterior distribution.  
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6.3. Output Analysis  
 
We basically follow references [22,28] for the material presented in this section and consider 

an analysis involving one single component jP of the vector of parameters P .  

 

Let 
(1) (2) ( ){ , , , }
j j j

nP P P  be the set of samples of a homogeneous and reversible Markov chain 

with n states for the posterior distribution of jP . The Markov chain should already have 

reached equilibrium before the samples can be tentatively used to represent the posterior 
distribution. The number of states required for the chain to reach equilibrium is denoted as the 

burn-in period. We consider that the burn-in period contains the first z states of the Markov 

chain, that is, the set of samples to be used to represent the posterior is 
( 1) ( 2) ( ){ , , , }
j j j

z z nP P P+ +

instead of 
(1) (2) ( ){ , , , }
j j j

nP P P . For simplicity in notation, the index of samples after the burn-in 

period is changed from 1, ,t z n= +  to 1, ,r s= , where s n z= − . 

 

A function 
( )( )
j

sf P  of the samples 
(1) (2) ( ){ , , , }
j j j

sP P P  is called a statistic if it does not depend 

on any other unknown parameters. Some useful statistics are: 
 

Minimum Value:  
( ) ( ) (1) (2) ( )

,min( ) min{ , , , }
j j j j

s s s

jf P P P P P= =    (52.a) 

Maximum Value:  
( ) ( ) (1) (2) ( )

,max( ) max{ , , , }
j j j j

s s s

jf P P P P P= =    (52.b) 

Median:   
( ) ( ) (1) (2) ( )( ) med{ , , , }
j j j j j

s s sf P P P P P= =    (52.c) 

Mean:   
( ) ( ) ( )

1

1
( )

j j j

s
s s r

r

f P P P
s =

= =       (52.d) 

Variance:  ( )
2

( ) ( ) ( ) ( )

1

1
( ) var( )

1j j j j

s
s s r s

r

f P P P P
s =

= = −
−

    (52.e) 

 

Since 
(1) (2) ( ){ , , , }
j j j

sP P P  are realizations of a random variable, a statistic is itself a random 

variable as well. A statistic calculated with the samples will be a good representation of a 
statistic of the population if the samples are a good representation of the population. This 

certainly depends on the size s and on the independence of the samples. For example, if the 

Markov chain is ergodic the mean 
( )

j

sP  provides a strongly consistent estimate of the mean of 

the limiting distribution as s →  , that is, 

 
( )s

j jP E P →        (53) 

 
This result is the law of large numbers for a Markov chain.  
 

If  (1) (2) ( ), , , s

j j jP P P  are independent samples, then the variance of the mean 
( )s

jP  is: 
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( )

( )
var( )

var[ ]

s

js

j

P
P

s
=     (54) 

 

where 
( )var( )s

jP  is the variance of  (1) (2) ( ), , , s

j j jP P P  (equation 52.e). On the other hand, 

since the samples are in general correlated, equation (54) is rewritten as: 
 

( )

( )
var( )

var[ ]

s

j js

j

P
P

s


=     (55) 

 

where j  is the integrated autocorrelation time (IACT) for parameter jP , which represents the 

number of correlated samples between independent samples in the set  

 (1) (2) ( ), , , s

j j jP P P . Therefore, the effective number of independent samples in 

 (1) (2) ( ), , , s

j j jP P P  is , /eff j js s = . 

   

The autocovariance function of lag k of the chain for the parameter jP is defined by: 

 
( ) ( )( ) cov[ , ]r r k

j j jC k P P +=     (56) 

 

Clearly, the variance of 
( )r

jP  is (0)jC . 

 

The normalized autocovariance function of lag k is given by: 

 

( )
( )

(0)

j

j

j

C k
k

C
 =      (57) 

 

so that (0) 1j = . Hence, 
( )r

jP  is perfectly correlated with itself. The calculation of the 

normalized autocovariance function is straightforward, since several computational packages 
have functions available for such a purpose.     
 
The integrated autocorrelation time is related to the normalized autocovariance function by: 
 

1

1 2 ( )j j

k

k 


=

= +      (58) 

 

For the calculation of j , the summation in equation (58) needs to be truncated at a finite 

number of terms 
*s s . In fact, ( )j k  is expected to tend to zero as k  increases, as it is 

dominated by noise for large k . Therefore, 
*s  can be selected by increasing k  until ( )j k  

approaches zero, thus avoiding the terms that are dominated by noise.  
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For s  sufficiently large and for a uniformly ergodic Markov chain, the distribution of 

( )

( )var[ ]

s

j j

s

j

P E P

P

 −  
 tends to a standard Gaussian distribution, with zero mean and unitary standard 

deviation. Thus,  
 

( )

( )
N(0,1) as

var[ ]

s
d

j j

s

j

P E P
s

P

 −   → →     (59) 

 

where 
d

→  indicates that the distribution of the random variable on the left tends to the 

distribution on the right and 
( )var[ ]s

jP  is obtained with equation (55). Equation (59) is a 

statement of the central limit theorem of the distribution of 
( )s

jP . Therefore, the mean of the 

samples in the Markov chain can be reported with related uncertainties as 
( ) ( )var[ ],s s

j jP P

where   is a constant that defines the approximate confidence interval of 
( )s

jP  ( = 2.576 for 

a 99% confidence interval if s  is large).  

 

The statistical efficiency of the sampling algorithm can be assessed by examining j  for each 

parameter jP , j = 1,...,N. Algorithms that result in small values of j  promote better sampling. 

For cases involving many parameters, the statistical efficiency can be examined with the 

integrated autocorrelation time of the posterior distribution 
( )( | )r P Y , 1,...,r s=  [35]. 

 
Quantitative techniques are available for the analysis of the convergence of a Markov chain to 
an equilibrium distribution. Geweke´s technique [37] compares the means calculated with the 
samples of different ranges of states of the Markov chain. Let: 
 

( )

1

1 as
a r

j j

ra

P P
s =

=    and  
( )1

( )
b

s
b r

j j

r sb

P P
s s =

=
−

   (60.a,b) 

 

be the means calculated with sa and ( )bs s−  states, respectively. Geweke [37] recommended: 

   

 0.1as s=  and 0.5 1bs s= +    (61.a,b) 

 
that is, the means of the samples of the first 10% and of the last 50% of the states in the 

Markov chain are compared. If an equilibrium distribution is reached, 0a b

j jP P−  . 

 
For the convergence analysis, it is also recommended to repeat the sampling procedure by 
starting the Markov chains from different initial values. Gelman and Rubin [38] developed a 
method for inference on multiple chains, based on two steps: (i) An estimate is obtained for 
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the posterior distribution with an initial Markov chain, which is then used to start new 
independent chains. The initial states for these new multiple chains must have a dispersion 
larger than that of the initial chain; (ii) The new multiple chains are then used for inference with 
analyses inter chains and within each chain. The posterior distribution simulated with the 
multiple chains exhibit a variability larger than that of the initial chain.  
 
The multiple chains also allow a convergence analysis to verify if an equilibrium distribution 
has been reached to represent the sought posterior. We consider the case of a parameter  

jP ,   j = 1,...,N.  

 

The variance of the means of m chains, each one with s states, is given by [38]:   

 

( )
2

1

1

( 1)

m
k

j j j

k

B P P
m =

= −
−

     (62) 

 

where 
k

jP  is the mean of the chain k, k = 1,...,m, and 
jP  is the mean of these means.  

 

The mean of the m variances of the chains k = 1,...,m, is given by [38]: 

 

( )
2

( ),

1 1

1

( 1)

m s
r k k

j j j

k r

W P P
m s = =

= −
−

     (63) 

 

where 
( ),r k

jP  is the sample for jP  at state r, r = 1,…,s, of chain k, k = 1,...,m. 

 

The variance of the posterior distribution simulated with the multiple chains for jP  is thus 

obtained as [38]: 
 

2 1 1
ˆ 1j j jW B

s s


 
= − + 

 
     (64) 

 

The variance of the total number of samples of the multiple chains, 
2ˆ
j , overestimate the 

variance of the actual posterior while the equilibrium distribution has not been reached. On the 

other hand, Wj underestimates the variance of the actual posterior if each chain has not 

reached equilibrium. Gelman and Rubin [38] thus proposed a parameter to indicate 

convergence based on 
2ˆ
j  and Wj, called scale reduction coefficient, which was simplified by 

Gamerman and Lopes [28] and is given by: 
 

2ˆ
ˆ j

j

j

R
W


=      (65) 
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Note that ˆ 1jR  , but ˆ 1jR →  when s →  . Gelman and Shirley [39] have suggested ˆ 1.1jR   

as the convergence test of the multiple chains, but larger threshold values have also been 
proposed [28].    
 
  

327/332



 

 

 

 

METTI 8 Advanced School   Ile d’Oléron, France 

Thermal Measurements and Inverse Techniques             Sept. 24th – Sept 29th, 2023 
 

 Lecture 9: The Use of Techniques within the Bayesian Framework of Statistics – page 30 

 
7. Reduction of the Computational Time for Markov Chain Monte Carlo (MCMC) Methods 
 
For many practical cases the direct problem solution with the high-fidelity model is very time 
consuming.  Limitations are then imposed on the number of states of the Markov chains that 
can be computed within a feasible time, which can make the use of standard MCMC methods 
impractical, especially when the number of unknown parameters is large. One possible way to 
overcome such difficulties is to use a low-fidelity model, instead of the high-fidelity model, for 
the computation of the direct problem solution at each state of the Markov chain. However, 
low-fidelity models reproduce the observed data (measurements) with uncertainties larger than 
those of the high-fidelity model. Therefore, different approaches have been developed in order 
to improve the solution of inverse problems obtained with low-fidelity models, including the 
Delayed Acceptance Metropolis-Hastings (DAMH) algorithm [40] and the Approximation Error 
Model (AEM) [5,41-45].  
 
In the DAMH algorithm [40], the Metropolis-Hastings (MH) algorithm is regularly applied with 
the low-fidelity model. If a proposal sample is accepted with the low-fidelity model, another test 
of Metropolis-Hastings is performed with the high-fidelity model to finally decide if such sample 
should be accepted or not. In this sense, the DAMH can be seen as two nested Metropolis-
Hastings algorithms, where the outer loop acts as a filter to pre-evaluate proposal candidates 
with the low-fidelity model. In the AEM approach [5,41-45], the statistical model of the 
approximation error between the high-fidelity and the low-fidelity models is constructed based 
on the prior distribution, and then represented as additional noise in the likelihood function for 
the solution of the inverse problem.  It should be noted that there is a fundamental difference 
between the DAMH and the AEM approaches. While the AEM uses the posterior modified by 
the approximation error, the DAMH algorithm generates samples from the correct posterior 
[46]. 
 
 
7.1. Delayed Acceptance Metropolis-Hastings (DAMH) Algorithm 
 
The DAMH algorithm can be summarized as follows [40]: 
 

1. Let 0t =  and start the Markov chain with the sample (0)
P  at the initial state. 

2. Sample a candidate point *
P from a proposal distribution 

* ( )( | )tq P P . 

3. Calculate the probability 
* ( )( | )t

app P P  by using the low-fidelity model, where 

 
* ( 1) *

* ( )

( 1) * ( 1)

( | ) ( | )
( | ) min 1,

( | ) ( | )

t

appt

app t t

app

p q

p q


−

− −

 
=  

  

P Y P P
P P

P Y P P
  (66.a) 

 

4. Generate a random value ~ U(0,1)appU . 

5. If 
* ( )( | )t

app appU  P P , proceed to step 6. Otherwise, return to step 2. 

6. Calculate a new acceptance factor with the high-fidelity model: 
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* ( 1) *
* ( )

( 1) * ( 1)

( | ) ( | )
( | ) min 1,

( | ) ( | )

t
t

t t

p q

p q


−

− −

 
=  

 

P Y P P
P P

P Y P P
  (66.b) 

 

7. Generate a new random value ~ U(0,1)U . 

8. If 
* ( )( | )tU  P P  set ( 1)t+

P = *
P . Otherwise, set ( 1)t+

P = ( )t
P . 

9. Make 1t t= +  and return to step 2 in order to generate the sequence 
(1) (2) ( ){ , , , }n

P P P . 

 
where ( | )appp P Y and ( | )p P Y  are the posterior distributions with likelihoods computed with 

the low-fidelity model and with the high-fidelity model, respectively. 
  
The DAMH algorithm is expected to take advantage of the fast computations of the low-fidelity 
model in order to find, in step 5, possible candidates to be accepted with the high-fidelity model 
in step 8. The DAMH algorithm can be quite effective, especially in the case of a low 
acceptance ratio of the Metropolis-Hastings algorithm. Therefore, depending on how fast the 
solution of the low-fidelity model is as compared to that of the high-fidelity model, as well as 
on the acceptance ratio, the use of the DAMH algorithm might result in significant reductions 
in computational times as compared to those from the regular Metropolis-Hastings algorithm 
applied with the high-fidelity model. 
 
 
7.2. Approximation Error Model (AEM) Approach 
 
In the Approximation Error Model (AEM) approach, the statistical model of the approximation 
error is constructed and then represented as additional noise in the measurement model [5,41-
45]. With the hypotheses that the measurement errors are additive and independent of the 

parameters P we can write: 

 
( )= +Y T P ε     (67) 

 

where ( )T P  is a quite accurate solution of the high-fidelity direct (forward) model. The vector 

of measurement errors, ε , are assumed here to be Gaussian, with zero mean and known 

covariance matrix W, so that the likelihood function is given by equation (6.b). 

  

Let ( )appT P  be the solution of a low-fidelity model that is used for the solution of the inverse 

problem in place of the high-fidelity model, ( )T P . Equation (67) can be re-written as: 

 

( ) [ ( ) ( )]app app= + − +Y T P T P T P ε    (68) 

 
By defining the approximation error between the high-fidelity and the low-fidelity model 
solutions as: 
 

( ) [ ( ) ( )]app= −e P T P T P     (69) 
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equation (68) can be written as: 
 

( ) ( )app= +Y T P η P     (70) 

 
where 
 

( ) ( )=η P e P +ε      (71) 

 

One difficult with such an approach is to model the total error ( )η P , which includes the direct 

problem approximation error, ( )e P , as well as the experimental error, ε . A simple, but very 

effective approach is to model the approximation error as a Gaussian variable [5,41-45]. 
Another important point for the implementation of the approximation error model is that the 

statistics of ( )η P , like its mean and covariance matrix, are computed before the estimation 

procedure, based on the prior distribution of the model parameters [5,41-45]. Therefore, the 
use of the approximation error model with improper priors is not possible, since they exhibit 
unbounded variances.  
 
Consider, for instance, a Gaussian prior and a Gaussian likelihood, given by equations (18) 
and (6.b), respectively. By using the approximation error model approach, the posterior 
distribution is given by [41]: 
 

( ) ( )1 11 1
( ) exp [ ( ) ] [ ( ) ]

2 2

TT

app appp − − 
 − − − − − − − − 

 
P Y Y T P η W Y T P η P μ V P μ  (72) 

 

where  
 

= + + −-1

ηPη ε e Γ V (P μ)
    

(73.a) 

e= + − -1

ηP PηW W W Γ V Γ
   

(73.b) 

 

and ε
 

and e  are the means of  and e, respectively, while 
eW  is the covariance of e and ηP

Γ  

is the covariance of  and P.  Equations (73.a,b) give the complete error model [41]. We note 

that, with the standard hypotheses regarding the measurement errors made above, 0=ε . By 

further neglecting the dependency of  and P, that is, 0= =
ηP Pη

Γ Γ , equations (73.a,b) 

simplify to the so-called enhanced error model: 
 

η e
      

(74.a) 

e +W W W

     

(74.b) 

 
Further details of the AEM approach are presented in Tutorial 14 of this METTI School. 
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Abstract. Interventional thermoablation procedures are used to destroy irreversibly 
pathological tissues (tumor cells, etc.) by means of localized energy deposition. The 
procedure, whatever the modality and medical device envisaged, is divided into three phases: 
i) ballistics, ii) energy deposition iii) post-ablation assessment. During ablation, it is rare to be
able to objectify the energy delivered. Procedures are based on the manufacturer's abacus
(power and emission time) for the devices used, and not on the temperature rise obtained
locally in the targeted tissues. As a result, personalization of the treatement is impossible,
and monitoring of the procedure's progress is limited. The unique properties of MRI make it
capable to map volumetric temperature changes in real time during an ablation and predict
the final lesion size. The advantages of this technology is relevant with regard to efficacy and
safety of the procedure.

The talk will introduce Magnetic resonance thermometry (MRT), a non-invasive technique for 
monitoring volumetric tissue temperature in real-time. Several applications will be presented 
at different stages of clinical advancement (from bench to clinical trial). Finally, the adaptation 
of these methods to study non-invasively the thermoregulatory mechanisms in the human 
body will be presented, along with links with the SFT community.
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The 8th edition of the Advanced Autumn school ‘Thermal Measurement and 
Inverse Techniques’ is run by the METTI Group (MEsures en Thermique et Techniques 
Inverses) that constitutes a division of the Société Française de Thermique (SFT, French 
Heat Transfer Society). 

* * *

* * *

Two books are distributed at the beginning of the school. Volume 1 contains the texts used as 
supports for the lectures and Volume 2 contains the texts used as supports for the tutorials. 

Sept. 24th / 29th, Oléron (France) 2023

Advanced Autumn School in
Thermal Measurements & 

Inverse Techniques

https://metti8.sciencesconf.org/		

Finding ‘causes’ from measured ‘consequences’ using a mathematical model linking the two is 
an inverse problem. This is met in different areas of physical sciences, especially in Heat 
Transfer. Techniques for solving inverse problems as well as their applications may seem 
quite obscure for newcomers to the field. Experimentalists desiring to go beyond traditional 
data processing techniques for estimating the parameters of a model with the maximum 
accuracy feel often ill prepared in front of inverse techniques. In order to avoid biases at 
different levels of this kind of involved task, it seems compulsory that specialists of 
measurement inversion techniques, modelling techniques and experimental techniques share 
a wide common culture and language. These exchanges are necessary to take into account the 
difficulties associated to all these fields. It is in this state of mind that this school is proposed. 
The METTI Group (Thermal Measurements and Inverse Techniques), which is a division of the 
French Heat Transfer Society (SFT), has already run or co- organized seven similar schools, in 
the Alps (Aussois, 1995 and 2005), in the Pyrenees (Bolquère-Odeillo, 1999), in Brasil (Rio de 
Janeiro, 2009), in Bretagne (Roscoff, 2011), in Pays Basque (Biarritz, 2015) and in 
Porquerolles island (Porquerolles 2019). For this eighth edition the school is again open to 
participants from the European Community with the support of the Eurotherm Committee.

http://iusti.cnrs.fr/metti7
http://iusti.cnrs.fr/metti7
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