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La Rochelle Université, CNRS, 17000, La Rochelle, France
2 Cerema, BPE Research team, 44200 Nantes, France
3 Institute of Control and Computation Engineering, University of Zielona Góra, ul. Szafrana 2,
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Abstract - This article deals with the optimal sensor positioning in a two-layer slab to retrieve the ther-
mal conductivity of each layer. Three algorithms are evaluated to maximize the D–optimum criterion
quantifying the identification accuracy. Results show that the exchange algorithm is an efficient approach
to determine a local optimum design with a minimum computational cost. In addition, the strategy
based on convex relaxation to place the sensor provides complementary information to the experimenter.

Nomenclature

c volumetric heat capacity, J .m−3 .K−1

D experimental design
h surface heat transf. coeff., W .m−2 .K−1

J , ξ set of label position
k thermal conductivity, W .m−1 .K−1

` wall length, m
M information matrix
q radiation flux, W .m−2

x spatial coordinate, m
t time, s
T wall temperature, K

w sensor indicator variable,
[
−
]

Greek symbols
θ sensitivity coefficients,

[
−
]

Φ D-optimum criterion,
[
−
]

Ω t time domain, s
Ωχ candidate location domain, m
Ωx space domain, m
Index and exponent
L left boundary
R right boundary
∞ ambient air

1. Introduction

In France, the average increase of the building stock scales with 1 % , highlighting a crucial
environmental issue on building retrofitting. To efficiently plan such actions, in-situ diagnosis
are required to determine the uncertain thermophysical properties of the layers composing the
walls. Such inverse problem can be solved using experimental observations of temperature
inside the wall [1]. To maximize the accuracy of the estimates, it is crucial to determine the
optimal experiment design (OED) before carrying the experiments. In this article, the OED
is explored with respect to the sensor positioning, considering a thermal conductivity inverse
heat conduction problem in a two-layer slab submitted to climatic boundary conditions. Three
algorithms are investigated and discussed to determine the OED, i.e. the optimal positions of
the sensors inside the wall to determine the diffusivity of each layer.

2. Mathematical model

The investigations focus on the heat transfer through a multi-layer building wall as illustrated
in Figure 1(a). The space domain is Ωx =

[
0 , `

]
, where `

[
m
]

is the length of the wall. We
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denote by ` 1 and ` 2 the length of each layer. By convention, ` = ` 1 + ` 2 . The phenomena
occur over the interval Ω t =

[
0 , t f

]
, where t f

[
s
]

is the time horizon. The one-dimensional
heat transfer governing equation is:

c i
∂T

∂t
=

∂

∂x

(
k i
∂T

∂x

)
, ∀x ∈ Ωx , t ∈ Ω t , ∀i ∈

{
1 , 2

}
, (1)

where T
[

K
]

is the temperature inside the wall and the material properties of each layer are the
thermal conductivity k i

[
W .m−1 .K−1

]
and the volumetric heat capacity c i

[
J .m−3 .K−1

]
.

At the interface between the wall and the outside air, convective and short wave radiation heat
transfer occur so that the boundary conditions is:

−k 1
∂T

∂x
+ hL T = hL T∞ , L( t ) + q∞ , L( t ) , x = 0 , (2)

where hL
[

W .m−2 .K−1
]

is the surface heat transfer coefficient, T∞ , L is the outside ambient
temperature varying according to climatic data and q∞ , L

[
W .m−2

]
is the incident short wave

radiation flux, corresponding to the solar irradiance for the wavelength between 0.2 µm and
3.0 µm . On the inside interface, the boundary is only submitted to convective exchange with
the ambient air T∞ , R :

k 2
∂T

∂x
+ hR T = hR T∞ , R( t ) , x = ` , (3)

At the interface between the two materials, the continuity of the heat flux and of the fields is
assumed. Thus, two additional equations are formulated:

T (x − ε , t ) = T (x + ε , t ) , k 1
∂T

∂x

∣∣∣∣
x − ε

= k 2
∂T

∂x

∣∣∣∣
x + ε

, ∀ ε → 0 , x = ` 1 .

(4)

Last, initially the wall is in steady state:

T
(
x , t = 0

)
= T 0(x ) , ∀x ∈ Ωx , (5)

where T 0 is a given function of space. Note that for numerical reasons, the mathematical prob-
lem is transformed into a dimensionless formulation with scaled quantities.

3. Optimal experiment design regarding sensor positioning

A certain number of sensors can be placed in each layer to obtain temperature measurements
to solve an inverse problem regarding parameters k 1 and k 2 . The issue is to determine the
optimal sensor positions for each layer. The methodology to search for an optimal experiment
design is now presented.

3.1. Experiment Design

The total number of sensor locations in the wall is N = N 1 + N 2 , N 1 being in the first
layer and N 2 in the second. The set of all possible labels identifying sensor positions is defined
by:

J =
{

1 , . . . , N
}
. (6)
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Figure 1 : Illustration of the multi-layer domain (a) and of the problem of optimal experimental design
in terms of sensors locations (b). For illustration, J =

{
1 , 2 , 3 , 4 , 5 , 6

}
and ξ =

{
3 , 5

}
.

By extension, we have J = J 1 ∪ J 2 and J 1 ∩ J 2 = ∅ with J 1 =
{

1 , . . . , N 1

}
and

J 2 =
{
N 1 + 1 , . . . , N 1 + N 2

}
. The set of candidate locations is:

Ωχ =
{
χ j
}
j ∈ J , (7)

where χ j
[

m
]

is a sensor location, so χ j ∈ Ωx . By extension, the set of sensor location is the
union of ones in both layers Ωχ =

{
χ j
}
j ∈ J 1

∪
{
χ j
}
j ∈ J 2

.

The experimental design is illustrated in Figure 1(b). It consists in positioning n = n 1 + n 2

sensors (n 6 N ) in the wall at the position labels ξ. So, the experimental design is formulated
by:

D =
{
ξ , n

}
, n = card ξ , ξ ⊂ J . (8)

By extension for each layer i ∈
{

1 , 2
}

, we haveD = D 1 ∪D 2 withD i =
{
ξ i , n i

}
, n i =

card ξ i , ξ i ⊂ J i .

3.2. Optimal Experiment Design

The optimal experiment design D ◦ corresponds to the situation where the accuracy of the
estimates is maximal. Following the methodology described in [2], the OED is defined by:

D ◦ = arg max
D

Φ , (9)

with Φ being the D-optimum design criterion:

Φ = log det M , (10)

where M is the so-called FISHER information matrix:

M =
[
M p q

]
, M p q =

N∑
k = 1

w k

∫ 1

0

θ p(x = χ k , t ) · θ q(x = χ k , t ) dt , (11)

where
{
w k
}
k∈J is the set of binary decision variables (also called design weights) indicating

whether or not sensor are placed at the locations labeled by the elements of J :

w j =

 1 , j ∈ ξ ,

0 , j /∈ ξ ,
∀j ∈ J . (12)



Last, the sensitivity coefficients are:

θ i =
σ k
σT

∂T

∂k i
, ∀i ∈

{
1 , 2

}
, (13)

which are computed by differentiating directly the governing equations (1) with respect to (5)
to the corresponding parameters. The constants σ k and σT are set to obtain dimensionless
quantities. Complementary works investigating the OED for parameter estimation of transfer
phenomena in building porous materials can be consulted in [1, 3, 4].

3.3. Searching for the OED

Three possible strategies to determine the OED are investigated. For better understandings,
note that the experimental design can also be defined through the sensor position:

D ≡
{{

χ j
}
j ∈ ξ , n

}
. (14)

In what follows, the designs (i.e., the sets of position labels selected for sensor placement) are
understood as the appropriate subsets of J .

3.4. Strategy 1: optimization considering integer parameters

The first one is to consider Eq. (9) as an optimization problem with respect to the N design
weights w j:

D ≡
{
w j
}
j ∈ J , (15)

under the constraint of the maximum number of sensors:

N∑
j = 1

w j = n , (16)

and limiting each design weight to be binary:

w j ∈
{

0 , 1
}
, ∀ j ∈ J . (17)

Such problem is solved using the genetic algorithm in the Matlab environment with unknown
parameters set as integers.

3.5. Strategy 2: optimization of binary design weights using the exchange algorithm

The second strategy also consists in solving the problem as defined in Section 3.4. with
binary decision elements. However, an exchange algorithm (1) is used [5]. It runs as follows
over the iterations k .

Step 1. At k = 0 , an initial design is selected:

ξ 0 = ξ 0
1 ∪ ξ 0

2 , (18)

where n = card ξ 0 , n 1 = card ξ 0
1 and n 2 = card ξ 0

2 . For such design, the D-optimum
criterion Φ

(
M
(
ξ (0)

) )
is computed using Eqs. (10) and (11).



Step 2. The second step consists in exchanging the position labels of the current design with
ones that correspond to vacant sites so as to maximally improve the D-optimum criteria. It is
performed by determining the labels

(
i ? , j ?

)
such that:(

i ? , j ?
)

= arg max
( i , j )∈S (k)

∆
(
i , j

)
, (19)

where

S (k) = ξ (k) ×
(
J \ ξ (k)

)
, (20)

so that S (k) contains all possible exchanges of points, at which a sensor currently resides by
points which are currently vacant. The quantity ∆

(
i , j

)
evaluates the relative changes in the

D-optimum criterion:

∆
(
i , j

)
=

(
Φ
(
M
(
ξ i↔ j

) )
− Φ

(
M
(
ξ (k)

) ))
·
(

Φ
(
M
(
ξ (k)

) ))−1
, (21)

where ξ i↔ j means the design in which label position i has been replaced by label j .

Step 3. If the relative increase in the D-optimum criterion is lower than a set tolerance

∆
(
i ? , j ?

)
6 η , (22)

then the algorithm stops since ξ (k) is a locally optimal design. Otherwise, the iterations contin-
ues by setting ξ (k+1) ← ξ (k) and k ← k + 1 and coming back to Step 2. The Algorithm 1
synthesizes the procedure.

Algorithm 1 Exchange algorithm to determine the OED using Strategy 2.
1: Sample candidate design ξ 0 . Step 1
2: Compute D-optimum criteria Φ

(
M
(
ξ (0)

) )
3: k = 0
4: while ∆

(
i ? , j ?

)
> η do

5: State S k . Step 2
6: Determine labels

(
i ? , j ?

)
according to Eq. (19)

7: Compute ∆
(
i ? , j ?

)
with Eq. (21)

8: k = k + 1

9: end
10: Set OED D ◦ =

{
ξ k−1 , n

}

3.6. Strategy 3: optimization via convex relaxation

The last strategy is very similar to the first one described in Section 3.4. at the exception
that the decision elements are relaxed to be any real numbers in the unit interval [6]:

w j ∈
[

0 , 1
]
, ∀ j ∈ J . (23)

The constraint imposes that the sum of decision elements equals the number of sensors:

N∑
j = 1

w j = n . (24)



As a result, a convenient convex optimization problem is obtained. Then, with determined
optimal relaxed weights, the probability distribution of each position sensor can be assessed by:

P j = w j ·
( N∑

j=1

w j

)−1
. (25)

Such problem is solved using the interior point algorithm in the Matlab environment.

4. Case study

The case study considers an outward layer composed of ` 1 = 30 cm stones with a vol-
umetric capacity c 1 = 2.5 MJ .m−3 .K−1 and an a priori thermal conductivity k 1 =
2.5 W .m−1 .K−1 . The inward layer is a ` 2 = 20 cm insulation material with c 2 =
0.05 MJ .m−3 .K−1 and k 2 = 0.05 W .m−1 .K−1 . The boundary conditions correspond
to measurements obtained from a real building monitored from January 8 th to April 29 th 2009
[1, 7] and illustrated in Figure 2. The initial condition is defined by assuming the wall in a
steady state so that:

T 0(x ) =

{
1.21 · x − 0.9 , ∀x ∈

[
0 , ` 1

]
60.6 · x − 18.7 , ∀x ∈

[
` 1 , ` 2

] [ ◦C ] . (26)

The simulation horizon is t f = 111 d . Regarding the experimental design, N 1 = 14
and N 2 = 9 candidate sensor positions are possible in layers 1 and 2 , respectively. Such
values are obtained by constraining a minimum gap of 2 cm between two neighboring sensors
and avoiding sensors at the interfaces with inside/outside air or between materials. The three
above-described strategies are considered to determine the optimal sensor positions. Tolerances
of optimization solvers are set to 10−8 . In addition, an exhaustive search is carried out by

computing the D-optimum criteria among the
(
N

n

)
possible sensor positions in the wall.
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Figure 2 : Time variation of the boundary conditions for temperature (a) and incident heat flux (b).

Results of all approaches are presented in Table 1 for n = 5 sensor to be placed. Recalling
that the number of sensor is set before the optimization procedure. For all methods, the initial
guess are the same label position, chosen randomly. Note that tests have been performed for
different sets of initial guesses (randomly chosen) to verify the consistency of the results. The
results are consistent among all strategies. For Strategy 1 and 2, the optimal experimental design
is the same with the reference one given by the exhaustive search. For Strategy 3 (real decision
elements) results differs for one sensor position. However, the probability density function



of the sensor location (Figure 3(a)) indicates a positioning of four sensors consistent with the
other approaches. For the fifth sensor, the probability is almost equivalent for a sensor placed at
36 cm or 42 cm . The first choice is consistent with reference results. Thus, the Strategy 3 gives
complementary information since an experimenter could choose among two almost equivalent
experiment designs.

To illustrate this last point, Figure 3(b) shows the variation of the sensor positioning proba-
bility according to the number of sensors. Starting with n = 2 , the optimal design consists in
placing one sensor in each layer. Two equivalent positions are possible for the sensor in layer
2 . With n increasing, there are more sensors to be placed in layer 2 . The sensor positioning is
consistent among the designs, i.e. the sensors are located in the last third of layer 1 and in the
middle of layer 2 . Those results depends on the sensitivity functions of the problem which are
related to the characteristic diffusion time of the materials.

Figure 4(a) shows the experimental design determined using the second strategy with the
exchange algorithm according to the iteration number (with n = 5 sensors to place). At each
iteration, only one sensor position is changed as set in the algorithm. Very few iterations are
required for the algorithm to determine a local optimal solution. Compared to other solutions,
it is the one with the smallest cost function evaluations. The ratio compared to the exhaustive
search scales with 0.01 % . The optimization considering integer decision elements w j is the
strategy with the highest ratio of more than 17 % . In our numerical experiments, this strategy is
relatively unstable converging to one of the several local maxima in the discrete space illustrated
in Figure 4(b).

Sensor position
[

cm
]

Cost function evaluation
χ 1 χ 2 χ 3 χ 4 χ 5 Number Ratio

[
%
]

Exhaustive search 26 28 36 38 40 33 649 −
Strategy 1 (int. param., gen. alg.) 26 28 36 38 40 5806 17.25
Strategy 2 (int. param., exch. alg.) 26 28 36 38 40 5 0.01
Strategy 3 (real param., int. point alg.) 26 28 38 40 42 552 1.64

Table 1 : Optimal Experiment design for n = 5 sensor positions. The vertical line designates the
interface between two layers.

(a) (b)

Figure 3 : Variation of the selected design according to the iterations of the exchange algorithm (Strat-
egy 3) (a). Variation of the probability of the sensor position considering real decision elements (Stategy
3) according to the number of sensors (b).
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Figure 4 : Probability of the sensor position considering real decision elements (Strategy 2) (a). Varia-
tion of the D–optimum criteria for 350 positions out of the possible combination (N = 23 and n = 5)
(b).

5. Conclusion

This article investigates the OED in terms of sensor positioning in a two-layers slab for
a thermal conductivity inverse heat conduction problem. The issue is to maximize the D–
optimum criterion according to the sensor location. Three algorithms are evaluated to solve the
optimization problem. The first one uses a genetic algorithm considering the decision elements
to place a sensor at one position as binary (0/1 sensor). The second one employs an exchange
algorithm. For the last strategy, the problem is relaxed by considering the decision elements as
real numbers in the unit interval. In this way, probabilities of sensor positioning are obtained.
Results highlight a good consistency of the OED determined by the three approaches. Strategy
2 is the most efficient from a computational point of view while strategy 3 give complementary
probabilistic information for the experimenter. Future works should focus on extending the
methodology for two-dimensional heat transfer where exhaustive OED search has a too high
computational cost requiring alternative strategies. Then, experiments should be performed to
determine the unknown parameters.
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