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2 INPHYNI UMR CNRS 7010, Université de Côte d’Azur, Institut de Physique de Nice
Avenue Joseph Vallot, 06108-Nice (France)
∗(Corresponding author: innocent.mutabazi@univ-lehavre.fr)

Abstract - The linear stability analysis (LSA) was conducted on a ferrofluid confined in an infinitely
long cylindrical annulus, with differential heating between the inner and the outer cylinder. A stack
of magnets inside the inner cylinder providing a magnetic field. In addition, the cylinders can rotate
rigidly with an angular frequency Ω. The ferrofluid is subject to the Archimedean buoyancy due to the
terrestrial gravity g, magnetic buoyancy due to magnetic gravity gm, and centrifugal buoyancy due to
the centrifugal acceleration. In this study we identify the different types of instalibity modes that can
develop in such a fluid system.

Nomenclature

A,C Coefficients for base state axial velocity.
FB Magnetic buoyancy due to the Kelvin force.
g Terrestrial gravity, m.s−2

gm Magnetic gravity, m.s−2

gc Centrifugal gravity, m.s−2

v Velocity,m.s−1

Ram Magnetic Rayleigh number
Ta Taylor number
Pr Prandtl number
Gr Grashoff number
K0,K1Modified Bessel functions of second kind
M Magnetization,A.m−1

B Applied magnetic field,T
R1 Inner radius, m
R2 Outer radius, m
T1 Inner cylinder temperature, K
T2 Outer cylinder temperature, K

d = R2−R1Width of the gap, m
n Number of azimuthal modes
Greek symbols
Ω Rotation angular frequency rad.s−1

ω Mode angular frequency rad.s−1

η = R1/R2Radius Ratio
λb Axial spacing of the magnets, m
Θ Dimensionless temperature of the base flow
π Dimensionless modified pressure
ν Kinematic viscosity, m2.s−1

α Thermal expansion coefficient, K−1

αm Thermal variation of magnetization, K−1

γa = α∆TDimensionless thermal expansion coefficient
κb Axial wavelength of the magnetic field, m−1

ρref Density of fluid at reference temperature,
kg/m3

1. Introduction

Ferrofluids are stable colloids of nano particles nearly 10nm in diameter of ferro or ferri-
magnetic particles in a carrier fluid. The stability of these fluids is governed by the Brownian
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motion in the fluid. A wide range of carrier fluids having oil or aqueous base [1] could be used
to fabricate, and many ferrofluids are commercially available to satisfy particular applications.

Figure 1 : Description of a ferromagnetic particle.[2]

Fig.1 shows the magnetic particles coated with a surfactant to avoid any coagulation between
the particles. These particles need to remain suspended in the fluid.

Under the influence of an external magnetic field these fluids tend to orient themselves in the
direction of the applied field. Ferrofluids, due to their thermal capacity, are used in several heat
transfer applications. The external applied field can have an influence on the fluid dynamics.
Hence, a linear stability analysis (LSA) has been performed to understand the stability of the
ferrofluids in micro-gravity as well as in terrestrial conditions.

2. Flow equations and system under study

In this section we will describe the system flow and the governing equations.

2.1. Flow configuration

In the Fig.2 we have two coaxial cylinders which are infinitely long along the vertical di-
rection and the gap between the two cylinders is filled with Newtonian ferrofluid. The inner
cylinder is at radius R1 and it is maintained at temperature T1, the outer cylinder has a radius
R2 at temperature T2, where T1 > T2.

The magnetic field is provided by the stack of permanent magnets placed inside of the inner
cylinders and these magnets are evenly placed at a distance of λb, hence the axial wave number
of the applied field is given by κb = 2π/λb.

2.2. Body force

The flow is subject to three body forces : the Archimedean buoyancy ρθg, the centrifugal
buoyancy ρθgc and the magnetic buoyancy ρθgm where θ = T−Tref , the reference temperature
Tref can be chosen either at the inner cylinder or the outer cylinder or at the central cylindrical
flow surface. The magnetic buoyancy stems from the Kelvin force acting on a ferrofluid in a
magnetic field B[1].

FB = M0∇|B|+ |B|∇M0 (1)

In the Boussinesq approximation, the second term in Eqn.1 is of second order and hence it can
be neglected. The magnetization density M0 is a function that decreases with the temperature
and is defined as

M0 = Mref [1− αmθ] (2)



Figure 2 : Flow configuration : Cylindrical annulus with the inner cylinder filled of magnets stacked
along the vertical axis.

where αm = K/Mref , K = −∂M/∂T is the pyromagnetic coefficient. Hence the magnetic
buoyancy becomes,

FB = −αmMrefB0κK1(κr)θer + ∇ (MrefB0K0(κr)) (3)

The gradient term in the Eqn.(3) is integrated into the pressure term and the non conserva-
tive part is defined as the magnetic buoyancy ραθgm where we have introduced the centripetal
magnetic gravity defined as,

gm =
αmMrefB0κbK1(κbr)

αρref
er (4)

2.3. Governing equations

We obtain the following set of dimensionless flow equations,

∇.v = 0 (5)

dv

dt
+ (v.∇)v = −∇π + ∆v −Grθez −

Ram
Pr

θer − γa
v2

r
θer (6)

dθ

dt
+ (v.∇)θ =

1

Pr
∆θ (7)

where the control parameters are defined as, Prandtl number Pr = ν/κ, magnetic Rayleigh
number Ram = α∆Tgm(R)d3/νκ defined at the mid gap and the Grashof number Gr =
−α∆Tgd3/ν2.

2.4. Base state flow

The base state flow is considered to be stationary, axisymmetric and axially invariant and can
only depend on the radial coordinate.



2.4.1. Temperature and velocity profile

The temperature in the base state is given by,

Θ =
ln[r(1− η)]

ln(η)
(8)

and the axial velocity is given by [3],

Wb = A
{
C
[
(1− η)2r2 − 1 + (1− η)2Θ

]
− 4

[
r2(1− η)2 − η2

]
Θ
}

(9)

where the coefficients A and C are obtained from the no-slip conditions at the cylindrical walls

A =
1

16(1− η)2
(10)

C =
(1− η2)(1− 3η2)− 4η4 ln(η)

(1− η2)2 + (1− η4) ln(η)
(11)

Figure 3 : Variation of the base state temperature
with the dimensionless radial coordinate

Figure 4 : Variation of the axial velocity with the
dimensionless radial coordinate

Fig.3 and Fig.4 show the curvature dependence of the temperature and axial velocity of the base
flow. The flow is ascending near the inner cylinder and it is a descending near the cold outer
cylinder.

2.4.2. Magnetic gravity in the base state

We can estimate the magnitude of the magnetic gravity in the cylindrical annulus from the
Eqn.(4). For, we choose the value λb = 3.54d as suggested by Tagg and Weidman [1]. We use
data of the water-based ferrofluid Fe3O4 from [4] [5] to calculate the values of the magnetic
averaged gravity 〈gm〉 = 1

R2−R1

∫ R2

R1
gmdr given in Table(1)

3. Results

The study was conducted to understand the thermo-magnetic convection in a cylindrical
annulus filled with a water-based ferrofluid whose Prandtl number is Pr = 15.



η 〈gm〉 /g
0.65 15.5371
0.7 15.4513
0.95 15.1262

Table 1 : Ratio of the average magnetic gravity to the terrestrial gravity.

We have superimposed infinitesimal perturbations of the base flow and linearized resulting
equations.The perturbations have been expanded into normal modes of the form exp(st+ inϕ+
ikz), where s = σ + iω is the complex temporal growth rate, kz is the axial wavenumber, n
is the number of modes in the azimuthal direction. The resulting eigenvalue problem is solved
with Chebyshev collocation method.

3.1. Thermo-magnetic convection in microgravity

In the space where the gravity is negligible the Archimedean buoyancy vanishes and has no
effect on the flow destabilization. The thermal convection can thus be induced by the magnetic
buoyancy. We have investigated the thermomagnetic convection in microgravity conditions and
the effect of solid body rotation on the thermomagnetic convection.

Figure 5 : Eigenfunctions of velocity and temperature perturbations for stationary cylinders in micro-
gravity for η = 0.85, Ta = 0

In Fig.5 we have plotted the eigenfunctions of velocity and temperature perturbations for
zero rotation i.e. Ta = 0. Fig.5a shows the cross section in the r-z plane of the critical modes.
These critical modes have helical structure Fig.5b (kc = 0.42, nc = 19) and they are stationary
Fig.5c (ω = 0).
When a small body rotation is added, the threshold of the thermomagnetic convection is de-

layed and the critical modes become columnar oscillatory modes Fig.6c (ω 6= 0).



Figure 6 : Eigenfunctions of velocity and temperature perturbations in microgravity η = 0.85, Ta = 40

Figure 7 : Eigenfunctions of velocity and temperature perturbations for thermal modes with no rotation
in terrestrial conditions η = 0.9.

3.2. Thermo-magnetic convection in terrestrial conditions

In the presence of the Earth’s gravity we need to include the Archimedean buoyancy which
has an influence on the stability of the flow.

In the terrestrial conditions for Pr = 15, there exist two types of modes: the thermal modes
and magnetic modes. Thermal modes exist for Pr > 11.5 [3] for small values of Ram. For
greater values of Ram we find that the modes are magnetic.

Similar analogy can be made with dielectrophoretic fluids where for higher values of electric
field and Pr, critical modes are thermal modes and electric modes[6].

For the case of no rotation the thermal modes are oscillatory and magnetic modes are sta-



Figure 8 : Eigenfunctions of velocity and temperature perturbations for magnetic modes with no rotation
in terrestrial conditions η = 0.9.

Figure 9 : Eigenfunctions of velocity and temperature perturbations for thermal modes with small rota-
tion in terrestrial conditions Ta = 20 η = 0.9.

tionary as shown in Fig.7 and Fig.8 and in the case of Ta = 20 both the thermal and magnetic
modes are oscillatory Fig.9 and Fig.10.

4. Conclusion

For a small amount of applied magnetic field the magnetic gravity gm generated is on an
average 15 times grater than the terrestrial gravity. In microgravity situation it is the centripetal
gravity gm which destabilizes the flow and the centrifugal gravity gc is the stabilizing force
showing that the rotation of cylinders delays the onset of the instabilities.



Figure 10 : Eigenfunctions of velocity and temperature perturbations for magnetic modes with small
rotation in terrestrial conditions Ta = 20 η = 0.9.

The nature of modes in microgravity are always magnetic and can be stationary or oscil-
latory depending on the rotation rate of the cylinders. For stationary cylinders they are non-
axisymmetric and for rotating cylinders they are columnar. In the terrestrial conditions there is
a vertical velocity Wb induced by the torque of the Archimedean buoyancy. For small number
of Ram the critical modes are thermal and for large number of Ram they are magnetic. Thermal
modes are oscillatory and magnetic modes are stationary only in zero rotation, otherwise they
are oscillatory.
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