Cavity size influence on Rayleigh-Bénard convection
under the effect of wall and gas radiation
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Abstract - We investigate Rayleigh-Bénard convection in a cubical cavity filled with humid air
under the effect of wall and gas radiation. Coupled direct numerical simulations are carried out for
a radiating air/HoO/CO2 mixture at room temperature, using a Chebyshev spectral method for the
flow and a ray-tracing method for the radiation field. Three different Rayleigh numbers are studied,
from Ra = 107 to Ra = 10°. Time-averaging is then applied to compare the results, regardless
of the multiple flow configurations obtained. Under the Boussinesq approximation, solutions to the
uncoupled simulations only depend of the Rayleigh and Prandtl numbers and are not affected by
the size of the cavity. However, when radiation is taken into account, coupled results depend on the
composition of the gas mixture and the cavity size. In this work we consider a single gas mixture
composition and vary the size of the cavity: two cavitiy sizes are then considered with edges of 1
and 3 meters long. As the cavity size increases, at fixed Rayleigh number, so does the effects of
radiation on the flow. The convective flux in the core, as well as the kinetic energy, are increased as
radiation is taken into account, and this increase is more important for the larger size of the cavity.
The contribution of radiation to the potential energy balance and to the “thermal energy” balance are
presented. The large-scale circulation of the fluid settles in vertical mid-planes or diagonal planes
depending on the radiation conditions, and reorientations are occasionally observed in the cavity. Ra-
diation affects the large-scale circulation, modifying its structuration and the frequency of reorientations.

Nomenclature

a  thermal diffusivity, m?s~! AT temperature difference between the top and
g gravitational acceleration, m s2 bottom walls, K

I radiative intensity, Wm™2sr~! cm v wavenumber, m ™!

I°  Planck function, Wm™2sr~!cm vy kinematic viscosity, m? s~

L cavity size, m x  absorption coefficient, m ™

L  dimensionless angular momentum A thermal conductivity, Wm ™! K~1
‘Prqq dimensionless radiative power 6  dimensionless temperature

S exchange area, m? Q  direction

T  temperature, K Index and exponent

u  dimensionless velocity v monochromatic

x  dimensionless position Dimensionless quantities

Greek symbols Ra Rayleigh number

[ thermal expansion coefficient, K~! Pr  Prandtl number
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1. Introduction

It is now well established that radiative transfer has a strong effect on fluid flows in ther-
mally driven natural convection, encountered in various applications such as atmospheric flows,
flows in buildings or the cooling of electronical components. The presence of radiation affects
the temperature field in the system, which controls the local buoyancy and the motion of the
fluid. Since the first numerical studies of the Rayleigh-Bénard flow [1, 2], radiation is known
to smooth the temperature field and delay the onset of convection at low Rayleigh numbers.
At higher Rayleigh numbers, between 10° and 10%, Rayleigh-Bénard flows in confined cubical
cavities are characterised by a Large Scale Circulation (LSC) settling either in a drum-like for-
mation, with stream lines in planes parallel to a lateral wall, or in a diagonal plane across the
cavity. Intermittent reorientations of the flow are sometimes occuring from one plane to another
[3, 4]. However, studies on coupled radiation and convection are scarce in Rayleigh-Bénard
configuration, and mostly limited to a gray gas model [5]. Taking into account radiation, and
moreover with a real emitting gas model, bears the problem of the dimensionless numbers used
to characterize the flow: when radiation is not considered, there are only two parameters (the
Rayleigh and Prandtl numbers) controling the solutions of the Navier-Stokes equations, under
the Boussinesq approximation. But when real gas radiation is taken into account, more param-
eters appear in the equations, among them the optical thickness at different wavenumbers for
real molecular gases and, for a given gas mixture and mean temperature, the size of the cavity.

Previous work analysed the influence of radiation in a one-meter-large cubical cavity, filled
with a mixture of air and small amount of H,O and CO, as radiating gas [6, 7]. The present
work aims a better understanding of the effects of radiation by enlarging the size of the cavity
to a three-meter large cube (more representative of inhabitations), thus increasing the optical
thickness of the medium.

2. Studied configuration and numerical methods

We consider a cubical cavity, heated from the bottom and cooled from the top walls, both
being considered isothermal, and black from a radiative perspective. The lateral walls are as-
sumed adiabatic and perfectly reflecting. The cavity is filled with a mixture of air, carbon diox-
ide (X¢co, = 0.001) and water vapour (X z,0 = 0.02) at a mean temperature of 7 = 300K and
at atmospheric pressure (A = 6.63 x 1072Wm K™, a = 2.25 x 107°m?s~!, Pr = 0.707).
This system is governed by the Navier-Stokes equations under the Boussinesq approximation.
In the energy balance, a radiative source term appears, which is obtained by solving the equa-
tion of radiative transfer. In the absence of radiative transfer, the solutions of the system only
depend on two parameters the Rayleigh (Ra) and Prandtl (Pr) numbers, defined by:

3
Ra = M . Pr= vr (1)
via a

The system of equations is solved using a Chebychev spectral method for the Navier-Stokes
equations, coupled with a ray-tracing method for radiation. To limit the computational cost
of the ray-tracing method, the ADF model is used to describe the radiative properties of the
gas [8] and a subgrid model is used to account for the radiation of small spatial scales [9, 10].
Parallelisation of the code is ensured via domain decomposition along the vertical axis for

convection, and via the distribution of the rays for radiation.

The reference velocity and time are chosen accordingly to the work of Patterson and Im-



berger [11], and the dimensionlesse temperature 6 is defined as follow:
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In absence of radiation, these settings allow the dimensionless velocity w to remain at the same
order of magnitude from Ra = 10° and higher. However, when radiation is taken into account,
the complex spectrum of the real gas leads to consider a large range of optical thicknesses and
the radiative power no longer depends only on dimensionless parameters. For a given molecular
composition of the gas, the dimension of the cavity matters.
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Three configurations are studied:

e The air is considered dry and radiation is not taken into account. In this case, the size
of the cavity doesn’t matter and the results only depend on the Rayleigh and Prandtl
numbers. This will be referred as the no-radiation case,

e The radiation of the humid air is taken into account, in a cavity with one-meter long edges.
This will be referred as the radiation 1m case,

e The radiation of the humid air is taken into account, in a cavity with three-meters long
edges. This will be referred as the radiation 3m case.

Direct numerical simulations are carried out for these three cases, for three different Rayleigh
numbers: Ra = 107, Ra = 10® and Ra = 10°. It is worth noting that, for a given Rayleigh num-
ber, increasing the size of the cavity corresponds to a reduction of the temperature difference
AT between the upper and lower walls. After reaching a statistically steady state, numerical in-
tegration is carried out for a certain dimensionless time (¢ = t/t,.; = 5000 for Ra = 107 and
Ra = 10%, and t* = 100 for Ra = 10°). The results are analysed in terms of statistical average,
defined as the combination of averaging over time and over the symmetries of the problem. The
complete description of the methodology and numerical details can be found in [7].

3. Statistical analysis

Figure 1 shows the temperature, kinetic energy and radiative power (defined as P,.q =
Pabsorbed — Pemitted) Vertical profiles at different Rayleigh numbers, for the three cases stud-
ied (no-radiation, radiation in 1-meter cavity and radiation in 3-meter cavity), averaged over
horizontal planes. In Rayleigh-Bénard convection, the averaged temperature is nearly uniform
in the cavity, except in a thin layer of the fluid near the upper and lower walls where a strong
temperature gradient is found. Let’s consider the lower half of the cavity and, from the lower
wall, travel upwards along the vertical axis. When radiation is taken into account, the fluid
near the lower wall is strongly emitting, leading to negative radiative power. Because of the
convection mixing in the cavity, the temperaure gradient is strong near the wall and the fluid
is rapidly becoming colder, close to the mean temperature. This colder fluid absorbs a lot of
radiation coming from the wall and the fluid near the wall, which corresponds to the hump in
radiative power seen in the lower half of the cavity. This heat transfer contributes to increase the
thermal gradient in the core of the cavity, in radiative cases, as particularly seen in the radiation
3m case.

This modification of the thermal gradient in the core of the cavity leads to an increase of the
potential energy in the radiation case, wich contributes to increase the kinetic energy as well.
This phenomenon is amplified in the radiation 3m case and will be discussed later (figure 3).
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Figure 1 : Temperature, kinetic energy and radiative power profiles along the vertical axis, averaged
over horizontal planes. No radiation (red line), radiation in I-meter cavity (black line), radiation in a
3-meter cavity (blue line).

Figure 2 shows the conductive, convective and radiative flux profiles along the vertical axis,
averaged over horizontal planes. As the lateral walls are adiabatic, the sum of the different
fluxes is constant. In the no-radiation case, there is an equilibrium between conductive and
convective fluxes in the cavity. As the temperature gradient is close to zero near the center of
the cavity, the conductive flux is close to zero as well, and the convective flux is constant. But
the presence of radiation modifies this equilibrium, adding a new term to the balance, which
allows a higher convective flux in the center.

Figure 3 displays the kinetic energy (e, = %M), the potential energy (e, = —Pr6(25—0.5))

and the “thermal energy” (eg = 50?), averaged over the whole domain, for the three considered
Rayleigh numbers. In all three cases, radiation amplifies the energy level, and the effect is

enhanced as the cavity size increases.

As seen in Figures 1, 2 and 3, the effects of radiation increase with the cavity size and
decrease with the Rayleigh number. The energy balance writes indeed:
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with the dimensionless radiative power defined by
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Figure 2 : Conductive, convective and radiative flux profiles along the vertical axis, averaged over
horizontal planes. No radiation (red line), radiation in 1-meter cavity (black line), radiation in a 3-
meter cavity (blue line).
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Figure 3 : Total kinetic energy (ey),,, potential energy (e,), and “thermal energy” (eg), as a function of
the Rayleigh number. No radiation (red symbols), radiation in I-meter cavity (black symbols), radiation
in a 3-meter cavity (blue symbols).
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In the energy budget, the contribution of radiation roughly scales as:

1
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where kp = [k, I0(To)dv x 7/(cT}) is the Planck mean absorption coefficient. As the
Rayleigh number increases, the relative effect of radiation compared to convection is damp-
1

ened by the ir factor. However, at a fixed Rayleigh number, the size of the cavity can partly

compensate this phenomenon, as the radiative power also scales as L?.

Let us consider the kinetic energy: in the no-radiation case, the kinetic energy does not vary
significantly. This shows that the reference velocity used to make the velocity dimensionless
(Uper = @), corresponding to a balance between the buoyancy and inertial forces, is well
suited for this case. It is not the case, however, when radiation is taken into account, even more
when the cavity size increases.

Comparing the 3-meter cavity to the 1-meter cavity, the dimensionless velocity stays at the
same order of magnitude: the kinetic energy is less than twice as big at Ra = 107 and about a
quarter bigger at Ra = 10°. However, considering the reference velocity .. = “TRa, which
decreases with the cavity size, it means that the corresponding real velocities are smaller in the

bigger cavity.
4. Temporal analysis

In cubical Rayleigh-Bénard convection, the Large Scale Circulation (LSC) settles, depending
on the Rayleigh number, in a plane parallel to two vertical walls (drum-like flow) or in a diagonal
plane of the cube. This can be detected by observing the angular momentum: L = [ (& — x) X
udx of the flow, with respect to the cavity center (. Figure 4 shows the temporal evolution of
the x; and x5 components of the angular momentum. When both L,, and L,, are non-zero, the
flow is in a diagonal plane and, when one of them is zero (in average), it means that the flow is in
a drum-like configuration. The usual evolution of the LSC, as the Rayleigh number increases,
is from a drum-like circulation (around Ra = 3.10° in the no-radiation case) to a diagonal
circulation (Ra > 10°) [6]. At Ra = 10" and Ra = 102, reorientations of the circulation in
another diagonal can be observed, but that have not been observed at Ra = 10%: The flow
stabilizes in a diagonal plane. However, this may be due to shorter integration time at higher
Rayleigh numbers, caused by the computational cost of the simulation.

When radiation is taken into account, the LSC is delayed in its evolution, compared to the
radiation case: at Ra = 107, in the no-radiation case, the flow is in a diagonal plane, with
reorientations. In the 3-meter cavity, the flow is drum-like, as it can be observed at low Rayleigh
numbers in no-radiation cases, and in the 1-meter cavity there seems to be an intermediate state
between diagonal and drum-like configurations. At Ra = 108, in the no-radiation case, the flow
is also diagonal but with fewer reorientations. In the 3-meter cavity, the flow is mostly drum-
like, with short diagonal episodes around ¢t* = 2000 and ¢ = 2800. In the 1-meter cavity,
the circulation is diagonal, with some reorientations. At Ra = 10?, the LSC is diagonal and no
reorientation are observed in all three cases, maybe due to a too short integration time. Further
investigation is required in that area.

The unsteady flow dynamics in the three cases can be further illustrated by snaphots of the



flow fields. Figure 5 displays instantaneous temperature fields close to the bottom wall of the
cavity, at Ra = 10° and for the three different cases. The presence of radiation does not seem
to significantly influence the nondimensional size of the structures of the flow.
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Figure 4 : Time evolution of x and y component of the angular momentum L, (blue line) and L,
(red line), for different Rayleigh numbers. No radiation (left), radiation in a 1-meter cavity (center),
radiation in a 3-meter cavity (right).

(b)

Figure 5 : Snapshots of the temperature field on a plane z = 0.007, at Ra = 10°. No radiation (left),
radiation in a 1-meter cavity (center), radiation in a 3-meter cavity (right).

5. Conclusion

Taking into account molecular radiative transfer in natural convection requires to introduce
several additional parameters, such as optical thickness or the molecular composition of the



fluid, to grasp the complexity of the phenomenon going on. The flow can no longer be car-
acterized only by the Rayleigh and Prandtl numbers, as it is the case in the no-radiation case.
When the cavity size increases, the effects of radiation are amplified: the dimensionless radia-
tive source term roughly scales as L?. Radiation seems to have two major effects on the flow.
At a statistical level, it increases the kinetic energy and the convective flux in the domain. At
the LSC level, it seems that it delays the evolution of the circulation regarding the Rayleigh
number. Further work will focus on using Proper Orthogonal Decomposition analysis to better
understand the effect of radiation, and of the size of the cavity, on the LSC.
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