Etude par video-microscopie haute résolution de la formation et dissociation d'hydrates de cyclopentane

Ma Lourdes MARTÍNEZ DE BAÑOS, Nelly HOBEIKA Patrick BOURIAT, Daniel BROSETA, Ross BROWN

LFC-R & IPREM, Université de Pau et des Pays de l'Adour

Journée HYDRATES de la SFT, 22 janvier 2016

Why cyclopentane (CP) hydrates?

Structure II

- 8 big cavities filled with CP.
- 16 small cavities: empty or small gas molecules.
- 136 H₂O molecules.

Importance:

- ✓ Model of natural gas hydrates (sII).
- ✓ Strongly similar phenomenology.
- ✓ $T = 0 7^{\circ}C$, **P = 1bar.**
- ✓ Well characterized: calorimetry, spectroscopy, etc.

Phase diagramme

P-T diagram of HC-water hydrate with upper quadruple point. Sloan and Koh. 2008

- This study: around the triple line
 L_w-H-L_{HC}
- P = constant, T variable
- 2 interfaces:
 - ✓ Liquid water + Liquid CP
 - ✓ Hydrate Liquid CP

Investigations at sub-micron resolution of cyclopentane hydrate growth and melting:

- 1) along water/guest interfaces
- 2) along a mineral substrate immersed in the guest from a 'reservoir' of water
- 3) in the bulk of the water phase (where guest molecules are present as an emulsion)

complex processes governed by coupled heat and mass transfers

The experimental system:

Why microscopy?

- HYDRATES WELL CHARACTERIZED:
- -Crystallography
- -Thermodynamics
- -Macroscopic/phenomenological description of nucleation, growth, inhibitors, promoters,...

OPEN QUESTIONS:

- -Nearly all details (on µm scale)
- -Origin of memory effect (related to emulsion)
- -Interactions with the substrate

MICROSCOPY OFFERS:

High resolution
Choice of contrast modes
Novel for hydrate research

Microscopy - DIC

Differential Interference Contrast

exibits variation of refractive index and thickness

Transmission

DIC

Microscopy - Fluorescence

DASPI reveals interfaces

Filter cube

Microscopy - Confocal reflectance

Confocal

avalanche

photodiode

Interference of light

Wide-field

CCD

camera

$$\Delta h = \frac{\lambda}{2n_W} = 200 \ nm$$

Detector

50 μm

Experimental setup - Principle

2mm Hellma cell, inside the cell holder

Experimental setup - Reality

Difficulties

- Prevent local heating
- Prevent condensation
- Thick cell walls (1.2mm) => aberrations

Solutions

- => IR filter
- => dry N₂ flow inside and outside
- => aberration correcting objective

Nucleation sites

Nucleation in the emulsion

Complete dissociation of hydrate (t_0), T = 8°C

Emulsion moving towards the center $t_0 + 3 \text{ min}$, $T = 8^{\circ}\text{C}$

B)

Emulsion moving towards the center $t_0 + 7.5 \text{ min}$, $T = 8^{\circ}\text{C}$

Emulsion in the center $t_0 + 12 \text{ min}, T = 8^{\circ}\text{C}$

CP droplets (from the dissociation) in water

Water/CP interfaces: optimum host-guest ratio

Nucleation sites

Growing crystals are drawn to the contact line

Nucleation sites

Nucleation at the triple line

Crystal replaces three interfaces by one

Hydrate growth and morphology

Low subcooling experiments

 $\Delta T_{\text{sub}} < 3.4^{\circ}\text{C}$ Growth velocity ~0.05-0.1 mm²/min

$$\Delta T_{\text{sub}} = 3.4^{\circ}C$$

 $t_0 + 20 \text{ minutes}$

Polygonal and needle crystals

 $t_0 + 33$ minutes

 t_0 + 45 minutes

Hydrate growth and morphology

High subcooling experiments

 $\Delta T_{\text{sub}} > 3.4^{\circ}\text{C}$ Growth velocity ~1-1.5 mm²/min

Mosaic of hydrate plates from polynucleation

Hydrate and the mineral substrate

NUCLEATION AT 3-LINE

NUCLEATION AT CH₄-LIQ. INTERFACE

Morphological investigation of methane-hydrate films formed on a glass surface Juan G. Beltrán & Phillip Servio *Cryst. Growth. Des.* **10** (2010) 4339-4347

Water source - Precursor water film

Strongly hydrophilic (freshly plasma-treated) glass Beginning of the experiment

- Water drop + 2. 10-6 M DASPI (water-soluble fluorescent)
- Contact angle $\theta \approx 1^{\circ}$ $\tan(\theta) = \frac{d \cdot h}{\left(\frac{d}{2}\right)^2 h^2}$

Strongly fluorescent ring (width $\approx 50 \, \mu \text{m}$) outside the contact line => **thin** (**precursor**) **film** on the substrate (expected for a system exhibiting pseudopartial wetting).

Water source - 'Breath figure' droplets

Cooling down to ~ -15°C

- CP-rich phase becomes cloudy. Strong decrease of solubility in CP => Rain droplets.
- Microdroplets form 'breath figures' on the substrate. They coexist with the precursor film.

Physical picture

Halo growth — 1st formation

Growth of the 1st CP hydrate halo

50 μm

Inverted DIC, scale bar 100µm

Halo growth accelerates away from the contact line: ~ 0.5 – 2 µm/s

Halo melting - Confocal reflectance fringes

Path to A = 5 - 6 fringes =>1--1.2 μ m

A is 100 μ m / 0.5 μ m/s = 200s behind the front

Halo thickens at $1\mu m / 200s = 5 nm/s$

~0.5 µm/s

Halo growth - 2nd and later cycles

Growth of the 2nd CP hydrate halo

'Leap-frog' acceleration of growth

- -Halo sucks in a secondary drop
- -Regurgitates it with a crust
- -Continues
- -Halo crust grows at ~10µm/s

Summary of water sources

PROCESSES CONTRIBUTING TO HALO/CRUST THICKNESS

Crystallization in a 2D emulsion

2D CP-in-water emulsion

Conventional hydrate crystallization

Wegener – Bergeron – Findeisen process

Crystallization in a 2D emulsion

Percolation-like crystallization in the emulsion

'Bridging process'

Dissolution process

Percolation aggregate film

Conclusions and perspectives

Main conclusions obtained with CP hydrate, a close analogue of natural gas hydrate

- Hydrate nucleation occurs in the emulsion and at triple lines (CP/water/substrate)
- Halo growth (0°C):
 - lateral 1 2 µm/s
 - leap-frog 10 µm/s
 - thickening 5 nm/s
- Halo feeds on external water.
- Novel, percolation-type hydrate growth process.

Conclusions and perspectives

Perspectives

- modelling the effects of coupled heat and mas transfers

- go to higher pressures/gas hydrates (CO2 & CH4

hydrates)

- other geometries: glass capillaries. Coupling with other characterization methods (e.g., Raman: coll with ISM Bordeaux)
- Interaction with other substrates/behavior in porous media.
- extend techniques to other systems: salt effluorescence, etc.

MERCI DE VOTRE ATTENTION

