

Laboratoire des Fluides Complexes UMR 5150 Groupe des Systèmes Dispersés

Formation/dissociation des hydrates de gaz par

méthodes de gouttes, millifluidiques et de vidéo-microscopie

Daniel Broseta
daniel.broseta@univ-pau.fr

Hydrate formation/dissociation from millimetric to submicronic scales

- D. Daniel-David, F. Guerton, Ch. Dicharry, JP Torré
- Drop experiments:
 - hydrate film growth vs. capillary-driven growth

- Millifluidic experiments:
 - insights into hydrate nucleation and memory effects

Video-microscopy experiments

Drop experiments (1/3)

- Hydrate growth studies at various T, P, gas compositions and water-soluble additives
 - Experimental setup & procedure

T in the range of -5 to 15°C

P up to 10 MPa

Drop experiments (2/3)

- Results with CO₂ & CH₄ hydrates: two different modes of hydrate growth
 - Formation of a low-permeable
 hydrate crust at the water
 surface Ex: pure water, non-ionic
 surfactants, CO2
 - Capillary-driven growth:
 observed only with anionic
 surfactants and methane

CH4 @ 40 bar, 0°C 500 ppm SDS

Drop experiments (3/3)

give insights into:

- hydrate film morphologies
- hydrate film lateral velocities
 - -depend primarily on subcooling and gas solubilities
 - -fairly independent of (nonionic) surfactant additives
- mechanisms of capillary-driven growth
 - porosity of the hydrate structure
 - pore size

D. Daniel-David et al., Chemical Engineering & Science (submitted)

Millifluidic experiments (1/7)

ML Martinez de Banos, O. Carrier, P. Bouriat

Memory effects in cyclopentane hydrate formation Study of the guest-in-water emulsion

each water drop is a reactor for hydrate formation

Investigation of memory effects: procedure

sequence of temperature variation

Investigation of memory effects: procedure

• Image treatment: for each time or T, count the fraction of reacted drops

2nd hydrate formation and growth in a single drop:

Investigation of memory effects: results

 2nd hydrate formation strongly depends on the previous history of formation/dissociation

Investigation of memory effects: results

• 2nd hydrate formation: role of the guest-in-water emulsion?

Chemical Engineering & Science, in press.

Video-microscopy experiments

ML Martinez de Banos, P. Bouriat, R. Brown

METHODS

2mm cuvette H₂O
Cyclopentane

Widefield video

* transmission

Objective, x4, x10, x50

* DIC phase contrast

* dark field

NEW Hydrophilic substrate, hanging drop

-Emulsion all over interface

-CP depletion around growing crystal, cf. Ostwald ripening

RESULTS

0°C

sub-cooling

Hydrophilic substrate, sitting drop

KNOWN Hydrate halo spreading on substrate (Beltran et al 2010) NEW water precursor film present under CP at t=0⁺

DASPI, fluorescent marker

DASPI, fluorescent marke of liquid/solid interfaces.

DASPI/H_.O on coverslip

DASPI/H₂O/cyclopentane in cuvette

™ Melting hydrate makes an emulsion of CP in H₂O

t=0, T=8°C

t=3min

t=7.5min

t=12min

NEW Emulsion collects at top of drop

NEW Hydrate 2nd formation $= f(\Delta T_{sub})$

Large ΔT_{sub} (T=0°C): nucleation in emulsion and at triple line

Small A I (I = 5°C): -nucleation in emulsion -migration to triple line -growth

Summary & conclusions & prospects

- There is plenty of room at the bottom »
 (Feynman, 1959), also in hydrate research!
- at scales from the mm to below 1 µm: key for the elucidation of hydrate formation & growth mechanisms and of the effects of additives (promoters, inhibitors)
- milli- & micro-fluidic methods: a mature technology,
 still in its infancy in the field of hydrate research!
- extension to higher pressures (real hydrates): ongoing and future work (thesis A. Touil)