

Entre Instituts et Industries

Darie PAYERNE

Présentation d'Atherm

Secteurs d'activité

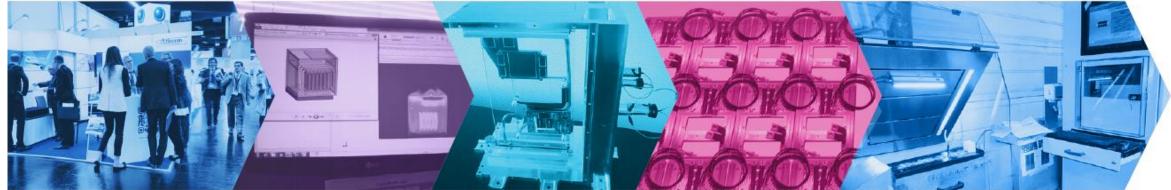
Mode de fonctionnement

PME AYANT UNE PRESENCE INTERNATIONALE

CA GLOBAL~ 8/9 M€

EXPORT ~70%

60 EMPLOYES


CONCEPTION REALISATION ET FABRICATION DE SOLUTIONS DE REFROIDISSEMENT

CO-DESIGN DE SOLUTIONS SUR MESURE

CUSTOMER'S NEEDS THERMAL PROTOTYPE MASS PRODUCTION INDIVIDUAL THERMAL TEST

Travail sur spécifications client:

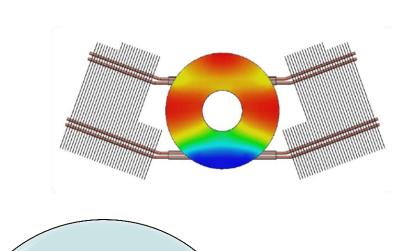
MECHANICAL DESIGN

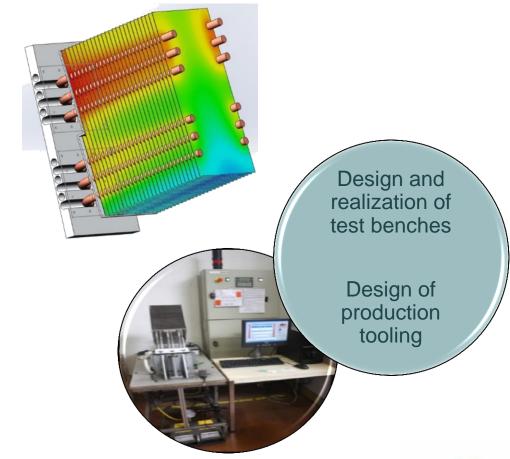
=> Etudes thermo fluidiques et mécaniques

=> Prototype, maquette, démonstrateur

=>Industrialisation

=> Production en série


=> Transfert technologique



ETUDE ET MODELISATION En management thermique

Recherche et Développement Recherche avec des instituts académiques **6 ENGINIEURS ET TECHNICIENS SPECIALIZES**

5 SolidWorks licenses 2 Flow Simulation licenses Analytical calculation

CREATION D'ATHERM

Fabrication de caloducs rainurés, gravitaires **Contrats ferroviaires Alstom, Bombardier**

2000 Sous-ensemble à caloducs pour IGBT 6,8kW

2002 Echangeur air-air refroidissement de l'ambiant 900 et 370W

SYSTEMES ISOLES ELECTRIQUEMENT

Sous-ensemble à caloducs rainurés isolés

Power	3 600 W
Heat pipe	Water or Ethanol
Working temperature	-28° C to +45° C
Fins	Aluminium
Block	Aluminium
Rth	<20° C/kW with air T° at 20° C
Air speed	6m/s on large side
Electrical isolation	> 7kV 50 Hz

Power	500 W		
Heat pipe	Water or Ethanol		
Working temperature	-28° C to +45° C		
Fins	Aluminium		
Block	Aluminium		
Rth	<90° C/kW with air T° at 20° C		
Flow rate	5m/s		
Electrical isolation	Up to 6kV, 50 Hz		

RADIATEUR A CALODUCS RADIATEUR VENT VITESSE

Radiateur à caloducs rainurés insérés pour électronique confinée

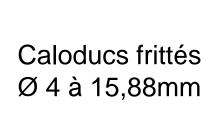
Power	1840 W
Working temperature	-30° C to +40° C
Air Flow Rate	From 0 to 6m/s (train motion)
Rth	< 20,6° C/kW

Radiateur à caloducs rainurés insérés pour système vent vitesse, ferroviaire Insertion de caloducs a permis de baisser la température sous les IGBT de 100 à 80° C

MUR FROID FERROVIAIRE FONCTIONNEMENT A -40° C

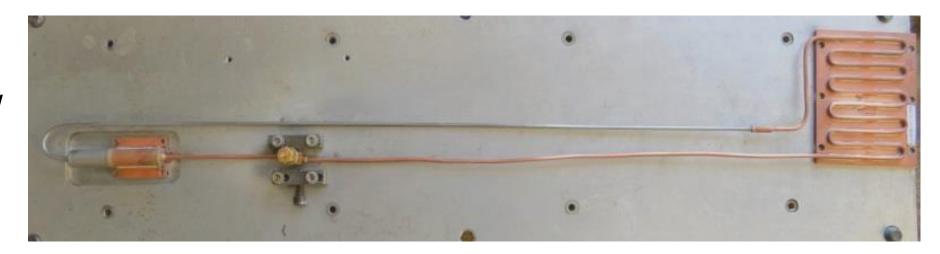
Refroidissement en convection naturelle.

Power	6200W per system		
Air flow	Natural convection with motion speed		
Max ΔT°	52°C on block face		

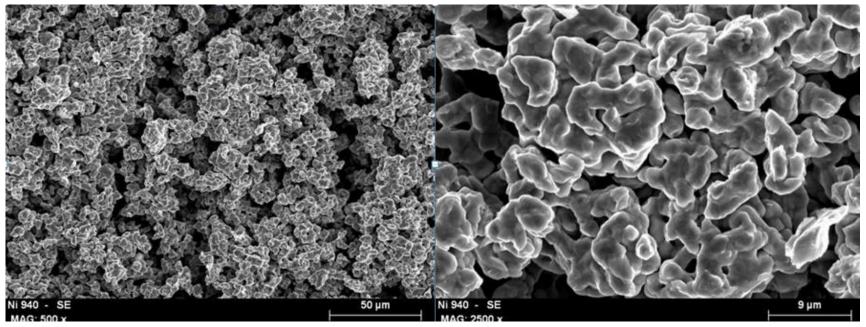

PROJET SYSHANG

Projet avec DGA, Thales et CETHIL pour développer la technologie du frittage

Caloduc fritté



PROJET SYSHANG

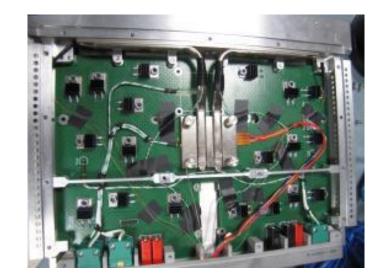

Projet avec DGA, Thales et CETHIL pour développer la technologie du frittage

LHP

Longueur: 0,5m Puissance: 100W

Poreux nickel primaire rainuré, porosité = 72%, diamètre moyen des pores = 4.4 µm

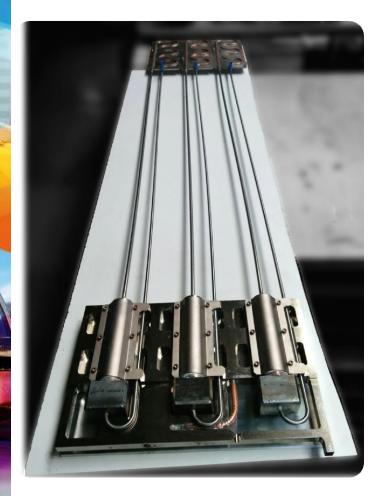
Atherm, 1 rue Charles Morel, F38420 Domène, +33 4 76 77 23 24, www.atherm.com

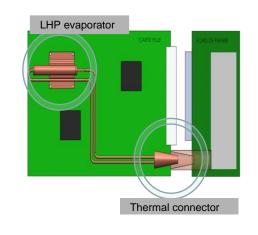


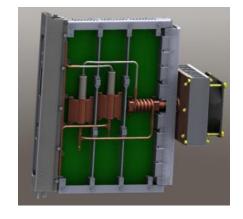
Projet Thales et CETHIL: mini caloducs frittés

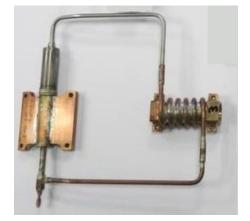
Travail sur le frittage: taille, porosité, épaisseur de la structure avec objectif de réaliser un dissipateur de rack

Dissipation 100 Watts Rth 0,2K/W en nominal (requis 0,4K/W)

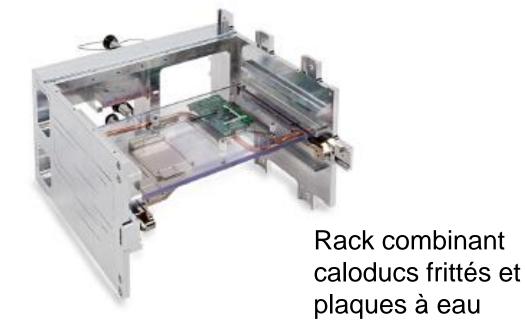

	Position against gravity					
	Habana	Straight	Flattened at	Flattened at	Flattened at	
	U shape		6mm	5mm	4mm	
Max dissipated power (W)	65	30	30	30	25	
Rth (K/W)	0,15 to 0,4	0,1 to 0,55	0,6 to 0,9	Approx. 1	Approx. 1	


PROJET TOICA


CETHIL, Airbus, Thalès, Zodiac



LHP 3* 400W Longueur: 1500 mm


LHP prototype avec connecteur thermique

PROJET OPTIMA Optimisation Thermique de l'Intégration des **Moteurs Avion**

Airbus, DGA, ENSMA, INSA, MBDA

Progresser sur la gestion thermique des moteurs

Participation d'Atherm

- Conception, réalisation de boucles diphasiques fonctionnant à haute température et des outillages requis, puis d'un démonstrateur taille réelle
- Conception, réalisation de caloducs pulsés, d'un banc de vieillissement et des outillages requis, puis de démonstrateurs tailles réelles

PROJET PACKOOL Packaging and Cooling advanced technologies

Airbus, CEA, MBDA, Sintef, Thalès, Uni de Padoue...

Management thermique du composant au boîtier et son environnement en utilisant des solutions civiles adaptées aux utilisations militaires.

Participation d'Atherm

- Démonstrateur : dissipateur à changement de phase pour modules dans l'avionique militaire : caloducs, boucles diphasiques adaptés à l'environnement aérospatial pour répondre aux densités de puissance accrues
- Démonstrateur : système à changement de phase en fabrication additive: enveloppe et si possible poreux

Merci pour votre attention

