Direct Numerical Simulation of Two-Phase Flows with phase change

Sébastien Tanguy, Lucia Rueda Villegas, Catherine Colin, Grégory Huber Institut de Mécanique des Fluides de Toulouse

Maître de conférence Université Paul Sabatier (Toulouse 3)

1. Level Set Method

 ϕ : signed distance function

$$\phi < 0$$
 Gas phase

$$\phi = 0$$
 Liquid-gas interface

$$\phi > 0$$
 Liquid phase

(Osher & Sethian, JCP 1989)

Redistance equation:
$$\frac{\partial d}{\partial \tau} = sign(\phi)(1 - |\nabla d|)$$

(Sussman & al, JCP 1994)

$$\left|\nabla\phi\right| = 1 \qquad \begin{cases} \boldsymbol{n} = \frac{\nabla\phi}{\left|\nabla\phi\right|} = \nabla\phi \\ \kappa(\phi) = -\nabla\cdot\boldsymbol{n} \end{cases}$$

Numerical schemes: Runge-Kutta 2 or 3 and fifth order WENO-Z

■ 2. The Ghost Fluid Method: a Sharp Interface Method

Ghost Fluid Method (Fedkiw & al, JCP 1999)

- Locate meshes crossed by interface
- Extend continuously discontinuous variables before discretization

- No fictitious interface thickness
- reduce parasitic currents and can be used with more complex problems as phase change.

The Ghost Fluid tool-box

- Sharp but first order discretization for jump conditions (Liu & al, JCP 2000)
- Sharp and second order discretization for immersed Dirichlet boundary condition (Gibou & al, JCP 2002)
- Sharp and second order discretization for immersed Neumann boundary condition (Ng & al, JCP 2009)
- Sharp and second order discretization for immersed Robin boundary condition (Papac & al, JCP 2010)
- Constant, linear and quadratic extrapolation by solving iterative PDE (Aslam & al, JCP 2003)

■ 3. Conservation laws and jump conditions

Conservation law	Jump conditions
$\nabla \cdot \vec{V} = 0$	$\left[\overrightarrow{V}\right]_{\Gamma}=\dot{m}\left[\frac{1}{\rho}\right]_{\Gamma}\overrightarrow{n}$
$\rho \frac{D \vec{V}}{D t} = - \nabla p + \nabla \cdot (2 \mu \mathbf{D}) + \rho \vec{g}$	$[p]_{\Gamma} = \sigma \kappa + 2 \left[\mu \frac{\partial V_n}{\partial n} \right]_{\Gamma} - \dot{m}^2 \left[\frac{1}{\rho} \right]_{\Gamma}$
$\rho C_p \frac{DT}{Dt} = \nabla \cdot (k \nabla T)$	$[k\nabla T \cdot \vec{n}]_{\Gamma} = \dot{m} \left(L_{vap} + \left(C_{pliq} - C_{pvap}\right)(T_{sat} - T _{\Gamma})\right)$
$\rho \frac{DY_1}{Dt} = \nabla \cdot (\rho D_m \nabla Y_1)$	$[\rho D_m \nabla Y_1 \cdot \vec{n}]_{\Gamma} = -\dot{m}[Y_1]_{\Gamma}$

- 4. Ghost Fluid Thermal Solver for Boiling GFTSB (Gibou & al, JCP 2007, Tanguy & al JCP 2014)
- **Step 1**: Update the temperature field in the liquid phase with a prescribed uniform Dirichlet boundary condition at the interface

$$\begin{split} \rho_l C p_l T_l^{n+1} - \Delta t \nabla \cdot \left(k_l \nabla T_l^{n+1} \right) &= \rho_l C p_l \left(T_l^n - \Delta t \overrightarrow{V}_l^n \cdot \nabla T_l^n \right) \qquad if \phi > 0 \\ T|_{\Gamma} &= T_{sat} \end{split}$$

Step 2: Update the temperature field in the gas phase with a prescribed uniform Dirichlet boundary condition at the interface

$$\begin{split} \rho_g C p_g T_g^{n+1} - \Delta t \nabla \cdot \left(k_g \nabla T_g \right) &= \rho_g C p_g \left(T_g^n - \Delta t \overrightarrow{V}_g^n \cdot \nabla T_g^n \right) \qquad if \phi < 0 \\ T \Big|_{\Gamma} &= T_{sat} \end{split}$$

Step 3: Compute the boiling mass flow rate from the discontinuity of thermal flux

$$\dot{m} = \frac{[k\nabla T \cdot \vec{n}]_{\Gamma}}{L_{vap}}$$

■ 5. Nucleate Boiling: numerical simulation

- 2D axisymetric non-uniform mesh.
- Wall thermal conduction.
- Initial thermal boundary layer (Kays and Crawford, 1980).
- Contact angle set at 50°.

Figure : Example of a Non-uniform axisymetric mesh

• 6. Nucleate Boiling: spatial convergence

Grid sensitivity study on the bubble radius

7. Nucleate Boiling: Comparisons between simulations and experimental

Departure radius relative error: 5.94% Departure period relative error: 4.90%

Departure radius relative error: 7.78% Departure period relative error: 3.59%

Comparison between numerical results and experimental results (Son & Dhir, 1999).

8. Leidenfrost droplets: evaporation and boiling

Experiments from Dunand, Lemoine & Castanet Experiments in Fluids 2013

Many physical processes involved in this phenomenon:

- Formation of a very thin vapor layer between the plate and the bottom of the droplet
- Strong droplet deformation
- Phase change: transition between boiling and two components evaporation
- Marangoni convection
- Compressibility effects

Performing fully resolved Direct Numerical Simulations of this phenomenon is challenging

■ 9. Ghost Fluid Thermal Solver for Evaporation (Tanguy & al, JCP 2007)

Step 1: Update mass fraction field in the gas phase with a prescribed Dirichlet boundary condition at the interface

$$\begin{split} \rho_g Y_1^{n+1} - \Delta t \nabla \cdot \left(\rho_g D_m \nabla Y_1^{n+1} \right) &= \rho_g \left(Y_1^n - \Delta t \overrightarrow{V}_g^n \cdot \nabla Y_1^n \right) \qquad if \phi < 0 \\ Y_1 \Big|_{\Gamma} &= \frac{P_1 |_{\Gamma} M_1}{P_1 |_{\Gamma} M_1 + (P_0 - P_1 |_{\Gamma}) M_2} \\ P_1 |_{\Gamma} &= P_0 e^{-\frac{L_{vap} M_1}{R} \left(\frac{1}{T |_{\Gamma}} - \frac{1}{T_{sat}} \right)} \end{split}$$

Step 2: Deduce the mass flow rate of evaporation from the mass fraction field in the gas phase

$$\dot{m} = \frac{\rho_g D_m \nabla Y_1 \cdot \vec{n}|_{\Gamma}}{1 - Y_1|_{\Gamma}}$$

Step 3: Compute simultaneously in the two phases the temperature field with an imposed jump condition on the thermal flux

$$\rho CpT^{n+1} - \Delta t \nabla \cdot \left(k \nabla T^{n+1} \right) = \rho Cp \left(T^n - \Delta t B \left(\overrightarrow{V}^n, T^n \right) \right)$$
$$\left[k \nabla T \cdot \overrightarrow{n} \right]_{\Gamma} = \dot{m} \left(L_{vap} + \left(C_{pliq} - C_{pvap} \right) (T_{sat} - T \Big|_{\Gamma}) \right)$$

- 10. Ghost Fluid Thermal Solver for Boiling and Evaporation GFTSBE (Rueda Villegas & al, Submitted JCP)
- Step 1: Update separately the temperature field in the liquid phase with a prescribed non-uniform Dirichlet boundary condition at the interface

$$\begin{split} \rho_l C p_l T_l^{n+1} - \Delta t \nabla \cdot \left(k_l \nabla T_l^{n+1} \right) &= \rho_l C p_l \left(T_l^n - \Delta t \overrightarrow{V}_l^n \cdot \nabla T_l^n \right) \qquad if \, \phi > 0 \\ \rho_g C p_g T_g^{n+1} - \Delta t \nabla \cdot \left(k_g \nabla T_g \right) &= \rho_g C p_g \left(T_g^n - \Delta t \overrightarrow{V}_g^n \cdot \nabla T_g^n \right) \qquad if \, \phi < 0 \end{split}$$

$$T\Big|_{\Gamma} = \frac{L_{vap}M_1T_{sat}}{L_{vap}M_1 - RT_{sat}ln\left(\frac{P_1|_{\Gamma}}{P_0}\right)}$$

$$P_1\Big|_{\Gamma} = \frac{-Y_1|_{\Gamma}P_0M_2}{(M_1 - M_2)Y_1|_{\Gamma} - M_1}$$

Step 2: Compute the phase change mass flow rate from the thermal flux jump condition

$$\dot{m} = \frac{[k\nabla T \cdot \vec{n}]_{\Gamma}}{L_{vap}}$$

Step 3: update the mass fraction field in the gas phase with a prescribed robin boundary condition at the interface

$$\begin{split} \rho_g Y_1^{n+1} - \Delta t \nabla \cdot \left(\rho_g D_m \nabla Y_1^{n+1} \right) &= \rho_g \left(Y_1^n - \Delta t \overrightarrow{V}_g^n \cdot \nabla Y_1^n \right) \qquad if \phi < 0 \\ \dot{m} Y_1|_{\Gamma} + \rho_g D_m \nabla Y_1 \cdot \overrightarrow{n}|_{\Gamma} &= \dot{m} \end{split}$$

■ 11. Moving droplet evaporation

Implicit temporal discretization for all the diffusion terms

- 1 linear system to solve for pressure
- 2 linear systems to solve the 2 velocity component
- 1 linear system to solve liquid temperature
- 1 linear system to solve the gas temperature
- 1 linear system to solve the mass fraction field
- 1 linear system to compute a ghost field for Pressure
- 7 linear systems at each time step

All these linear systems are symmetric definite positive and can be solved with standard black box tool

■ 13. Comparisons of simulations with experimental data : We = 7.5

Water droplet Tw = 823 K

2D axisymetric simulations

Experiments from Dunand, Lemoine & Castanet Experiments in Fluids 2013

■ 14. Comparisons of simulations with experimental data : We = 45

Water droplet Tw = 823 K

2D axisymetric simulations

Experiments from Dunand, Lemoine & Castanet Experiments in Fluids 2013

■ 15. Velocity field snapshots in the vapor layer

■ 16. Quantitative Comparisons and grid sensitivity studies Quantitative Comparisons and

Maximum spreading diameter vs incident Weber Number

Restitution coefficient vs incident Weber Number

■ 17. Perspectives

Heat transfer at the interface wall

- Nucleate Boiling (Perfectly wetting liquid and higher Jakob number)
- Evaporation of a sessile droplet with a contact line (Marangoni Convection)
- Multi-bubbles nucleate boiling

Turbulence and phase change

- Evaporation of droplets in a turbulent flow (PhD thesis Romain Alis)
- Interaction of a turbulent superheated vapor with a liquid pool (PhD thesis Elena Roxana-Popescu)
- Condensation of droplets on a cold plate (Postdoctoral study Mathieu Lepilliez)