

Jonathan DAIRON Yves GAILLARD

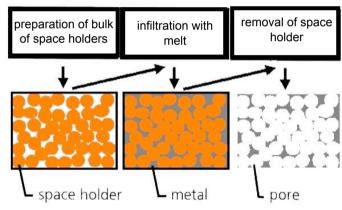
Mousses métalliques CTIF

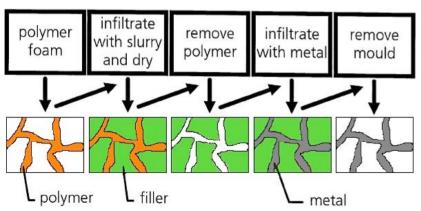
Journée SFT – Sèvres (25/11/2010) : Mousses Métalliques, Applications en échangeurs thermiques et réacteurs

Plan


Plan

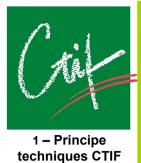
- 1- Principe de fabrication des mousses CTIF
 - Techniques d'infiltration
 - Technique CTIF
- 2 Fabrication de pièces en mousse stochastique munies de peaux
 - Surmoulage
 - Agglomération de précurseurs
 - Structure intermédiaire
- 3 Mousses régulières
- 4 Performances des mousses CTIF dans le domaine de l'échange thermique


1 – Principe de fabrication des mousses CTIF


Techniques d'infiltration

• Infiltration de précurseurs

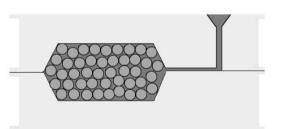
• Moulage à modèle perdu

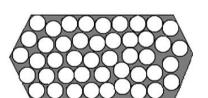

Source:

J. Banhart, Progress in Materials Science 46, 559 - 632 (2001)

4




Techniques d'infiltration


Technique de base CTIF : infiltration de précurseurs

1 - Preform within the mold

3 - Solidification

2 - Metal pouring

4 - Metallic sponge, got after removal of preform

Infiltration de précurseurs

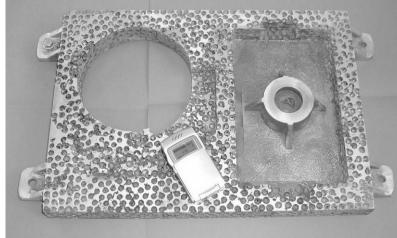
Précurseurs

- Forme
 - Agrégats
 - Sphères
- Matiériau
 - Sel
 - Sable aggloméré
 - Céramique
 - Polystyrène

• Taux de porosité (sphères) : ~ 65% — — — — — ▶ 85%

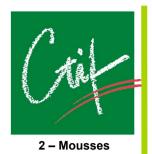
• Taille de cellule : > 100 μm;

• Alliages testés à CTIF: aluminium, fonte



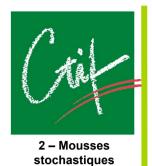
Infiltration de précurseurs

Exemples de pièces

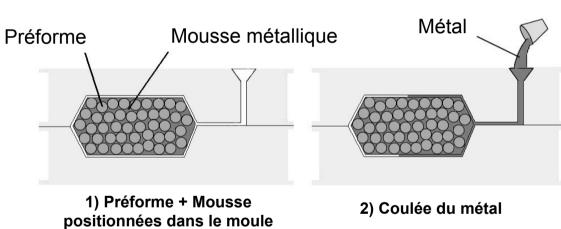


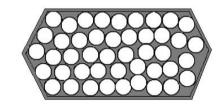
- Avantages
 - Formes complexes
 - Structures cellulaires contrôlée
 - Composition du métal choisie

Inconvénient

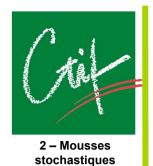

(pour certaines applications)

Peau perforée




2 – Mousses stochastiques

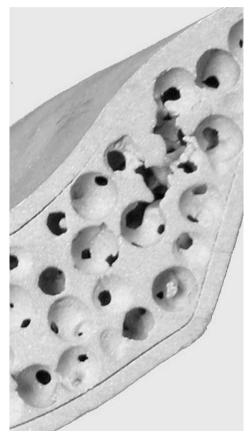
Surmoulage


Principe

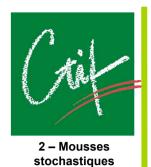
3) Pièce finale, après extraction de la préforme

9

Surmoulage

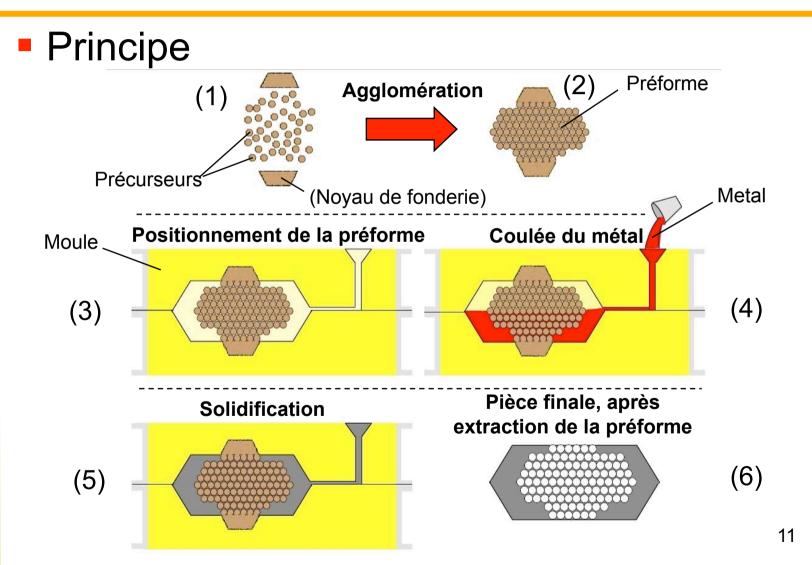


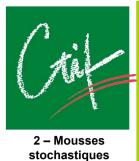
Avantages


- Economique
- Composition peau choisie (peut être différente de celle de la mousse)

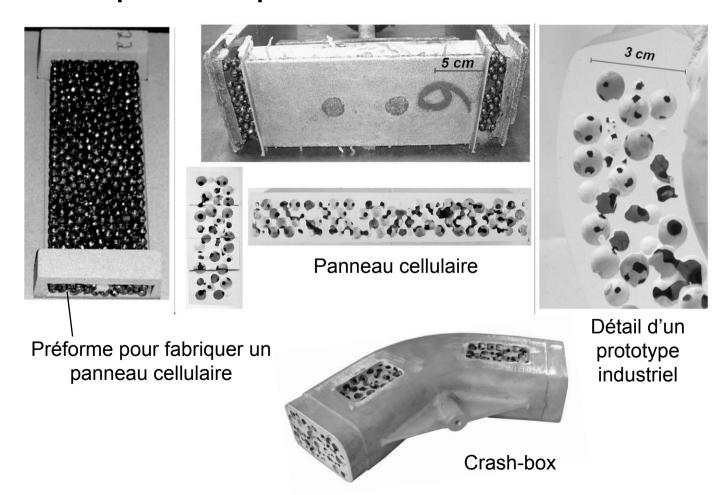
Inconvénients

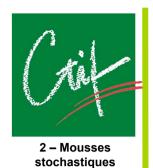
- Liaison mécanique seulement
- Barrière thermique entre la mousse et la peau




Détail d'un prototype industriel

Agglomération de précurseurs



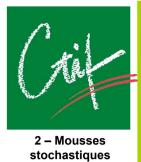


Agglomération de précurseurs

Exemples de pièces

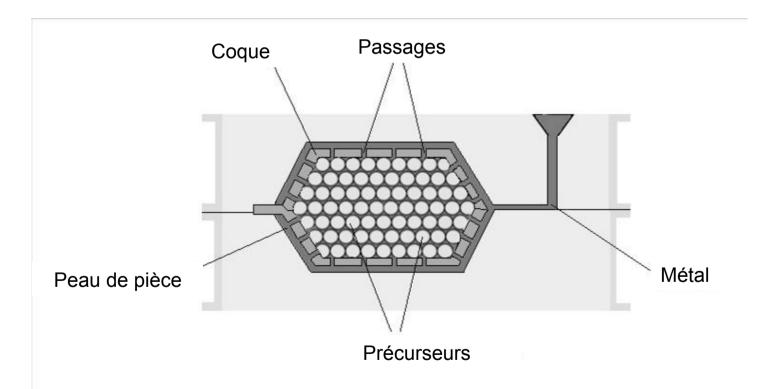
Agglomération de précurseurs

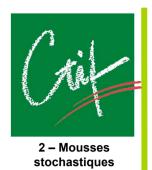
Avantages


- Continuité métallurgique (Essentielle en échange thermique)
- Pièces fabriquées en une seule fois

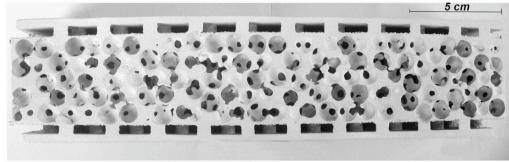
Difficultés

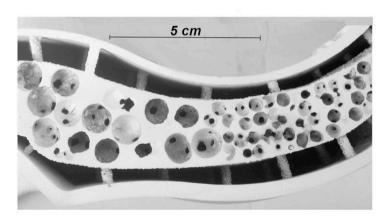
 Trouver le bon liant (résistant et qui ne dégage pas de gaz)




Détail d'un prototype industriel

Structure intermédiaire


Principe



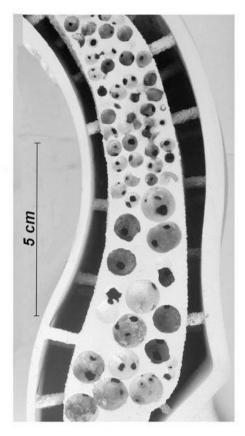
Structure intermédiaire

Exemples de pièces

Panneau cellulaire

Détail d'un prototype industriel

Structure intermédiaire


Avantages

- Pièces fabriquées en une seule fois
- Structure intermédiaire : peut être « optimisée » (ex : pour éviter le pic de force, dû à la peau, en crash)

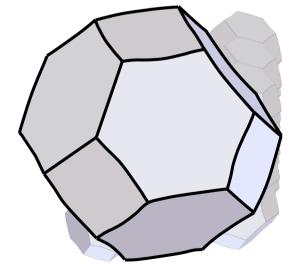
Inconvénient

 Structure intermédiaire : peut dégrader la performance de la mousse

(ex. : chemin d'écoulement privilégié en échange thermique)

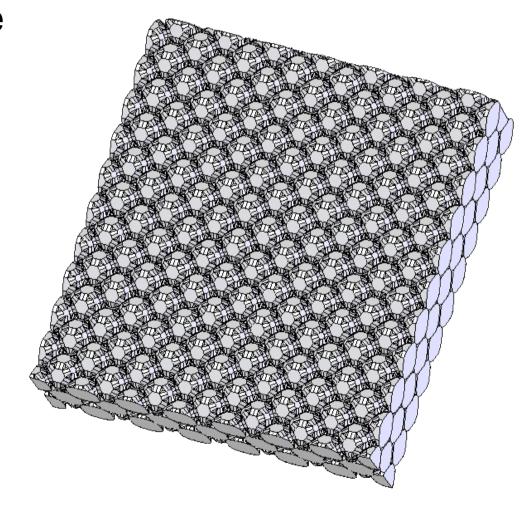
Détail d'un prototype industriel

3 - Mousse régulière


3 – Mousses régulières

Structure de Kelvin

- Mousse parfaite ? (mousse monodispersée)
 - Cellules de volume identique
 - Périodique
 - Respect des lois de Plateau (angles)
 - Energie de surface minimale

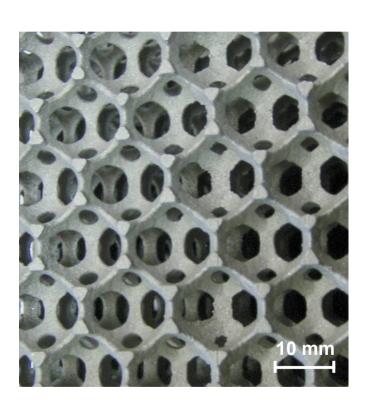

⇒ Solution proche : structure de Kelvin (1887)

Mousses régulières

Principe

Mousses régulières

Fabrication par fonderie


- Préforme = Sable aggloméré (cold box)
- Toute forme de préforme possible (grâce à l'outillage ou en usinant)

Mousse

- Taux de porosité : 80 % 90 %
- Taille de cellule : > 10 mm
- Alliages testés à CTIF : Acier, Fonte, Cuivre, Aluminium

Avantages

- Technique de fonderie « classique »
- Produit régulier (facilité de modélisation, confiance...)
- Continuité métallurgique entre la mousse et la peau

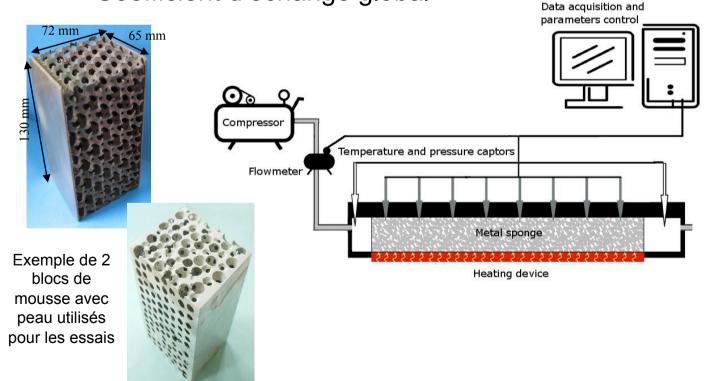
Mousses régulières

Exemples de pièces

Echangeur de chaleur en cuivre

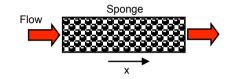
Elément tubulaire en Fonte

4 - Performances



4 - Performances des mousses CTIF dans le domaine de l'échange thermique

- Montage expérimental (IUSTI)
 - Coefficients de pertes de charge
 - Coefficient d'échange global



4 - Performances

Performances en échange thermique

Pertes de charge

- Essais avec de l'air
- Identification des termes avec ceux de la loi Forchheimer (en tenant compte de la compressibilité de l'air [1]) :

$$-\frac{\partial P}{\partial x} = \frac{\mu}{K} \cdot U(x) + \beta \cdot \rho \cdot U^{2}(x)$$

Variables d'écoulement :

P: Pression [Pa]

U : vitesse superficielle

(= débit / section mousse) [m.s -1]

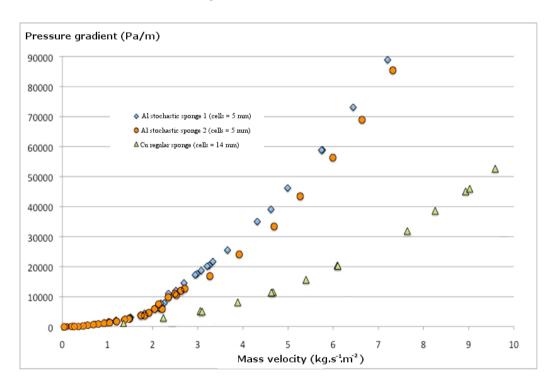
Propriétés de la mousse :

K : Perméabilité *[m 2]*

β : Coefficient d'inertie [m -1]

Propriétés du fluide :

μ : viscosité dynamique [Pa.s]


[kg.m -3] ρ : masse volumique

Pertes de charge

Mesures expérimentale

Identification

Mousse stochastique Al (A5) (cellules = 5 mm)

 $K = 7.8. 10^{-8} \text{ m}^2$

 $\beta = 2270 \text{ m}^{-1}$

Mousse régulière Cu (cellules = 14 mm)

 $K = 4,2. 10^{-7} \text{ m}^2$

 $\beta = 1010 \text{ m}^{-1}$

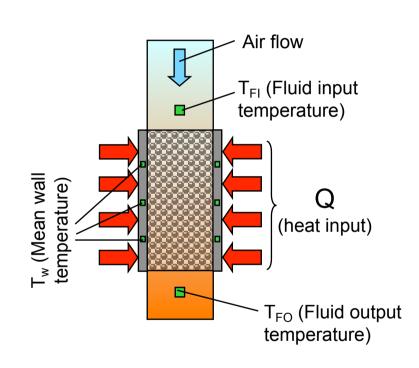
Echange thermique

- Mesures avec de l'air
- Echange de chaleur global :

$$h_g = \frac{Q}{S \cdot \Delta T}$$

Avec:

Q : Chaleur transmise aux parois du bloc de mousse

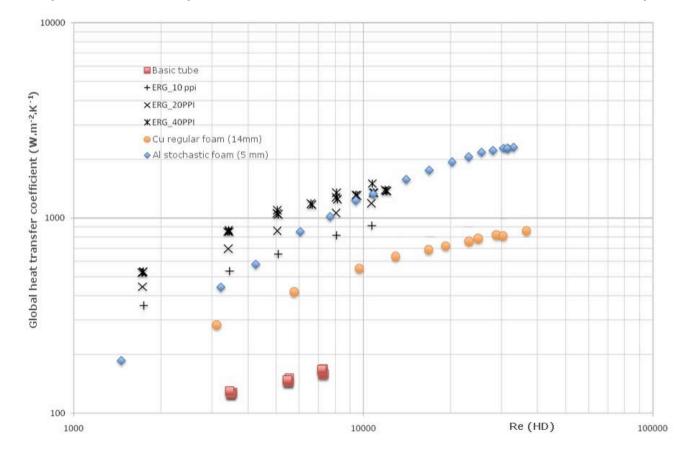

[W]

S : Surface des parois du bloc de mousse

[m²]

ΔT : Différence de tempé--rature moyenne entre les parois du bloc et l'air

[K]


$$\Delta T = \frac{T_W - \left(\frac{T_{FI} + T_{FO}}{2}\right)}{2}$$

Echange thermique

• Comparaison des performances avec d'autres mousses métalliques

Merci de votre attention

Questions?