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POD reduced-order models

1. Data-driven representation: empirical Karhunen-Lo¢eve basis
2. Physics-based model: Galerkin projection + closure
3. Application to separated flows

4. Summary



The Karhunen-Loeve theorem

Let u(n) be a centered stochastic process defined in L*(Q): E[u] = 0
1 1s a deterministic variable 1n a closed bounded set €2 (compact set)
Let us define the covariance function K(n,n’) = Elu(n)u(n’)]

Mercer theorem: There 1s a denumerable set of eigenvalues A, > 0 and a set of
eigenvectors e, (#) such that

K(.n) = ), Ae,(me, )
n=1




Computing the covariance

e Usual choice for a spatio-temporal field (classical POD):
e Deterministic variables: physical space
e Stochastic variables: time

e Relies on ergodicity assumption: computing the sampled covariance along one
trajectory provides a good estimate of the covariance
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Interpretation of the empirical modes

® Realization e The POD modes are the principal axes
--- Trajectory - of the ellipsoid containing the

, realizations
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el PCA.: Principal Component Analysis
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Should symmetry be enforced 1n the dataset?

Trajectory
Trajectory corresponding to
corresponding to ! original data
symmetrized data
/- Are we Interested 1n:
{ . Q\\ e
.\ . 1 o
Yo~ las. ! N - . .
l\\\ - B ...__s \\ 'l ® ()
B gl Shar S : A single trajectory”;
I L\ \‘\ ‘\ o “
Q.- e All possible trajectories (lack of

ergodicity)?




POD modes are not coherent structures

Coherent structures are localized 1n space and time.

POD modes have a global support and integrate statistical symmetries of the flow.

—POD modes do not generally coincide with coherent structures which can make physical
interpretation difficult.

 Example: Cross-section of the turbulent wall layer

Dominant POD mode (Moin et al. 84) Conditional eddy structure (Carlier et al. 05)
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Building a low-dimensional model

POD
Data ﬂ D, (x)}  + a, () from POD
1 Ned
Q(x] k) q(‘x]’ tk) — Z an(tk)¢n(x]) : or Cln(t) — [Q(X, f)qbn(X)dx
v
Galerkin Dynamical system:

Conservation equation (PDE)

— dn = anam 4+ Qnmpamap + Tn

0,9 +qVq=vVq+flg)E) (E|¢,)
a;;l’lO € l-
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Application to the incompressible Navier-Stokes
equations

1 - Decompose velocity field & = U + u with U = i

2- Write conservation equations: V.u=0
ou 1
E+ U.Vu+u.VU+u.Vu = ——Vp+1/V2u(E)
P

+ Boundary conditions

3- Apply POD to fluctuating velocity field u and obtain basis {¢, }

4- Mass conservation is naturally enforced by construction Vn, V. ¢, = O (linear property)

N
5- Introduce expansion u(x, t) = Z a,(1)¢,(x) and project (E) onto mode ¢,

n=1

11



[ 1near terms

p N N
. [a—b; p,@dx =Y (1) [¢n(x)¢p(x)dx = 4,05,,= d,
n=1 n=1
N N
. [Vzu . qbp(x)dx = 2 an(t)JV2¢n(x)¢p(x)dx = 2 L,l;)an(t) LP ~diagonal with
n=1 n=1
entries <0
N N
. J(U. Vu+u.VU). qbp(x)dx — Z an(t)J(U. Vo (x)+ ¢ (x).VU). qbp(x)dx = Z L,%an(t)
n=1 n=1

LM ~ > 0large scales extract energy from mean shear
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The Reynolds stress tensor

Ty =W, = Uy o+ U S U o+ U U T U SU

j =1

RESOLVED  CROSS-TERMS UNRESOLVED

u; u; . : computed with Galerkin procedure (quadratic terms) V

uw; Ui +u; u; - Leonard stresses can be neglected V

1
u; wu; . - modelled with eddy viscosity hypothesis 7, = 2ups_ with s = Y ( Vu_+ Vu<T)
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The eddy viscosity hypothesis

Heisenberg 1948 « The way 1in which smaller eddies transfer momentum 1s similar to
ordinary friction »

— V.t =v;V7u_ with v, « upl,

Aubry et al. 1988 Rempfer and Fasel 1994 | | Osthetal. 2014 Podvin and Sergent 2017
D X k1/2
Ur = U vr = v7(p) s _ 1 k! 1
r="% o |rekEaRE (142 ) =SR2
Extra terms L’Zp a, Extra termls) L,’{pan Extra terms Dy ( Z a7 ) a,
_ D LY =a L n
L,,=al,, np — Ypnp

N
Extra terms C, Z A +la, | )a,
m=1

N

2

ko= la,
n=1

® vy bifurcation parameter for model

® Extra information needed to determine v (e.g. D11\£S)



The etffect of unresolved scales

e Coherent part with cubic term and linear term L”. If L has the same structure as L":

L nearly diagonal and negative => L., = 0,,L,, = — a,0,, Z Ais Gy = — 00,0,

o Incoherent part modelled by noise €,

— Final form of the model:

where a, 1s determined from observations of a (¢)
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cylinder tflow

2-D flow behind a cylinder (Cordier and Bergmann 06)

A first example

Re=100

T11t

: 2 2
a2=—a)a1+C(A2 —‘Cll‘ —‘az‘ )az

d

Stabilized two-mode model:



A second example: the forward-facing step

Velocity X
-1.0e+00 -0.5 0 0.5 | 1.5 1.9e+00
l l

! ' = ‘-

Forward Facing Step Flow (Re=8304) LASNI _ 3
(author: Y. Fraigneau - LISN) e T 5
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The key dynamics

Shear Layer

Graziani et al. EIF2018

T x
0 - Sheddin
o S « Breathing » 9
7 T <1 Ejections < 0 \
' 5 H
- 1 i<
Collab PPRIME (F. Kerhervé), U. Calgary (E. Larose, R. Martinuzzi)
1071
Homogeneity in spanwise direction 10-2. § B |
: L <1073
—> Fourier representation 1n z: R T
PPN
o 10 .
CR NN EDIPNACE S ol -
>0 %0 k kN2 Lanzerstorfer and Kuhlmann, JFM 2012
k n _6. '
e T
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A basic model

Model with constant mean flow
(does not account for ejections)

- a, =L,
Results robust w.r.tn, > 6

Discrete frequencies match DNS
frequency spectrum
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A (slightly less) basic model

— d} = L,,()a" where L varies like the maximum shear at the edge

DNS Non-autonomous model
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A third example: blutt-body wake

Velocity X

A0Ne

SUNFLUIDh
Y. Fraigneau

Ahmed body



A wide diversity of time scales

Grandemange and Cadot Top view

JFM 2013 T et | ME

® Wake deviation switch tU/H~O(1000)
® Wake pumping. tU/H~ O(10-20)

® Vortex shedding tU/H~ O(5)

® Shear layer instability tU/H ~ O(1)

Can we build a model that captures the switches?
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Decreasing energy 4,

n

: u(x,1) = ) 4,0, (%)
POD analysis 00 0.
o W || a0 /
Top view-o.m—o.lqb;o.os 0 005 01 015 = Ay -

Off-center side view '

Deviation

« Switch »

Lateral Shedding

Lateral Shedding

Vertical Shedding

Vertical Shedding
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Evolution of the dominant POD modes during a switch
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A nonlinear model

a,=0(a,=1) Mean

a, =A;+0.0l1la,a, + 0.019aya; + 0.023aya, + 0.045a5a5 + 0.005a,a, + €,

ay = Ay + 0.12a4a5 + 0.11aya, + 0.007a,a; — 0.018a; + 0.0184a; + ¢,

1.08%10a, — 0.02apa, + 0.037a,a, — 0.025a,a, — 0.02aya; + €3

a, = A, —|1.085a; — 0.16aya; — 0.04a,as + 0.025a,a, — 0.02aya, + €,

s = As H1.18%10as — 0.13aya, + 0.035a,a; — 0.013a,a; + 0.029a,a, — 0.013a; — 0.02a4a5 + €5
ac = Ag —|1.18515a5 — 0.26aya, — 0.026a,as — 0.02a,a; — 0.02aya, + €,

Von Karman shedding frequencies

Reflectional symmetry determines form of quadratic terms
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Long-time integration of the model

Without noise 6 = 0O With noise 6 = 0.07

o

1: Deviation

2: Switch

: ) —_— :
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siVertical VK~ o] 5 o

0 2 4 6 8§ 10 0 2 4 6 8 10
/ (x10°) f (x10°)

Model produces switches that are triggered by excitation of shedding modes.

Addition of noise improves agreement with DNS.
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Summary

* POD-based models can capture some key dynamics of complex, high-dimensional
separated flows (also convection problems!)

* More work is needed to improve the models

* Machine learning opens new possibilities to better link data and physics

* improve small-scale modelling

* handle missing information
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Thank you
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