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Context

Model order reduction

Machine Learning

Data Science

Representation

Physics-informed/
guided/aware models

Digital Twin

Data assimilation

Complex physics

High-dimensional observations
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POD reduced-order models
1. Data-driven representation: empirical Karhunen-Loève basis 

2. Physics-based model: Galerkin projection +  closure 

3. Application to separated flows 

4. Summary
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The Karhunen-Loève theorem
• Let  be a centered stochastic process defined in :  

•  is a deterministic variable in a closed bounded set  (compact set) 

• Let us define the covariance function  

• Mercer theorem: There is a denumerable set of eigenvalues  and a set of 
eigenvectors  such that

u(η) L2(Ω) E[u] = 0

η Ω

K(η, η′￼) = E[u(η)u(η′￼)]

λn ≥ 0
en(η)
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K(η, η′￼) =
∞

∑
n=1

λnen(η)en(η′￼)



Computing the covariance
• Usual choice for a spatio-temporal field (classical POD): 

• Deterministic variables: physical space 

• Stochastic variables: time 

• Relies on ergodicity assumption: computing the sampled covariance along one 
trajectory provides a good estimate of the covariance
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K(η, η′￼) = lim
N→∞

1
N

N

∑
n=1

u(η, tn)u(η′￼, tn)



Interpretation of the empirical modes

The POD modes are the principal axes 
of the ellipsoid containing the 
realizations 

 POD of sampled covariance = PCA   

PCA: Principal Component Analysis

⟹
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Trajectory

Realization



Interpretation of the empirical modes

The POD modes are the principal axes 
of the ellipsoid containing the 
realizations 
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⟹
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Trajectory

Realization



Should symmetry be enforced in the dataset?

Are we interested in: 

• A single trajectory? 

• All possible trajectories (lack of 
ergodicity)?
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Trajectory  
corresponding to  

original data
Trajectory  

corresponding to  
symmetrized data



POD modes are not coherent structures
Coherent structures are  localized in space and time.  

POD modes have a global support and integrate statistical symmetries of the flow.  

POD modes do not generally coincide with coherent structures which can make physical 
interpretation difficult. 
→
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Dominant POD mode (Moin et al. 84) Conditional eddy structure (Carlier et al. 05)

Symmetric

• Example: Cross-section of the turbulent wall layer

Asymmetric

Invariance by spanwise reflection

z

y



Building a low-dimensional model

Data
q(xj, tk)

Dynamical system: 

 ·an = Lnmam + Qnmpamap + Tn

→ amodel
n (t)

Conservation equation (PDE) 

∂tq + q∇q = ν∇2q + f(q)(E)

POD

q(xj, tk) = ∑
n

an(tk)ϕn(xj)
{ϕn(xj)} + {an(t)}

(E |ϕn)

Galerkin
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an(t) = ∫ q(x, t)ϕn(x)dx

 from PODan(tk)

or



`
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1 - Decompose velocity field  with  

2- Write conservation equations: 

3- Apply POD to fluctuating velocity field   and obtain basis  

4- Mass conservation is naturally enforced by construction  (linear property) 

5- Introduce expansion  and project (E) onto mode 

ũ = U + u U = ũ

u {ϕn}

∀n, ∇ . ϕn = 0

u(x, t) =
N

∑
n=1

an(t)ϕn(x) ϕk

∇ . u = 0
∂u
∂t

+ U . ∇u + u . ∇U + u . ∇u = −
1
ρ

∇p + ν∇2u (E)

+ Boundary conditions

Application to the incompressible Navier-Stokes 
equations



Linear terms

•  

•      diagonal with 

entries  <0  

•

∫
∂u
∂t

. ϕp(x)dx =
N

∑
n=1

·an(t)∫ ϕn(x)ϕp(x)dx =
N

∑
n=1

·an(t)δnp = ·ap

∫ ∇2u . ϕp(x)dx =
N

∑
n=1

an(t)∫ ∇2ϕn(x)ϕp(x)dx =
N

∑
n=1

LD
npan(t) LD ∼

∫ (U . ∇u + u . ∇U) . ϕp(x)dx =
N

∑
n=1

an(t)∫ (U . ∇ϕn(x) + ϕn(x) . ∇U) . ϕp(x)dx =
N

∑
n=1

LM
npan(t)
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  large scales extract energy from mean shear LM ∼ ≥ 0



The Reynolds stress tensor
• τij = uiuj = ui,<uj,< + ui,>uj,< + ui,<uj,> + ui,>uj,>
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{ {{
UNRESOLVEDRESOLVED CROSS-TERMS

•  : computed with Galerkin procedure (quadratic terms) 

• : Leonard stresses can be neglected 

•  : modelled with eddy viscosity hypothesis  with   

ui,<uj,<

ui,<uj,> + ui,>uj,<

ui,>uj,> τ> = 2μTs< s< =
1
2 (∇u< + ∇uT

<)



The eddy viscosity hypothesis
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Heisenberg 1948 « The way in which smaller eddies transfer momentum is similar to 
ordinary friction » 

  with   ⟹ ∇ . τ> = νT ∇2u< νT ∝ uClC

Aubry et al. 1988 

 

Extra terms 

νT = ν0

Lν
npan

Lν
np = αLD

np

•  bifurcation parameter for model  

• Extra information needed to determine  (e.g. DNS)  

νT

νT

Rempfer and Fasel 1994 

 

Extra terms 

νT = νT(p)

Lν
npan

Lν
np = αpLD

np

Osth et al. 2014 

 

Extra terms 

νT ∝ k1/2
<

Dν
p (∑

n

|a2
n |)

1/2

ap

k< =
N

∑
n=1

|an |2

Podvin and Sergent 2017 

 

Extra terms 

νT ∝ k1/2
< ≈ k1/2

< (1 +
1
2

k′￼<

k< ) =
1
2

k1/2
< (1 +

k<

k< )
Cpn

N

∑
m=1

(λm + |am |2 )an



The effect of unresolved scales
• Coherent part with cubic term and linear term . If  has the same structure as  : 

 nearly diagonal and negative   

• Incoherent part  modelled by noise  

  Final form of the model: 

            with  

Lν Lν LD

LD ⟹ Lν
np = δnpLν

pp = − αpδnp ∑ λi, Cnp = − αpδnp

ϵp

⟹

·ap = Lnpan + Qnmpanam − αpa2
i ap + ϵp L = LD + LM + Lν
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where  is determined from observations of αp an(t)



A first example: cylinder flow
2-D flow behind a cylinder (Cordier and Bergmann 06)
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Re=100

n  t

an

Stabilized two-mode model:     
·a1 = ω a2 + C(A2 − |a1 |2 − |a2 |2 )a1
·a2 = −ω a1 + C(A2 − |a1 |2 − |a2 |2 )a2

              ϕ1

              ϕ2

λn



A second example: the forward-facing step
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The key dynamics

Lanzerstorfer and Kuhlmann, JFM 2012

u < 0

u < 0 Hδ

δ
H

< 1 « Breathing » Ejections 

 Shear Layer 
xy

z

Graziani et al. EIF2018

Collab PPRIME (F. Kerhervé), U. Calgary (E. Larose, R. Martinuzzi) 

energetic modes k=1Homogeneity in spanwise direction  

 Fourier representation in z: ⟹

u(x, y, z, t) = ∑
k

∑
n

an
k (t)ϕn

k (x, y)e2iπz/Lz
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Shedding



A basic model
Model with constant mean flow 
(does not account for ejections)


  


Results robust  w.r.t 


Discrete frequencies match DNS 
frequency spectrum


→ ·an
k = Lnmam

k

nT ≥ 6
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| ̂an
1( f ) |2



  where  varies like the maximum shear at the edge→ ·an
k = L̃nm(t)am

k L̃

A (slightly less) basic model

Non-autonomous modelDNS

Correct 
spectral 
content
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A third example: bluff-body wake
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SUNFLUIDh 
Y. Fraigneau

 Ahmed body



A wide diversity of time scales

• Wake deviation switch  tU/H~O(1000) 
• Wake pumping. tU/H~ O(10-20) 
• Vortex shedding  tU/H~ O(5) 
• Shear layer instability tU/H ~ O(1)

Top view

22

x
yz

Grandemange and Cadot 
JFM 2013 

∂Cp

∂y
x

y

Intermittent switches between quasi-stationary 
wake symmetry-breaking states

Can we build a model that captures the switches?

?



POD analysis  

Deviation

« Switch »

Lateral Shedding

Lateral Shedding

Vertical Shedding

Vertical Shedding

0.2
u(x, t) = ∑

n

an(t)ϕn(x)

D
ec

re
as

in
g 

en
er

gy
 λ n

Top view
Off-center side view

      | ̂ak |
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Evolution of the dominant POD modes during a switch 

1 2 3 1 2 3

1 2 3

Flow reconstructions based on mean and 6 fluctuating modes 

a1 a2
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A nonlinear model

·a0 = 0 (a0 = 1)
·a1 = A1 + 0.011a1a2 + 0.019a0a3 + 0.023a0a4 + 0.045a3a5 + 0.005a1a6 + ϵ1
·a2 = A2 + 0.12a0a5 + 0.11a0a6 + 0.007a2a3 − 0.018a2

1 + 0.018a2
0 + ϵ2

·a3 = A3 + 1.08a0a4 − 0.02a0a1 + 0.037a1a6 − 0.025a2a4 − 0.02a0a3 + ϵ3
·a4 = A4 − 1.08a0a3 − 0.16a0a1 − 0.04a1a5 + 0.025a2a3 − 0.02a0a4 + ϵ4
·a5 = A5 + 1.18a0a6 − 0.13a0a2 + 0.035a2a3 − 0.013a1a3 + 0.029a1a4 − 0.013a2

2 − 0.02a0a5 + ϵ5
·a6 = A6 − 1.18a0a5 − 0.26a0a2 − 0.026a2a5 − 0.02a1a3 − 0.02a0a6 + ϵ6,

Von Karman shedding frequencies

Mean
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Reflectional symmetry determines form of quadratic terms



Long-time integration of the model
Without noise  σ = 0 With noise  σ = 0.07

1: Deviation

3: Lateral VK

2: Switch

5: Vertical VK 

x
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Model produces switches that are triggered by excitation of shedding modes. 

Addition of noise improves agreement with DNS. 



Summary

• POD-based models can capture some key dynamics of complex, high-dimensional 
separated flows (also convection problems!) 

• More work is needed to improve the models  

• Machine learning opens new possibilities to better link data and physics 

• improve small-scale modelling 

• handle missing information 
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Thank you


