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Nonlinear

5 SAFRAN -
Parametrized In our team, model reduction by;
LATIN
-+

Proper Generalized Decomposition (PGD)

Initially introduced for the nonlinear problems
many works for more than 30 years

3 SAFRAN

Since adapted to many other situations

using the same initial « spirit »
Contact & P
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AIRBUS .
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Reduced-Order Modeling (ROM)

B Tentative definition
capture main features of the behavior, retaining the accuracy of the approximation
use the redundancy of information

= possibility of approximating a complex system using only a handful of DOFs

B The behavior can be defined

explicity — Given:  u(é, M) or implicity ~ PDE: Z(u(, M)) =0

o 3 i
B Separation of variables 1 | u(t, M) ~ Z A (DA; (M)
- =1

best finite sum decomposition
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POD and other stuff ...

M Particular cases
if one imposes to one of the families 1; or A; to be orthogonal
POD (Proper Orthogonal Decomposition)
also known (depending on the community) as
KLD [Karhunen 43] [Loeve 55], PCA [Pearson |1901] [Hotteling 33]

in finite dimension (our case after discretization) matlab
[U,S,V] = svd(X)
SVD [Ekardt & Young 39] ey
in finite dimension but with more than two variables
HOSVD [Baranyi et al. 06]

B More generally
linear algebra of tensor decomposition

@PS‘ » [st-order = vector, 2nd-order = matrix, >2-order = high-order tensors
A 3



How to chose/build the ROB?

H Building a given ROB before solving the PDE (a posteriori method)
® principle: offline/online computations, learning phase
® Proper Orthogonal Decomposition (POD)
[Sirovich 87] [Holmes et al. 93] [Krysl et al 00] [Kunisch and Wolkwein 02]
[Willcox et al. 02] [Picinbono et al. 03] [Bergmann et al. 05] [Lieu et al. 06]
[Gunzburger et al. 06] [Niroomandi et al. 08] [Farhat et al. 08] [Matthies et al. 10] ...
® Reduced-Basis (RB) especially for parametrized problems
[Maday et al. 02] [Patera et al. 02] [Rozza et al. 07] [Haasdonk et al. 08] [Boyaval et al. 09] ...

B Without assuming any ROB before solving the PDE (a priori method)
® principle: automatic generation of the most relevant ROB
® Proper Generalized Decomposition (PGD)
[Ladeveze 85, 99] ... [Ladevéze et al. 99-1 1] [Nouy and Ladevéze 03, 04]
[Ladevéze et al. 08, 09, 10] [DN and Dureisseix 08] [Boucard, DN I [-13] ...
[Chinesta 06-] [Nouy et al. 07-] [Ammar and Chinesta 06] [Leygue et al |0-]
[Ryckelynck 06] [Beringhier et al. 10] ...

@



PGD in a nutshell

B ldea

minimization of a residual, Galerkin formulation, Petrov-Galerkin formulation

PDE: Z(u(t,M)) =0 ex: linear elasticity u*T[Ku(t) —f()] =0

B Reformulation in the separated-variable framework

-
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PGD in a nutshell

B ldea

minimization of a residual, Galerkin formulation, Petrov-Galerkin formulation

PDE: Z(u(t,M)) =0 ex: linear elasticity u*T[Ku(t) —f()] =0

B Reformulation in the separated-variable framework

T T
0

=f( ) =g( ) =fog( )

Fixed-point method Eigenvalue problem
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PGD in the LATIN framework

W LATIN
non incremental computational strategy
books [Ladeveze 85] [Ladeveze 99]
originally designed for nonlinear problems
separation between nonlinear and linear equations

since used for coupled problems

separation between coupled and uncoupled equations

or for multiscale problems solution

Y

separation between equations defined at the scale of

subdomains and equation which link subdomains...

B Model reduction method PGD

m
formerly « radial loading approximation » M ' u(t, M) = Z;Ai(t)Ai(M)
L=

renamed in 2010 by P. Ladeveze and F. Chinesta
Proper Generalized Decomposition (PGD) to show the link with POD

@



Mechanical problem

B Framework

® small perturbation, quasi-static evolution, isothermal

A
B State of the structure N
® defined by 's = (&, X, G, Y)
> & inelastic part of strain field
» X remaining internal variables
10
» O stress field
» Y variables conjugate of X




Mechanical problem

B Framework

® small perturbation, quasi-static evolution, isothermal

A
B State of the structure I
® defined by 's = (&, X, G, Y)
B Governing equations
® kinematic admissibility lo

compatibility of strain
prescribed displacement
® static admissibility
equilibrium equation
® nonlinear material behavior (Marquis-Chaboche elastic-viscoplastic material)

state equations

2 .
o =Ke, Y:§CX @Z linear ’

evolution laws

: 3/¢ " oP-y - 3 -1
Ep= AT ©—YV)og X=¢p- EYC Y @ nonlinear
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Mechanical problem

B Framework

® small perturbation, quasi-static evolution, isothermal

A
B State of the structure iT
® defined by 's = (&5, X, 0,Y)
B Governing equations
® kinematic admissibility o

compatibility of strain
prescribed displacement

® static admissibility

" equilibrium equation
® nonlinear material behavior (Marquis-Chaboche elastic-viscoplastic material)

state equations

2 .
- o=Ke, Y:§CX @2 linear '

evolution laws

. 3/¢\" oP-Y . 3
Ep=o( X=2,-—yCly -
PT2\K/ (0 V)eq ary @2 nonlinear |




Computational aspects

evolution law '
TO0
A

solution of
A the problem

kinematic admissibility
static admissibility
state equations




Computational aspects

evolution law '
search direction ’

T0 ~
A

search directions

solution of
the problem

kinematic admissibility
static admissibility
state equations

search direction )



Computational aspects

nonlinear but
local in space

search directions

solution of
the problem

kinematic admissibility
static admissibility
state equations




Computational aspects

Classical pointwise
Newton-Raphson algorithm

A
search directions
solution of
A the problem .
T

kinematic admissibility
static admissibility
state equations

search direction ’



Computational aspects

Classical pointwise
Newton-Raphson algorithm

T0 ~
A

search directions

solution of
the problem

linear but
global in space
time-depdt pbs




Computational aspects

Classical pointwise
Newton-Raphson algorithm

search directions

solution of
the problem

ep(t, M) = ;ei(t)Ep,l-(M)




Computational aspects

Classical pointwise
Newton-Raphson algorithm

o \ . .
convergence indicator N = search directions
_m——

solution of
the problem

ep(t, M) = ;ei(t)Ep,l-(M)




Mini example

B Open hole plate 16,954 DOFs

® using symmetries: eighth of the plate 120 time steps

Ua symmetry
“ /\ condition

T " prescribed
\/ displacement
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B PGD modes

Equiv. plastic strain
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Bigger example

B Blade of an aircraft engine

® Chaboche elasto-visco-plastic law with temperature dependence

® 5 MDOFs, 31 time steps, centrifugal inertial forces (rotational speed of 15,000 tr/min)
® [Nachar, Scanff, Ladeveze, Boucard, DN, 2022]
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Parametrized problems

PDE: Z(u(t,M)) =0 MPDE: Z(u(t,M),u,2) =0
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construction of a metamodel

B Many queries

same large nonlinear problem

multiple runs for different sets of parameters | )
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very high CPU cost 5
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Parametrized problems

PDE: L (u(t,M)) =0 MPDE: Z(u(t,M),u;,t2) =0

M First approach: building a dictionary

construction of a ROB common to all the sets of parameters
[Boucard, Ladevéze 99] [DN, Boucard et al. | 2-14] [Heyberger, Boucard, DN |3]

[DN, Boucard, Relun [5] m

m el
umm (6, M) = > Ai(OA; (M)

i=1 s
E ictionary

B Second approach: extra-coordinates

Sa
~ . -
_______

introduction of parameters as new coordinates

[Chinesta, Ammar, Cueto, Huerta, Diez, Gonzalez, Leygue, Bordeu ... | 2-]

ml

u(t, M, ) = ) Ai(OA; (M)a; (1) Bi(p2)

@PS i=1



Second approach

B Parametrized PDE [ i

with 3 Young moduli
as parameters MPDE: Z(u(t, M), 2,13 =0

mmimmminiit

B Separation
of variables m/

1 u(t, M, 11,2, 13) = > Ai(DA; (M)ar; (1) Bi () yi(ps)

— i=1

LM(U : » |D problem
La:i(,ul)\ . » | D problem

» | D problem

5000000

% |D problem

1e+08

2D spatial pb

1e+08
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First approach

B Taken into account variability of parameters

® for example: variation of a material parameter of the nonlinear law

® first computation for value kl: space
® new computation for value k2: space
= reuse of the reduced model obtained from the PGD

= addition of new pairs only if heeded

é”H/Q/

the problm > (ép, X)

[Boucard and Ladeveze 99], [Allix and Vidal 02], [Boucard and Champaney 03]...



Vessel head of nuclear reactor

B Parametric study 740,000 DOFs
parameters: loading amplitude and material characteristics (Ro ,Y) 60 time steps
1,000 sets of parameters (range of variation £30%)

wallclock time for | run: LATIN (2.5 hours) ABAQUS (3.5 hours)

influence on the maximum value of the Omises

500 Step: evolutio Frame: O
m . Mises Total Time: 0.000000
(Avg: 75%)
+4.015e402
436902402
433462402
+3011e+02
+2676e+02
(D) 422420402
—U +2.007e+02
A +1.673e402
3 1339402
— 1.004e+02
o) E 5.691e401
450 N — 43346401
D_ o +0.000e+00
b (]
0 oY0)
[} c
[7,) ° m—
©  400- 9

>35% of variation Mises stress

@



Vessel head of nuclear reactor

B Parametric study 740,000 DOFs
parameters: loading amplitude and material characteristics (Ro ,Y) 60 time steps
1,000 sets of parameters (range of variation £30%)

wallclock time for | run: LATIN (2.5 hours) ABAQUS (3.5 hours)

influence on the maximum value of the Omises

500 Step: evolutio Frame: O
m . Mises Total Time: 0.000000
(Avg: 75%)
+4.015e402
436902402
433462402
+3011e+02
+2676e+02
(D) 422420402
—U +2.007e+02
A +1.673e402
3 1339402
— 1.004e+02
o) E 5.691e401
450 N — 43346401
D_ o +0.000e+00
b (]
0 oY0)
[} c
[7,) ° m—
©  400- 9

>35% of variation Mises stress

@



Vessel head of nuclear reactor

B Parametric study

® parameters: loading amplitude and material characteristics (Ro,Y)

® influence on the maximum value of the Omises

® 1,000 sets of parameters (range of variation £30%)
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Post-treatment of virtual charts

B Uncertainties
material characteristics (Ro,y) are stochastic

loading parameter is described by an interval

10000 . . . 9000 12000 . . . 14000 . . . . 14000 . . .
9000
8000 10000 12000 12000
8000 7000
7000 10000 10000
6000 8000
6000 5000 8000 8000
5000 6000
4000
4000 6000 6000
3000 4000
3000 4000 4000
2000 2000 2000
2000 2000
1000 1000
0 0 0 0 0
368 370 372 374 376 368 370 372 374 376 368 370 372 374 376 369 370 371 372 373 374 370 371 372 373 374
PDFs of th ' f sigma Mi
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Post-treatment of virtual charts

B Uncertainties
material characteristics (Ro,y) are stochastic

loading parameter is described by an interval

369 MPa < Omises < 374.5 MPa

1.0
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0.7 ¢
0.6 ¢
0.5¢
0.4¢
0.3¢
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0.1¢
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Introduction

B Simple problem: thermoelasticity

? Assumptions: quasi-static evolution, small strains, small temperature

changes, homogeneous and isotropic material

Mechanical equilibrium

e Stress equilibrium Veo+f =0inQ
e Strain compatibility e=2(Vu+Tvu) in Q
e Boundary conditions u=uzonIy and on=F, onIp

Strongly coupled constitutive equations

e Hooke's law oc=K:e-p80I
e Fourier's law =-kV
0, e Mechanical heat source =ToBTre
L'y
dd e Heat equation pcl +1,, ==V -q+rg in Q
e Temp. grad. compatibility =V in Q
r, e Boundary conditions =f0gonTy and ¢-n=gqq on Ty




Introduction

B Monolithic coupled resolution

® direct resolution of the system: a priori CPU expensive

Mechanical equilibrium
e Stress equilibrium Veo+f,=0inQ M n Ii hi i n
e Strain compatibility €= %(V3+TW) in Q o o t c equat o
e Boundary conditions uw=uyonTy and on=F, ,onlp
Strongly coupled constitutive equations
e Hooke's law oc=K:e-p0I ReSOIUtlon
e Fourier's law =-kvV
e Mechanical heat source =ToBTre at eaCh -
time step ti+|
e Heat equation N pcl 47, ==V -q+rqg in Q i+ I i+ I
e Temp. grad. compatibility =V0 inQ
e Boundary conditions =fs0nTy and ¢-n=qq0nTy

B Partitioned procedures

® decoupled resolution of the physics [Felippa and Park 80, Belytschko and Hugues 83, Shrefler et al.
87, Zienkiewicz et al. 88, Farhat et al. 95, Morand and Ohayon 95, Lewis and Schrefler 98, ...]

i+ i+ i+ |




LATIN framework

B Natural separation of the equations

Mechanical equilibrium

linear decoupled

b e Stress equilibrium Veo+f =0 inQ
ut -
. g g . l T .
global-in-space e Strain compatibility e=5(Vu+"Vu) in Q Interface
e Boundary conditions u=ugzonl'y and on=F, onTfp between
S : physics
Strongly coupled constitutive equations
e Hooke's law o=IK:e-B0I local lI)n Space
ut
e Fourier's law =-kV coupled
e Mechanical heat source =TyBTre
similar to
linear decoupled e Heat equation pct + 71, ==V-qg+rg in <
but T d tibilit in ©
. ® . . - J
global-in-space emp. grad. compatibility \VACT?
e Boundary conditions =03 onTy and ¢-n=qq on Ty

@



LATIN framework

B Natural separation of the equations

-
e Stress equilibrium V-o+f =0inQ
e Strain compatibility = 2(Vu+Tvu) in Q
e Boundary conditions =u,onIy and on=F, on g

e Hooke's law =K:e-p0I n
e Fourier's law =—-kVY

e Mechanical heat source =TS8 Tr

e Heat equation pct +71,, ==V-qg+rq in Q

e Temp. grad. compatibility =V in Q

e Boundary conditions =0gonTy and ¢-n=qqonly

: A
@I ‘S [DN, Dureisseix 08a, 08b]



ot o0 LATIN framework

e Strain compatibility =2 (Vu+Tvu) inQ

e Boundary conditions =uyonTy and on=F,;onTp
A

A [ e —0 Interface behavior

e Fourier's law =—kV

e Mechanical heat source =TyBTr

e Heat equation pcl +Tm =-V-q+7q4 in Q . .
e Temp. grad. compatibility =V0 inQ Sea I"Ch d I reCtlon
e Boundary conditions =0gonTy and g-n=gqonTly

solution of
the problem

Mechanical adm. Thermical adm.




Stress equilibrium

Strain compatibility

Hooke's law

Fourier's law

Heat equation

e Temp. grad. compatibility

Boundary conditions

V- +id=QinQ

Boundary conditions

Mechanical heat source

=2 (Vu+Tvu) inQ

pcl + =-V-g+rg inQ

=V? inQ

=0gonTy and g-n=gq on Ty

solution of
the problem

=uyjonly and on=F;onTp

Time-space PGD

for mechanics

LATIN framework

Coupled but local-in-space
« interface »



Turbine blade

~ 50% Reduction of Lead Time
~ 75% less Development Time
— Resists 1,250 Degree Celsius
- Up to 13,000 Rot i

B Number of DOFs
® mechanical part: 2,370,000 DOFs
® thermal part: | 18,300 DOFs

Wt 17

B Boundary conditions
® from [Kin et al.,AIAA Journal, 2018] Ug =0
® clamped on the lower tree root “

® centrifugal load up to 15,000 rpm

® forced convective flux on airfoil surface (270°Cy
T

® forced convective flux on cooling holes (40°C)

@P& [Wurtzer, DN, Boucard 2024]



Turbine blade

~ 50% Reduction of Lead Time
~ 75% less Development Time
— Resists 1,250 Degree Celsius
= Up to 13,000 R r Mi

B Number of DOFs
® mechanical part: 2,370,000 DOFs
® thermal part: | 18,300 DOFs

B Boundary conditions
® from [Kin et al.,AIAA Journal, 2018]
® clamped on the lower tree root

® centrifugal load up to 15,000 rpm

® forced convective flux on airfoil surface (270°C) Yy

® forced convective flux on cooling holes (40°C)

@ID‘S [Wurtzer, DN, Boucard 2024]



Turbine blade

Temperature [K] Von Mises stress [Pa]
305.4 350 400 450 489.7 1.4e+06 3e+8 5.6e+08

_— —




Turbine blade

B Parametric study

® parameter thermal expansion parameter [3
(influence the coupling between the 2 physics)

» 14 values of the parameter in the range of
variation
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1. The LATIN method and Proper Generalized Decomposition

2. Solving parametrized problems
3. Many queries in multiphysics problems

4. Conclusion
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Implementation

D. Néron

T. Vgrbekg . Intial design M. Vitse
Continuous integration PGD
Linear ROM Multi-
parameétric
Reinforced

concrete

LATIN-PGD
E. Wurtzer Multimodel 6 variable §. Nachar
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Multiphys asticity
insum

« Hey guy, what about my

favorite industrial RN
Parallel finite element software? »
LATIN-DL retting
Magnetostz . . atigue R. A. Cardoso
A.Ruda Talk of Pierre-Eliot Malleval
(coll. SIEMENYS) o

N uu—uu.t:ar LATIN-PGD Internal variables
Dynamics Quasi-statics \

functional design

A. Daby-Seesaram S. Rodriguez
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Conclusion and prospects

B LATIN-PGD

® to solve a variety of nonlinear problems

B Reduced-Order Modeling

® allows to build new methods for high performance computing

® concept of virtual charts (overall fields, not only metamodels) opens new perspectives in terms
of engineering design

B Numerical certification using high-fidelity models
® available in engineering sciences now reproduce accurately complex physics
® but direct handling is completely impossible due to CPU time and big data issues

® implementation or coupling with existing softwares must not be overlooked!

B Recent works in the nonlinear context
® computation of fragility curves (coll CEA)

® simulation of frictional contact in wire ropes (coll IFP Energies Nouvelles)

® native implementation in industrial optimisation software (coll SIEMENY)

® coupling ROM with Al for non parametrisable geometries (coll SAFRAN)

® coupling ROM with Al for multiphysics problems
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