

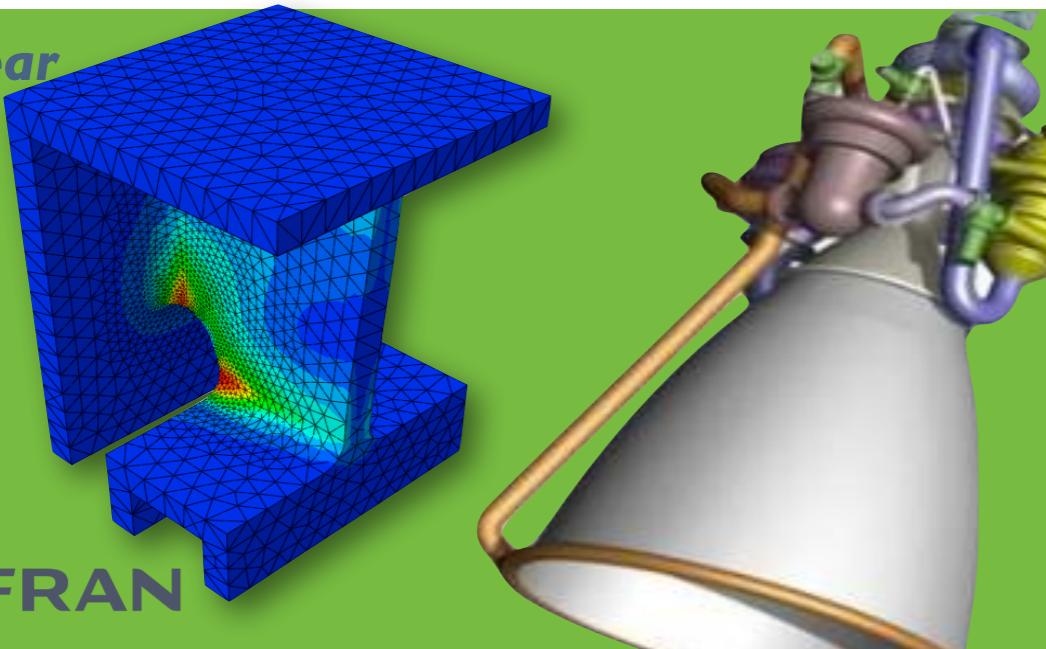
Réduction de modèles en mécanique non linéaire pour la construction d'abaques virtuels

**pour les problèmes paramétrés, dynamiques,
multiphysiques, multiéchelles...**

David Néron

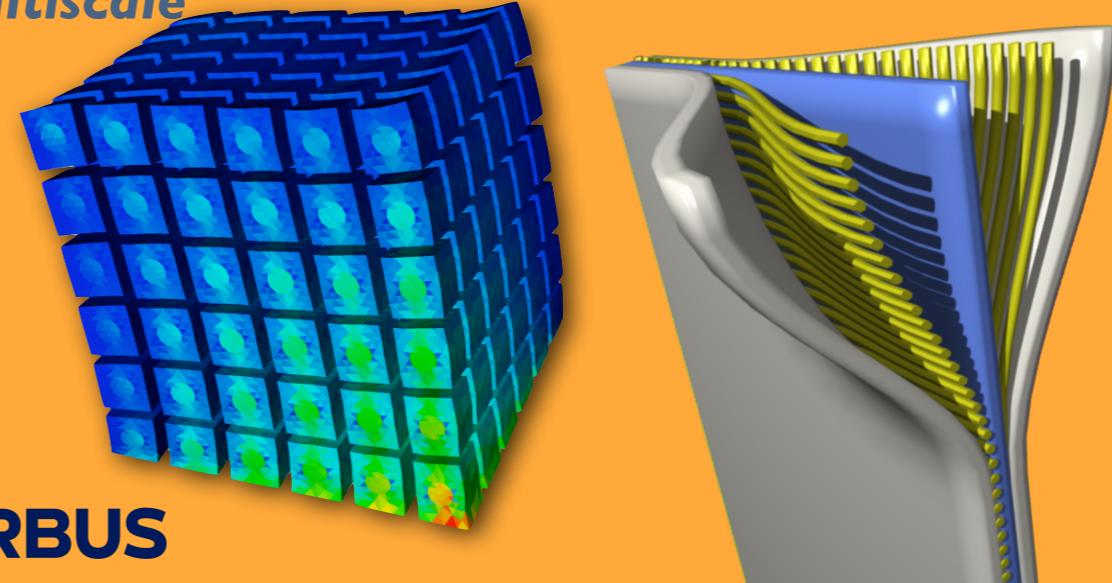
**P.-A. Boucard, A. Fau, P.-A. Guidault, P. Ladevèze, F. Louf (LMPS)
Pierre-Etienne Charbonnel (CEA), F. Feyel (SAFRAN), R. Scanff (SIEMENS)
A. Daby-Seesaram, E. Foulquier, P.-E. Malleval, V. Matray, N. Relun, F. Wurtzer...**

Nonlinear



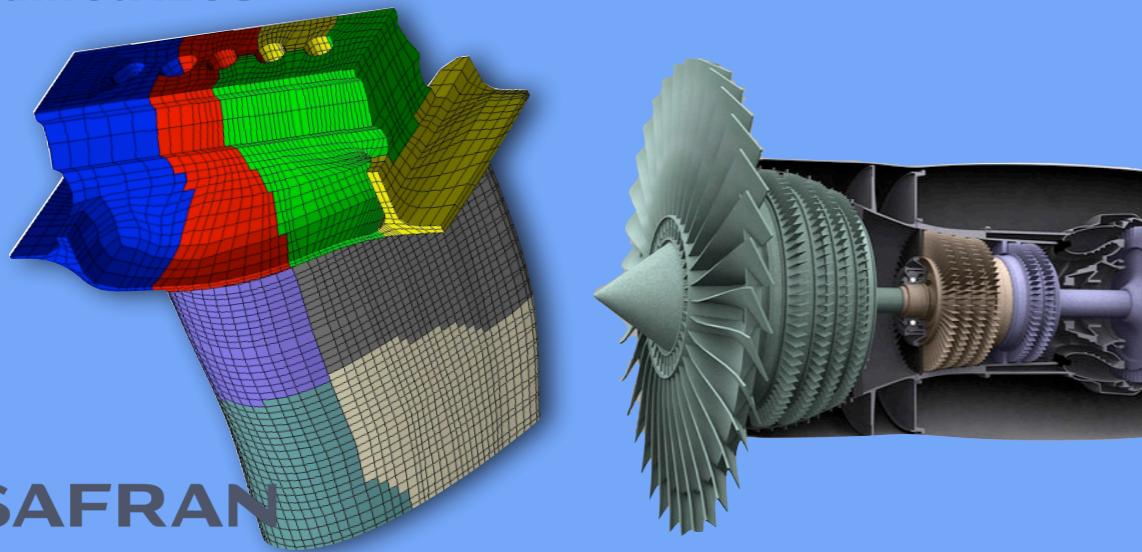
 SAFRAN

Multiscale



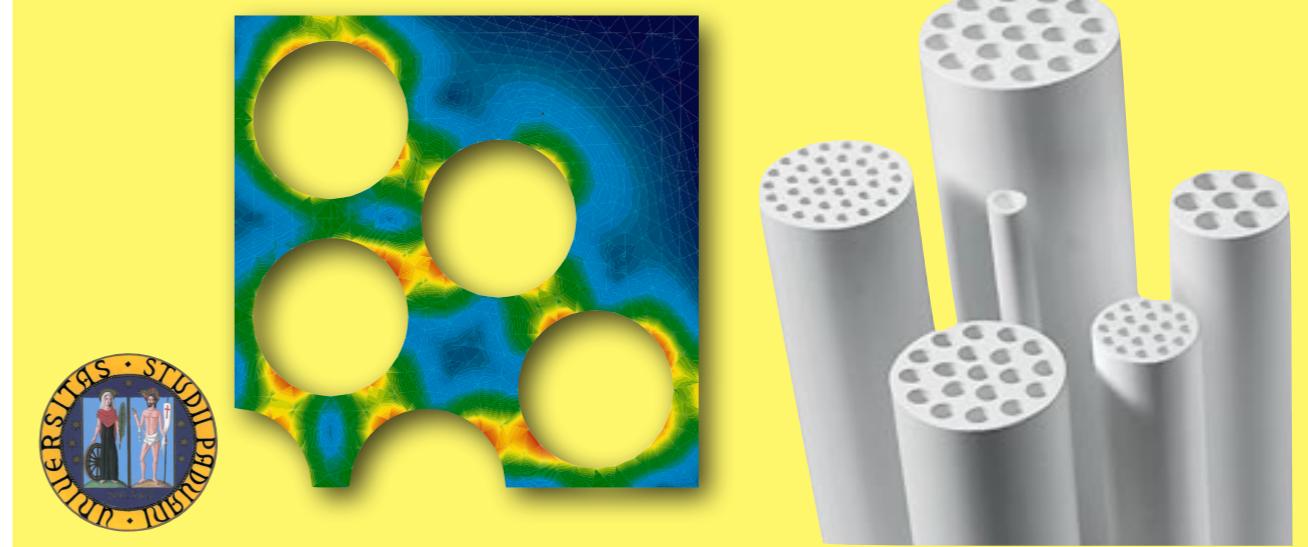
AIRBUS

Parametrized

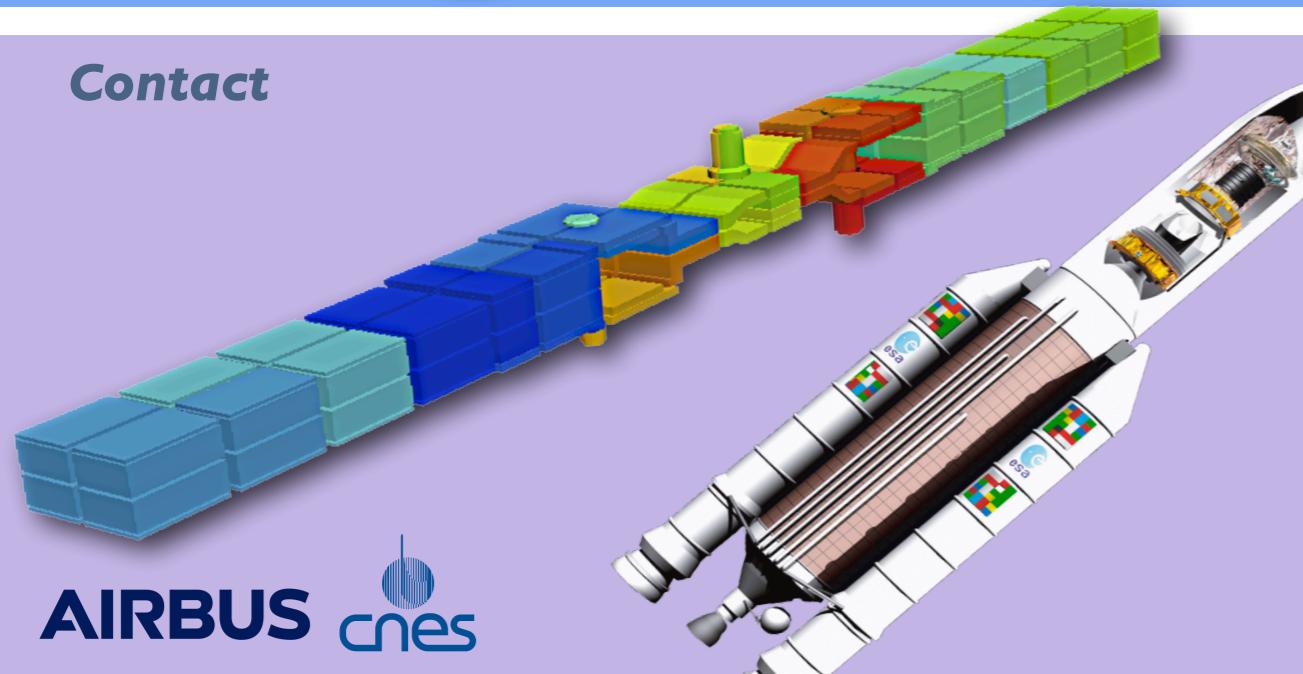


 SAFRAN

Coupled

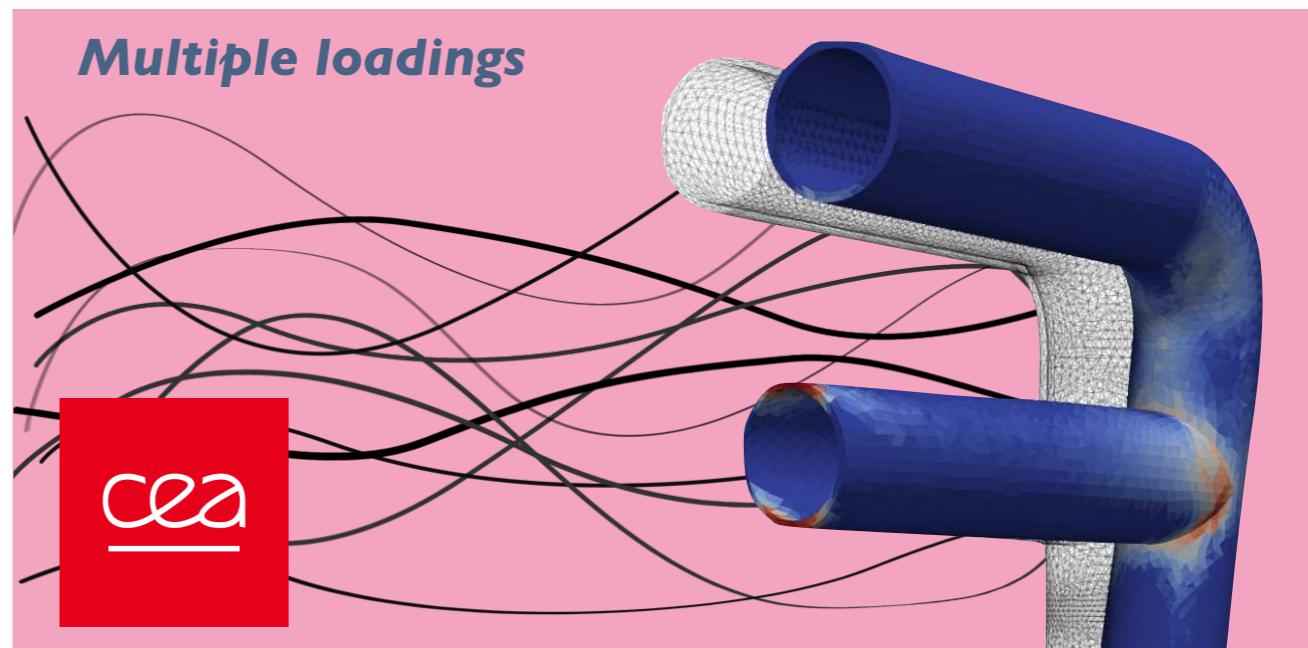


Contact



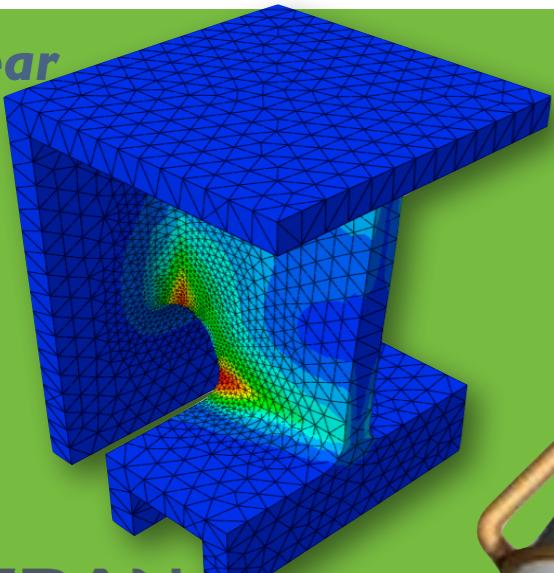
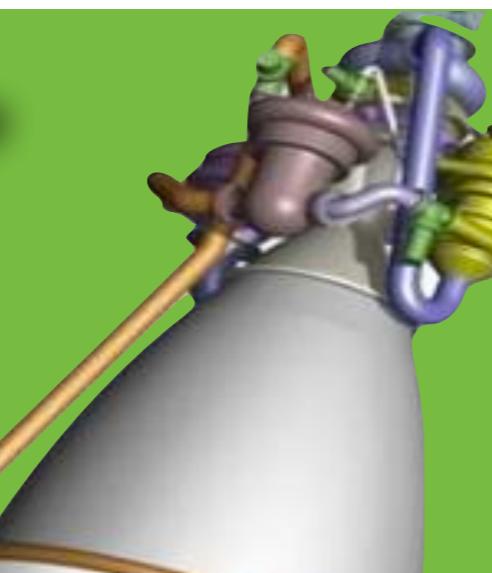
AIRBUS

Multiple loadings

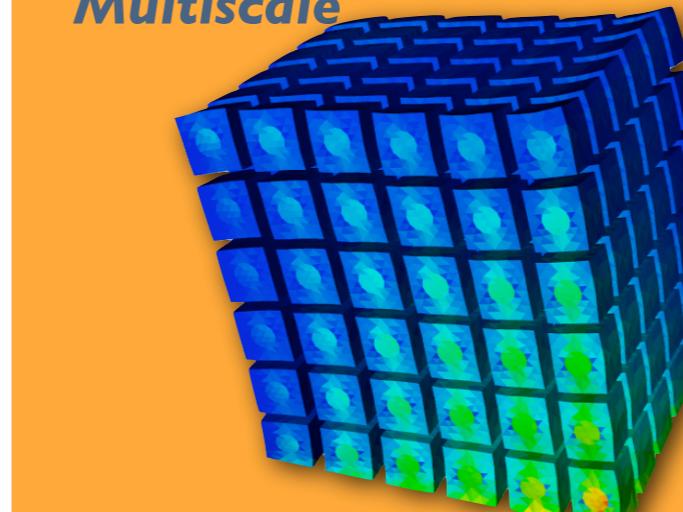
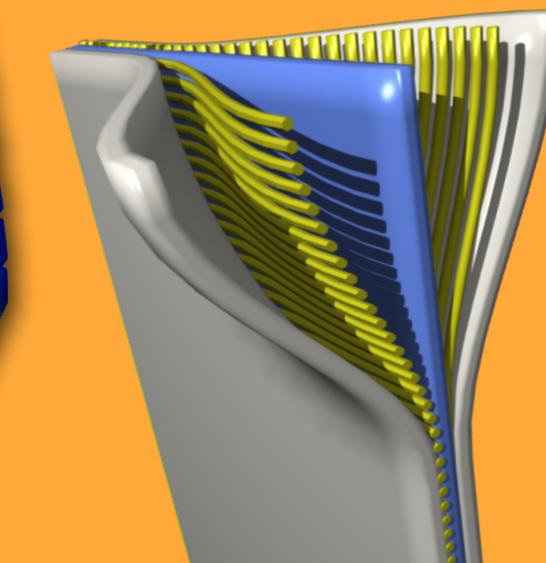


 cea

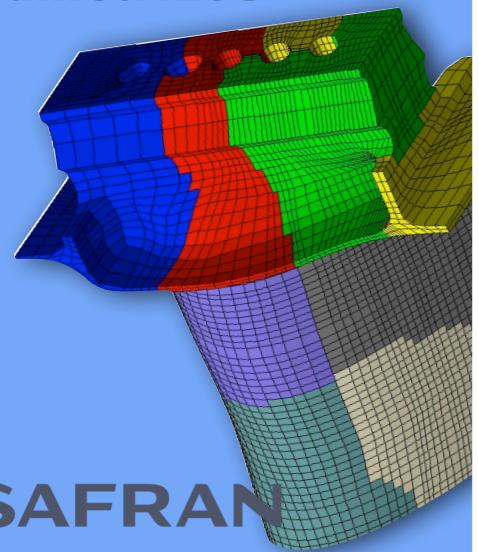
Nonlinear



Multiscale



Parametrized



In our team, model reduction by;

LATIN

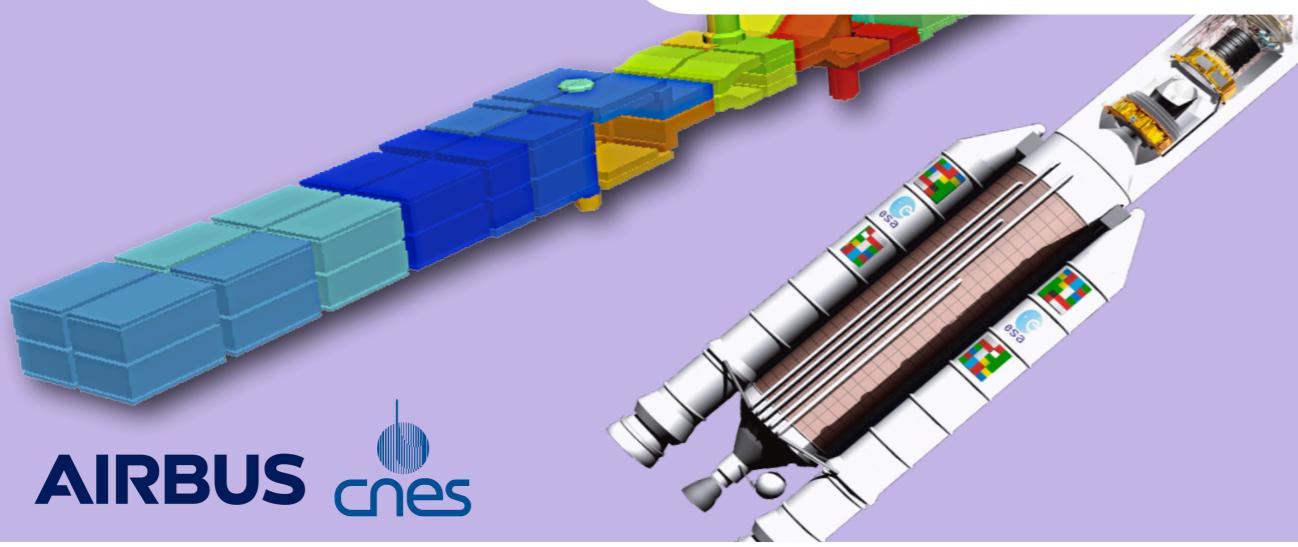
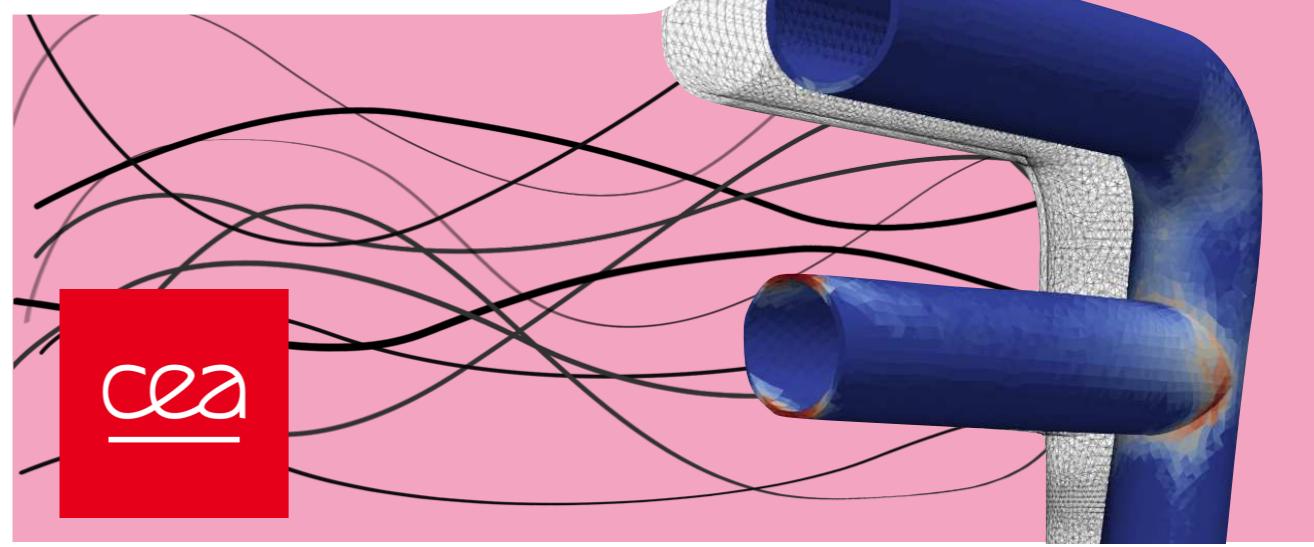
+

Proper Generalized Decomposition (PGD)

Initially introduced for the nonlinear problems
many works for more than 30 years

Since adapted to many other situations
using the same initial « spirit »

Contact



Outline

- 1. The LATIN method and Proper Generalized Decomposition**
- 2. Solving parametrized problems to build virtual charts**
- 3. Many queries in multiphysics problems**
- 4. Conclusion**

Outline

- I. The LATIN method and Proper Generalized Decomposition**
- 2. Solving parametrized problems to build virtual charts**
- 3. Many queries in multiphysics problems**
- 4. Conclusion**

Reduced-Order Modeling (ROM)

■ Tentative definition

- capture **main features** of the behavior, retaining the **accuracy** of the approximation
- use the **redundancy** of information
- possibility of approximating a **complex system** using only a **handful of DOFs**

■ The behavior can be defined

- explicitly

Given: $u(t, M)$

or implicitly

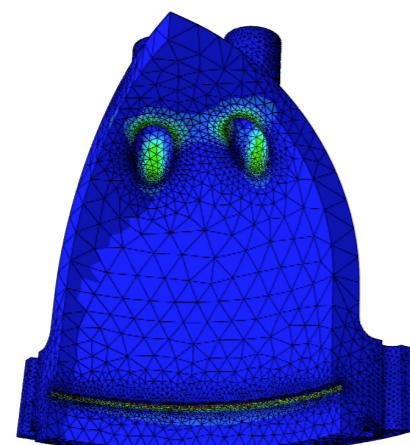
PDE: $\mathcal{L}(u(t, M)) = 0$

■ Separation of variables

- best finite sum decomposition

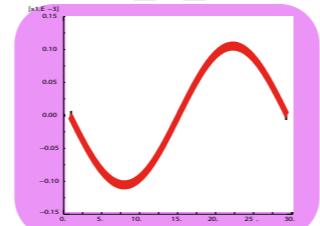
i

$$u(t, M) \approx \sum_{i=1}^m \lambda_i(t) \Lambda_i(M)$$

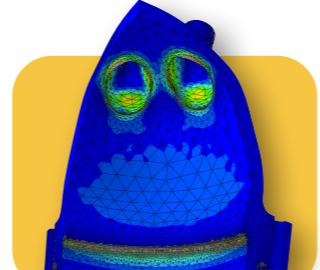


=

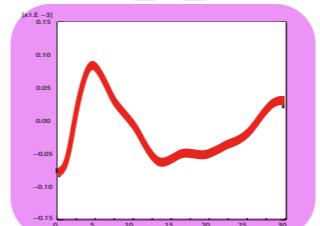
X



+



X

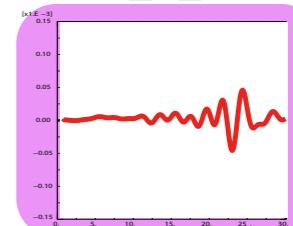


+

...

+

X



+

Reduced-Order Modeling (ROM)

■ Tentative definition

- capture **main features** of the behavior, retaining the **accuracy** of the approximation
- use the **redundancy** of information
- possibility of approximating a **complex system** using only a **handful of DOFs**

■ The behavior can be defined

- explicitly

Given: $u(t, M)$

or implicitly

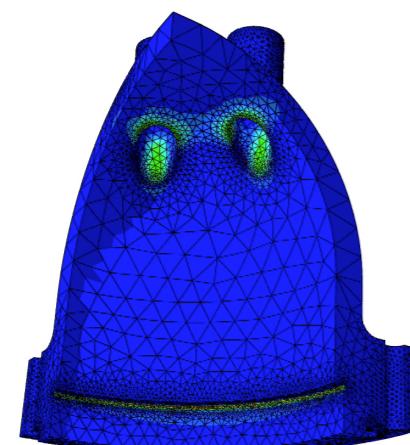
PDE: $\mathcal{L}(u(t, M)) = 0$

■ Separation of variables

- best finite sum decomposition

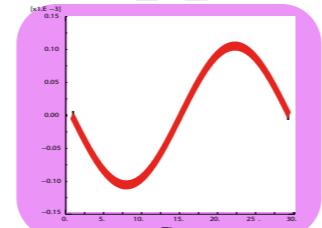
i

$$u(t, M) \approx \sum_{i=1}^m \lambda_i(t) \Lambda_i(M)$$

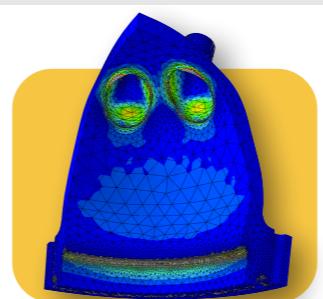


=

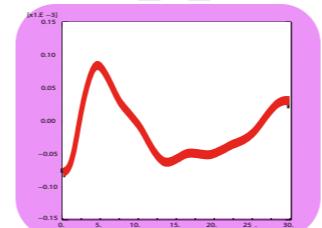
X



+



X

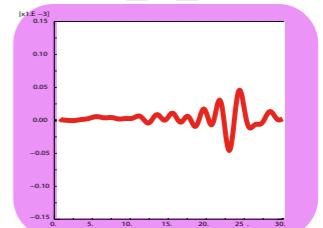


+

...

+

X



+

■ Particular cases

- if one imposes to one of the families λ_i or Λ_i to be orthogonal

POD (Proper Orthogonal Decomposition)

also known (depending on the community) as

KLD [Karhunen 43] [Loeve 55], **PCA** [Pearson 1901] [Hotteling 33]

- in finite dimension (our case after discretization)

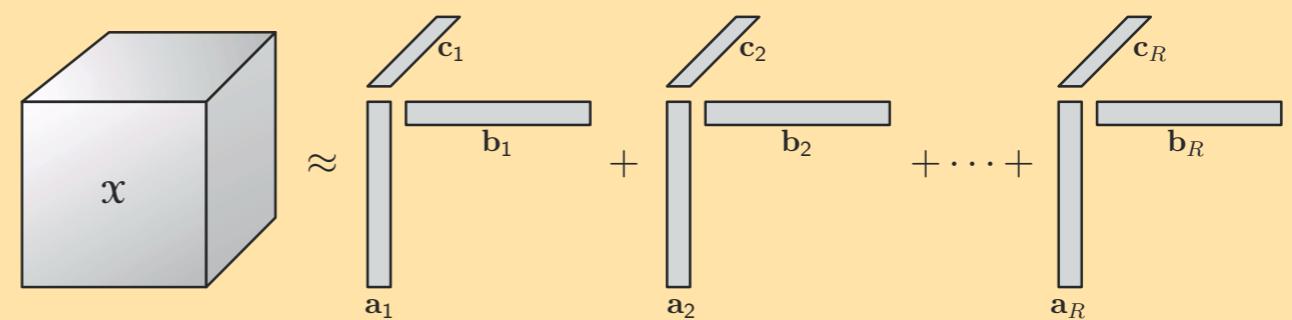
SVD [Eckart & Young 39]

matlab

```
[U,S,V] = svd(X)
X = U*S*V'
```

- in finite dimension but with more than two variables

HOSVD [Baranyi et al. 06]



■ More generally

- linear algebra of tensor decomposition

► 1st-order = vector, 2nd-order = matrix, >2-order = high-order tensors

How to chose/build the ROB?

■ Building a given ROB before solving the PDE (a posteriori method)

- principle: **offline/online computations, learning phase**

● Proper Orthogonal Decomposition (POD)

[Sirovich 87] [Holmes et al. 93] [Krysl et al 00] [Kunisch and Wolkwein 02]

[Willcox et al. 02] [Picinbono et al. 03] [Bergmann et al. 05] [Lieu et al. 06]

[Gunzburger et al. 06] [Niroomandi et al. 08] [Farhat et al. 08] [Matthies et al. 10] ...

● Reduced-Basis (RB) especially for parametrized problems

[Maday et al. 02] [Patera et al. 02] [Rozza et al. 07] [Haasdonk et al. 08] [Boyaval et al. 09] ...

■ Without assuming any ROB before solving the PDE (a priori method)

- principle: **automatic generation of the most relevant ROB**

● Proper Generalized Decomposition (PGD)

[Ladevèze 85, 99] ... [Ladevèze et al. 99-11] [Nouy and Ladevèze 03, 04]

[Ladevèze et al. 08, 09, 10] [DN and Dureisseix 08] [Boucard, DN 11-13] ...

[Chinesta 06-] [Nouy et al. 07-] [Ammar and Chinesta 06] [Leygue et al 10-]

[Ryckelynck 06] [Beringhier et al. 10] ...

■ Idea

- minimization of a residual, Galerkin formulation, Petrov-Galerkin formulation

PDE: $\mathcal{L}(u(t, M)) = 0$

ex: linear elasticity $\mathbf{u}^{\star T} [\mathbf{Ku}(t) - \mathbf{f}(t)] = 0$

■ Reformulation in the separated-variable framework

$$\mathbf{u}^{\star T} [\mathbf{Ku}(t) - \mathbf{f}(t)] = 0$$

■ Idea

- minimization of a residual, Galerkin formulation, Petrov-Galerkin formulation

PDE: $\mathcal{L}(u(t, M)) = 0$

ex: linear elasticity $\mathbf{u}^{\star T} [\mathbf{Ku}(t) - \mathbf{f}(t)] = 0$

■ Reformulation in the separated-variable framework

$$\mathbf{u}^T \left[\mathbf{Ku}(t) - \mathbf{f}(t) \right] = 0$$

■ Idea

- minimization of a residual, Galerkin formulation, Petrov-Galerkin formulation

PDE: $\mathcal{L}(u(t, M)) = 0$

ex: linear elasticity $\mathbf{u}^{\star T} [\mathbf{Ku}(t) - \mathbf{f}(t)] = 0$

■ Reformulation in the separated-variable framework

$$\int_0^T \mathbf{u}^{\star T} [\mathbf{Ku}(t) - \mathbf{f}(t)] = 0$$

■ Idea

- minimization of a residual, Galerkin formulation, Petrov-Galerkin formulation

PDE: $\mathcal{L}(u(t, M)) = 0$

ex: linear elasticity $\mathbf{u}^{\star T} [\mathbf{Ku}(t) - \mathbf{f}(t)] = 0$

■ Reformulation in the separated-variable framework

$$\int_0^T \left[\mathbf{A}^T + \mathbf{A} \right] \left[\mathbf{u}^{\star T} - \mathbf{u}^{\star T} \right] = 0$$

■ Idea

- minimization of a residual, Galerkin formulation, Petrov-Galerkin formulation

PDE: $\mathcal{L}(u(t, M)) = 0$

ex: linear elasticity $\mathbf{u}^{\star T} [\mathbf{Ku}(t) - \mathbf{f}(t)] = 0$

■ Reformulation in the separated-variable framework

$$\int_0^T \left[\mathbf{A}^T + \mathbf{A} \right] \left[\mathbf{u}^{\star T} - \mathbf{f}(t) \right] = 0$$

$$\mathbf{u}^{\star} = \mathbf{f}(t)$$

$$\mathbf{u}^{\star} = \mathbf{g}(\mathbf{u}^{\star})$$

■ Idea

- minimization of a residual, Galerkin formulation, Petrov-Galerkin formulation

PDE: $\mathcal{L}(u(t, M)) = 0$

ex: linear elasticity $\mathbf{u}^{\star T} [\mathbf{Ku}(t) - \mathbf{f}(t)] = 0$

■ Reformulation in the separated-variable framework

$$\int_0^T \left[\mathbf{A} + \mathbf{A}^T \right]^T \left[\mathbf{f} - \mathbf{g} \right] = 0$$

$\mathbf{f} = f(\cdot)$ $\mathbf{g} = g(\cdot)$

Fixed-point method

■ Idea

- minimization of a residual, Galerkin formulation, Petrov-Galerkin formulation

PDE: $\mathcal{L}(u(t, M)) = 0$

ex: linear elasticity $\mathbf{u}^{\star T} [\mathbf{Ku}(t) - \mathbf{f}(t)] = 0$

■ Reformulation in the separated-variable framework

$$\int_0^T \left[\mathbf{A} + \mathbf{A}^T \right]^T \left[\mathbf{f} - \mathbf{g} \right] = 0$$

$\mathbf{f} = f(\mathbf{u})$ $\mathbf{g} = g(\mathbf{u})$ $\mathbf{f} \circ \mathbf{g} = f \circ g(\mathbf{u})$

Fixed-point method

■ Idea

- minimization of a residual, Galerkin formulation, Petrov-Galerkin formulation

PDE: $\mathcal{L}(u(t, M)) = 0$

ex: linear elasticity $\mathbf{u}^{\star T} [\mathbf{Ku}(t) - \mathbf{f}(t)] = 0$

■ Reformulation in the separated-variable framework

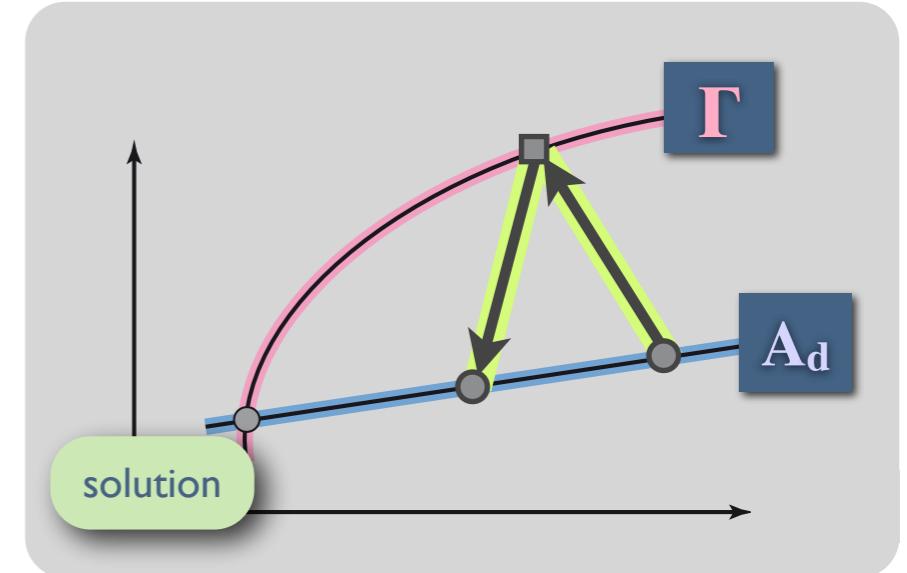
$$\int_0^T \left[\mathbf{A} + \mathbf{A}^T \right]^T \left[\mathbf{f} - \mathbf{g} \circ \mathbf{f} \right] = 0$$

$\mathbf{f} = f(\quad)$ $\mathbf{g} = g(\quad)$ $\mathbf{f} \circ \mathbf{g} = f \circ g(\quad)$
Fixed-point method **Eigenvalue problem**

PGD in the LATIN framework

■ LATIN

- non incremental computational strategy
- books [Ladevèze 85] [Ladevèze 99]
- originally designed for nonlinear problems
 - separation between nonlinear and linear equations
- since used for coupled problems
 - separation between coupled and uncoupled equations
- or for multiscale problems
 - separation between equations defined at the scale of subdomains and equation which link subdomains...



■ Model reduction method PGD

- formerly « radial loading approximation »
- renamed in 2010 by P. Ladevèze and F. Chinesta
- Proper Generalized Decomposition (PGD) to show the link with POD

$$u(t, M) \approx \sum_{i=1}^m \lambda_i(t) \Lambda_i(M)$$

Mechanical problem

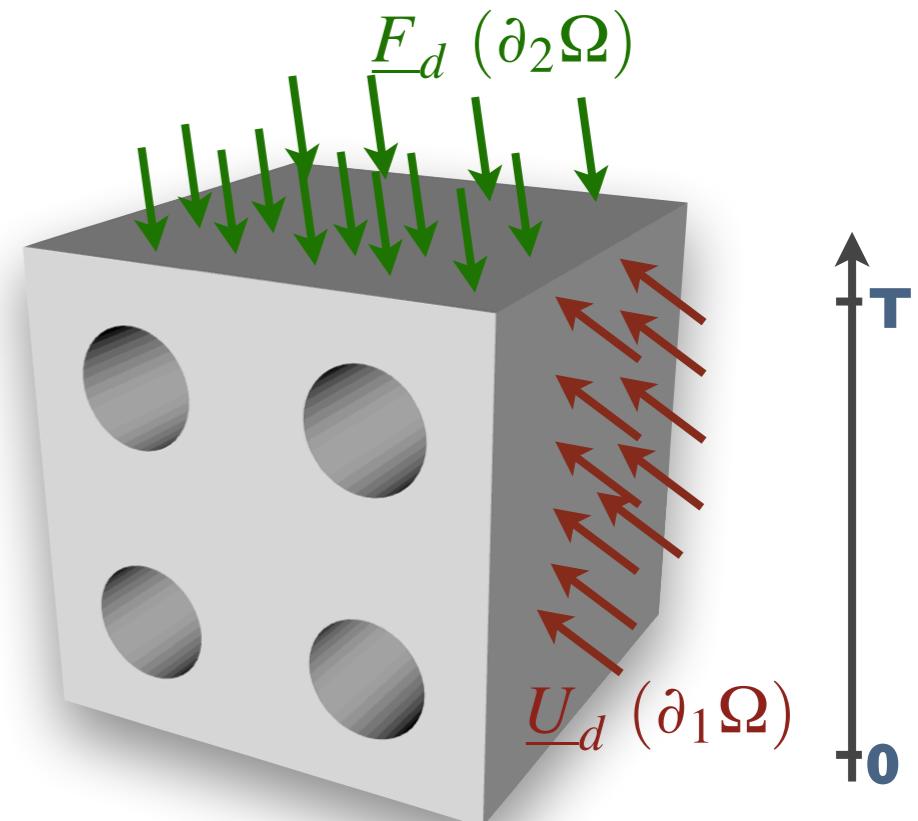
■ Framework

- small perturbation, quasi-static evolution, isothermal

■ State of the structure

- defined by $\mathbf{s} = (\varepsilon_p, X, \sigma, Y)$

- ▶ ε_p inelastic part of strain field
- ▶ X remaining internal variables
- ▶ σ stress field
- ▶ Y variables conjugate of X



Mechanical problem

■ Framework

- small perturbation, quasi-static evolution, isothermal

■ State of the structure

- defined by $\mathbf{s} = (\varepsilon_p, X, \sigma, Y)$

■ Governing equations

● kinematic admissibility

compatibility of strain

prescribed displacement

● static admissibility

equilibrium equation

● nonlinear material behavior (Marquis-Chaboche elastic-viscoplastic material)

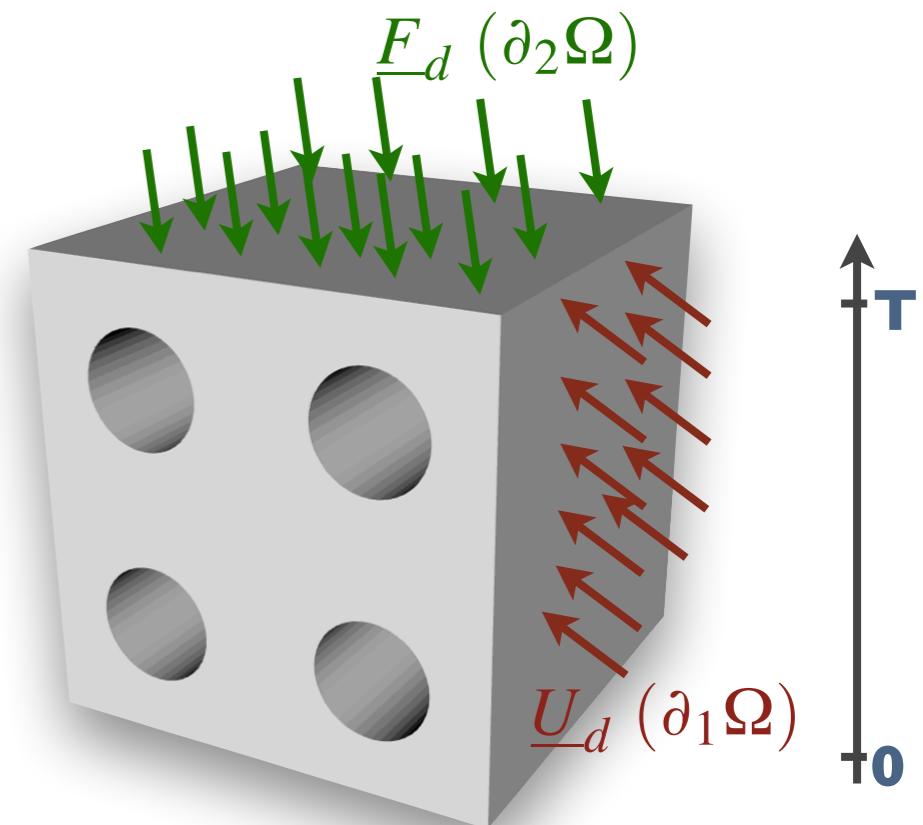
state equations

$$\sigma = K\varepsilon_e \quad Y = \frac{2}{3}CX$$

evolution laws

$$\dot{\varepsilon}_p = \frac{3}{2} \left\langle \frac{\phi}{K} \right\rangle^n_+ \frac{\sigma^D - Y}{(\sigma - Y)_{eq}}$$

$$\dot{X} = \dot{\varepsilon}_p - \frac{3}{2} \gamma C^{-1} Y$$



linear

nonlinear

Mechanical problem

■ Framework

- small perturbation, quasi-static evolution, isothermal

■ State of the structure

- defined by $\mathbf{s} = (\varepsilon_p, X, \sigma, Y)$

■ Governing equations

- kinematic admissibility

compatibility of strain
prescribed displacement

- static admissibility

equilibrium equation

- nonlinear material behavior (Marquis-Chaboche elastic-viscoplastic material)

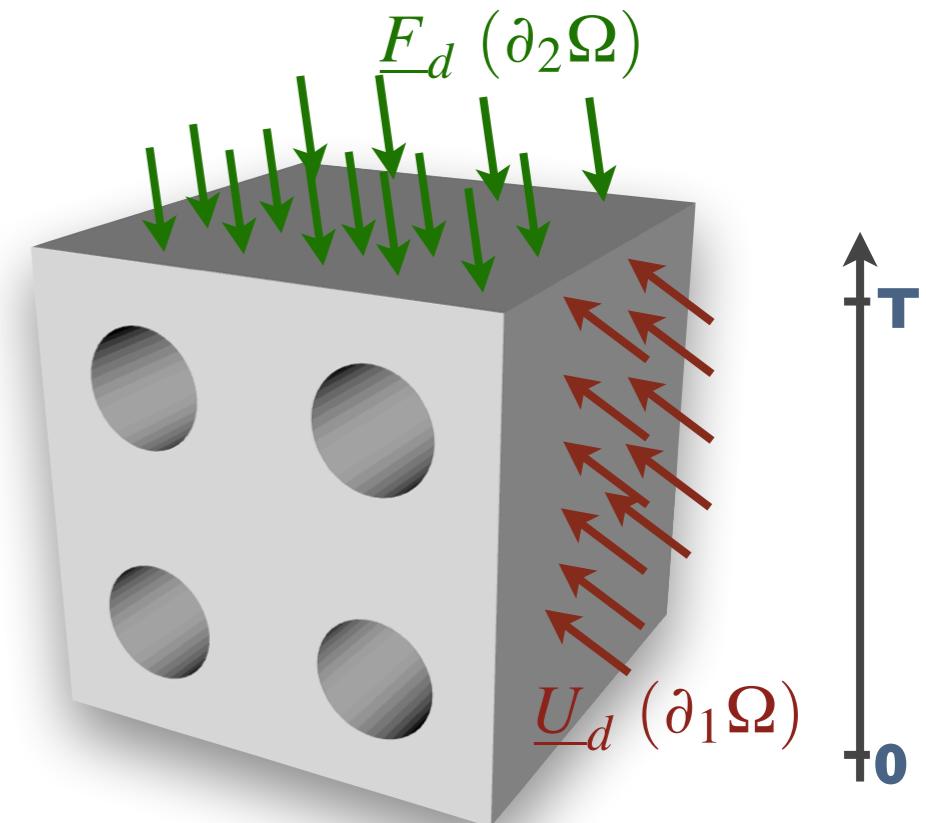
state equations

$$\sigma = K \varepsilon_e \quad Y = \frac{2}{3} C X$$

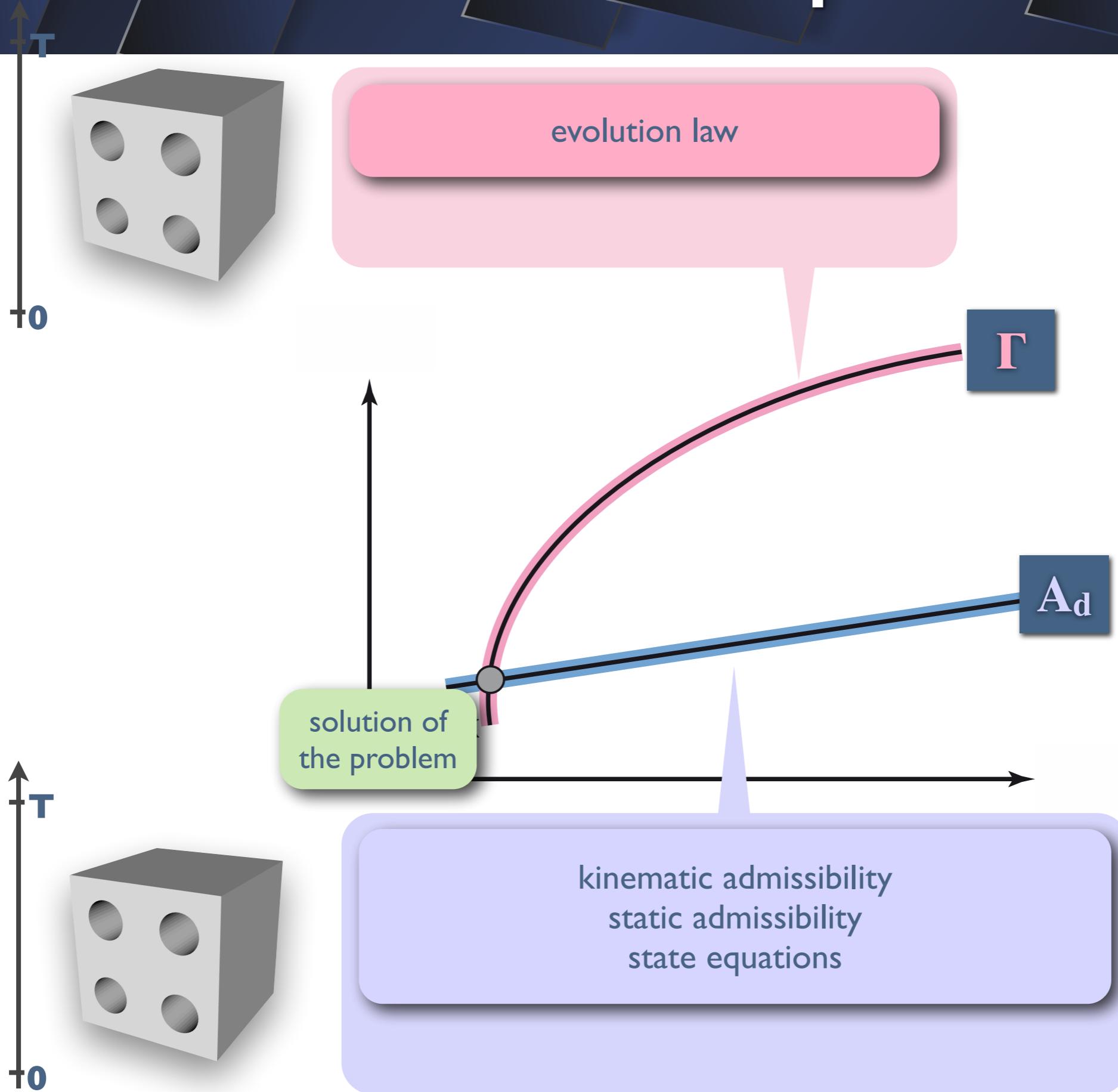
evolution laws

$$\dot{\varepsilon}_p = \frac{3}{2} \left\langle \frac{\phi}{K} \right\rangle^n_+ \frac{\sigma^D - Y}{(\sigma - Y)_{eq}}$$

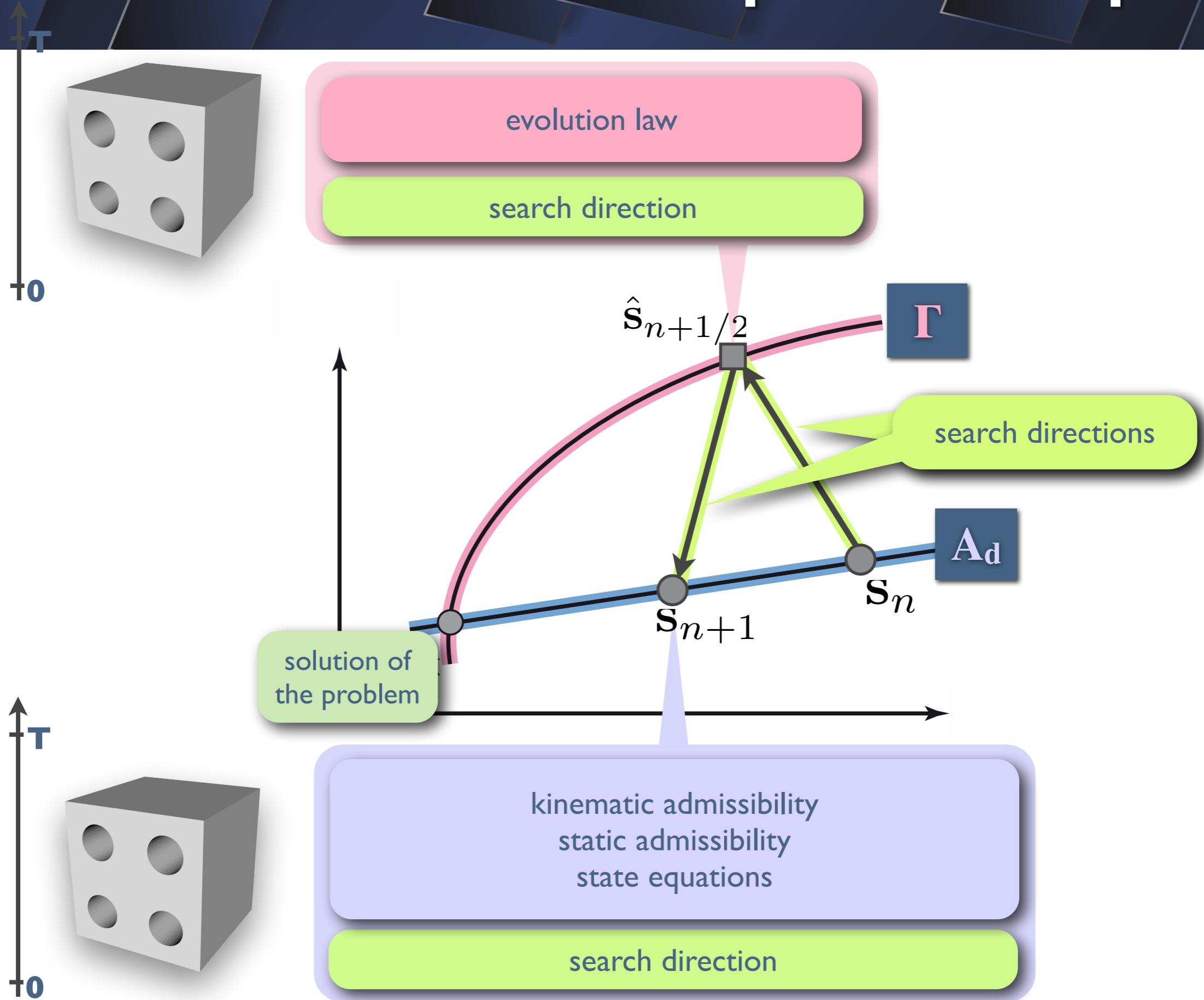
$$\dot{X} = \dot{\varepsilon}_p - \frac{3}{2} \gamma C^{-1} Y$$



Computational aspects



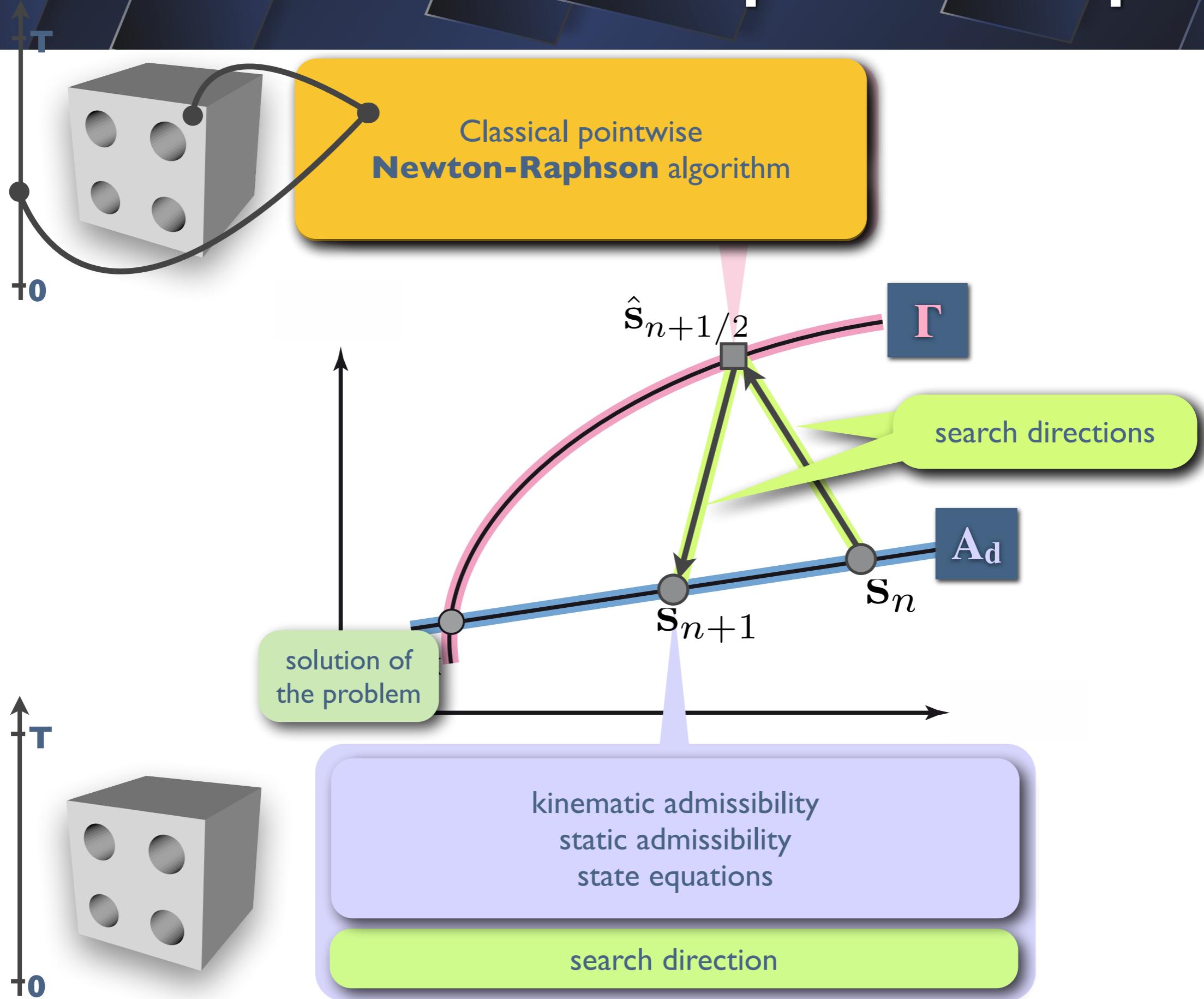
Computational aspects



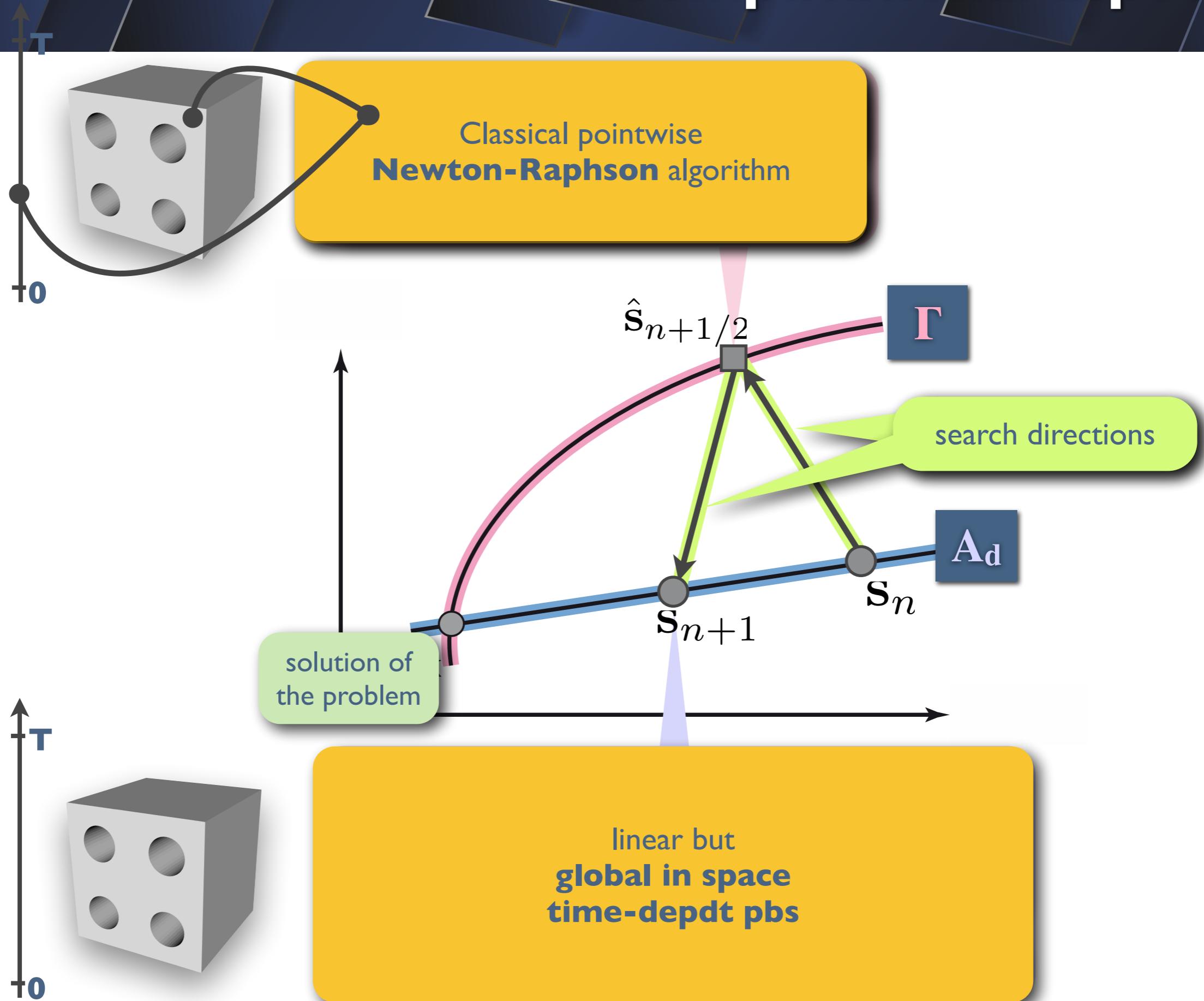
Computational aspects



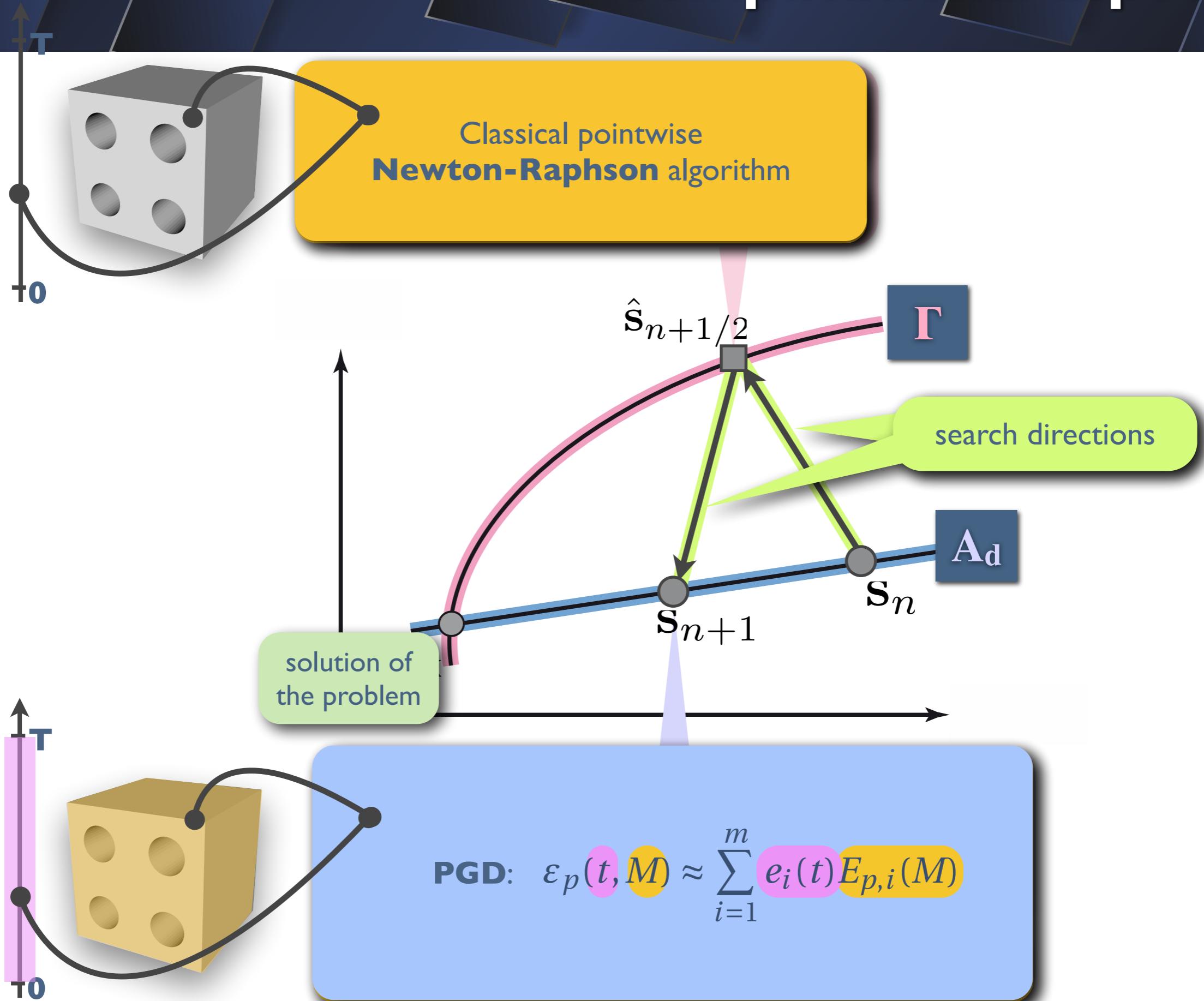
Computational aspects



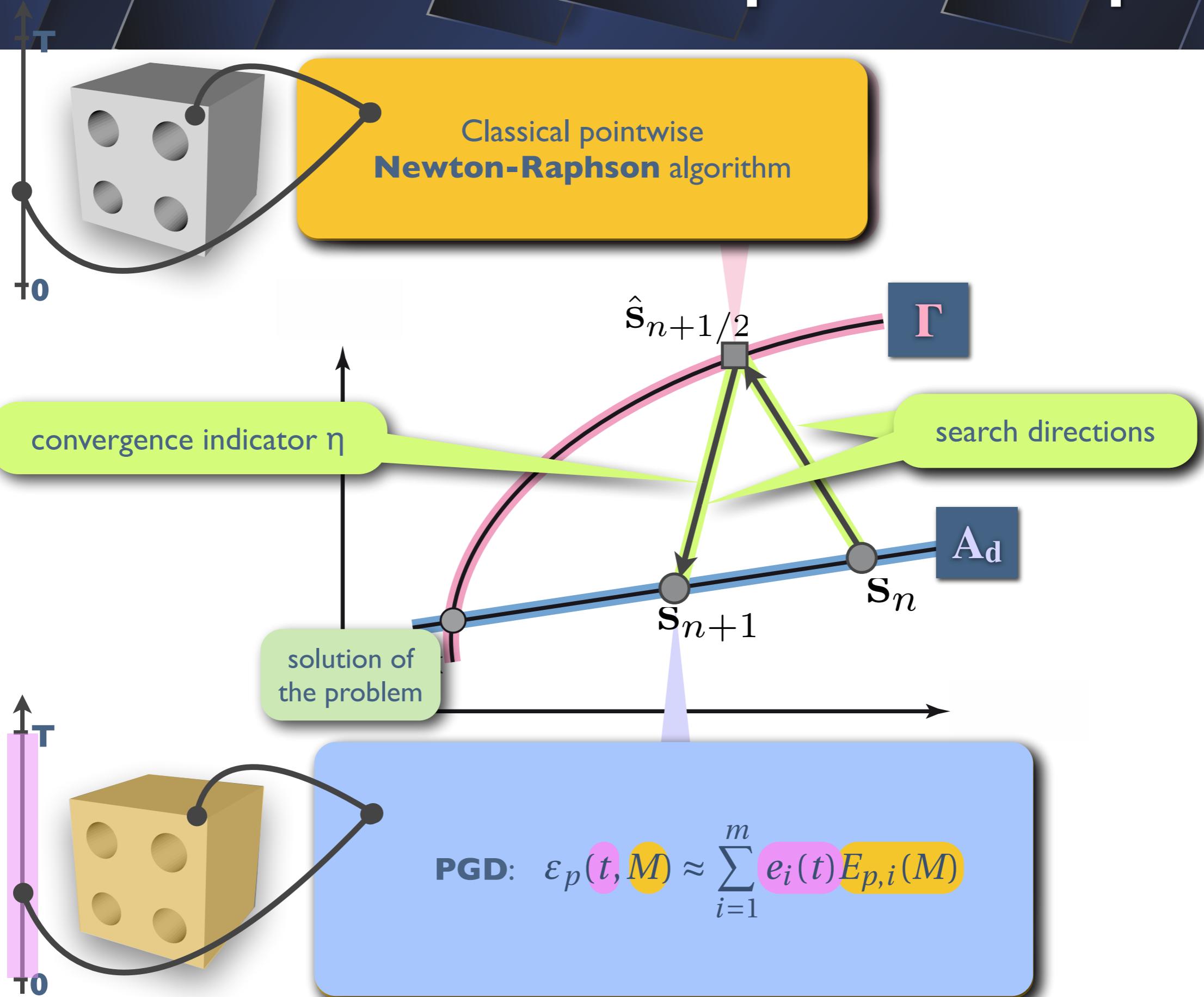
Computational aspects



Computational aspects

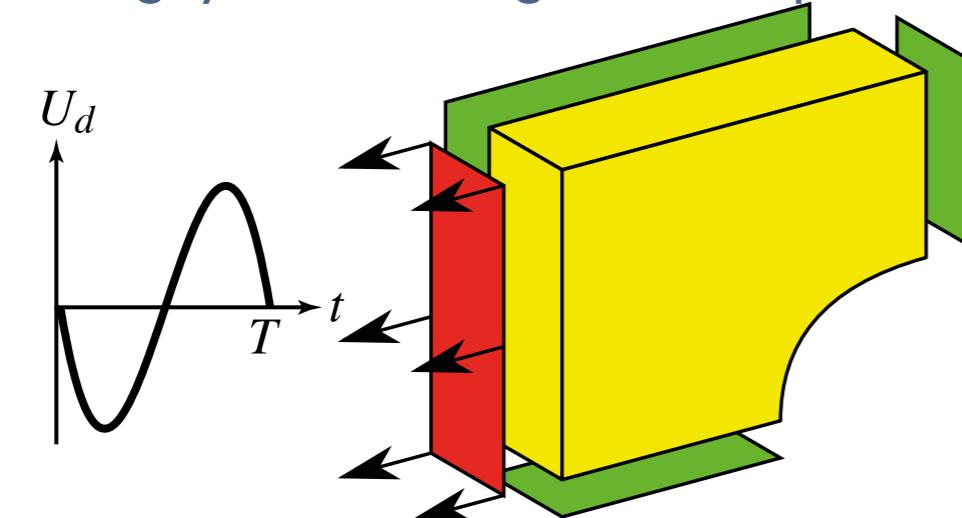


Computational aspects



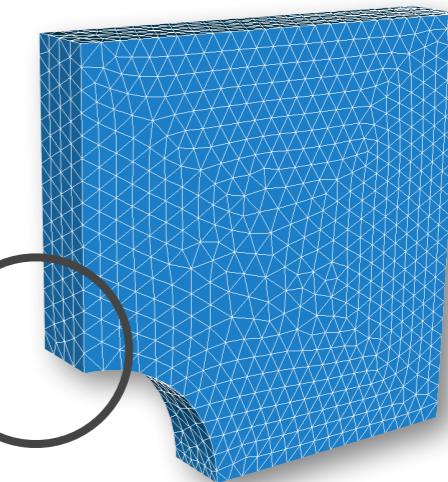
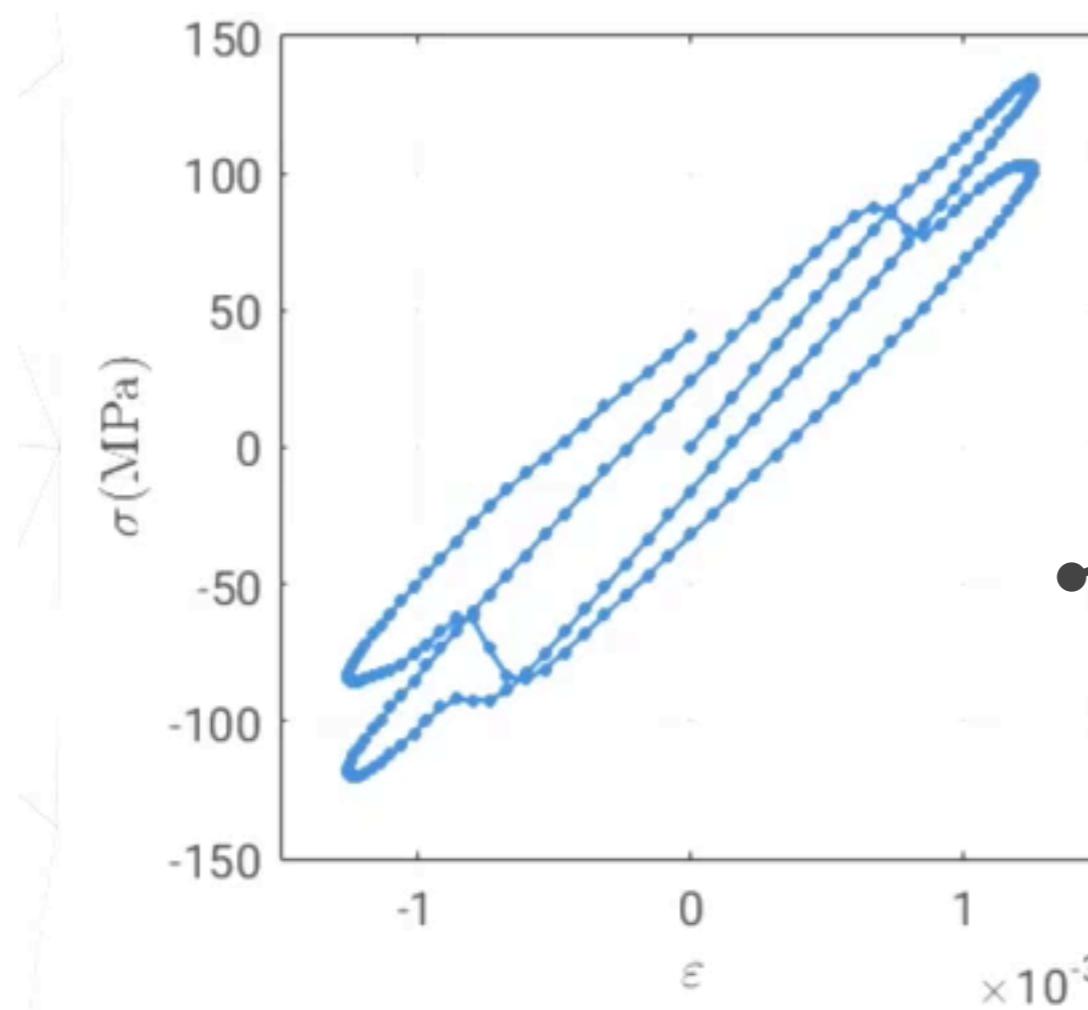
■ Open hole plate

- using symmetries: eighth of the plate



■ symmetry condition
■ prescribed displacement

36,954 DOFs
120 time steps



Evolution equations
 Kinematic admissibility
 Static admissibility

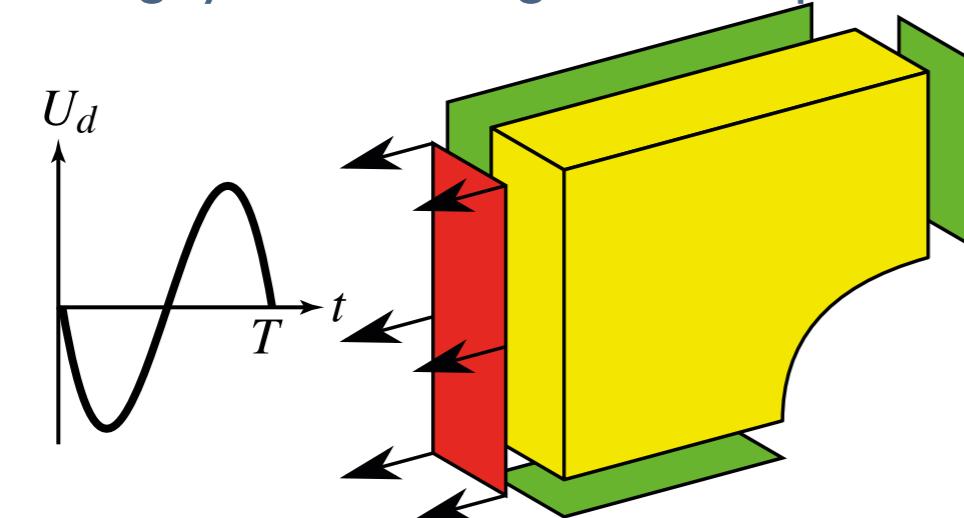
13

Γ

A_d

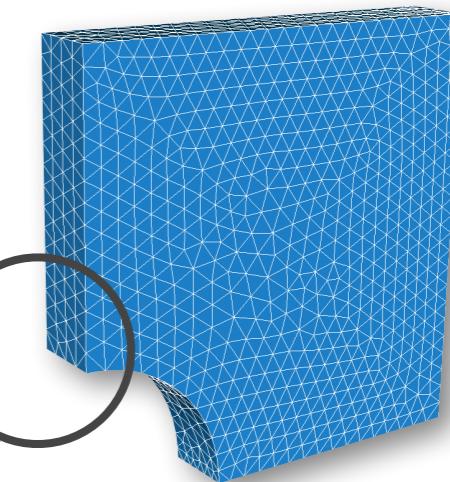
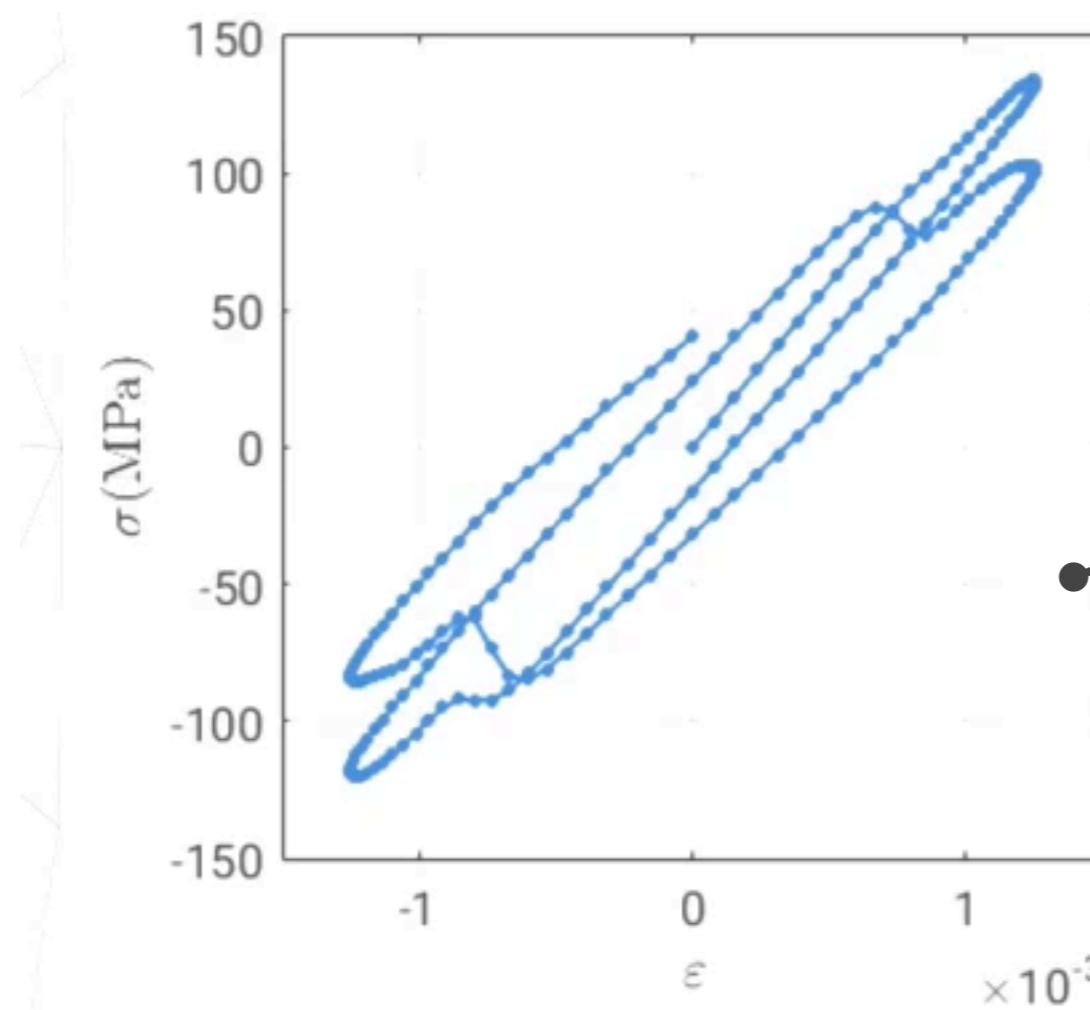
■ Open hole plate

- using symmetries: eighth of the plate



■ symmetry condition
■ prescribed displacement

36,954 DOFs
120 time steps

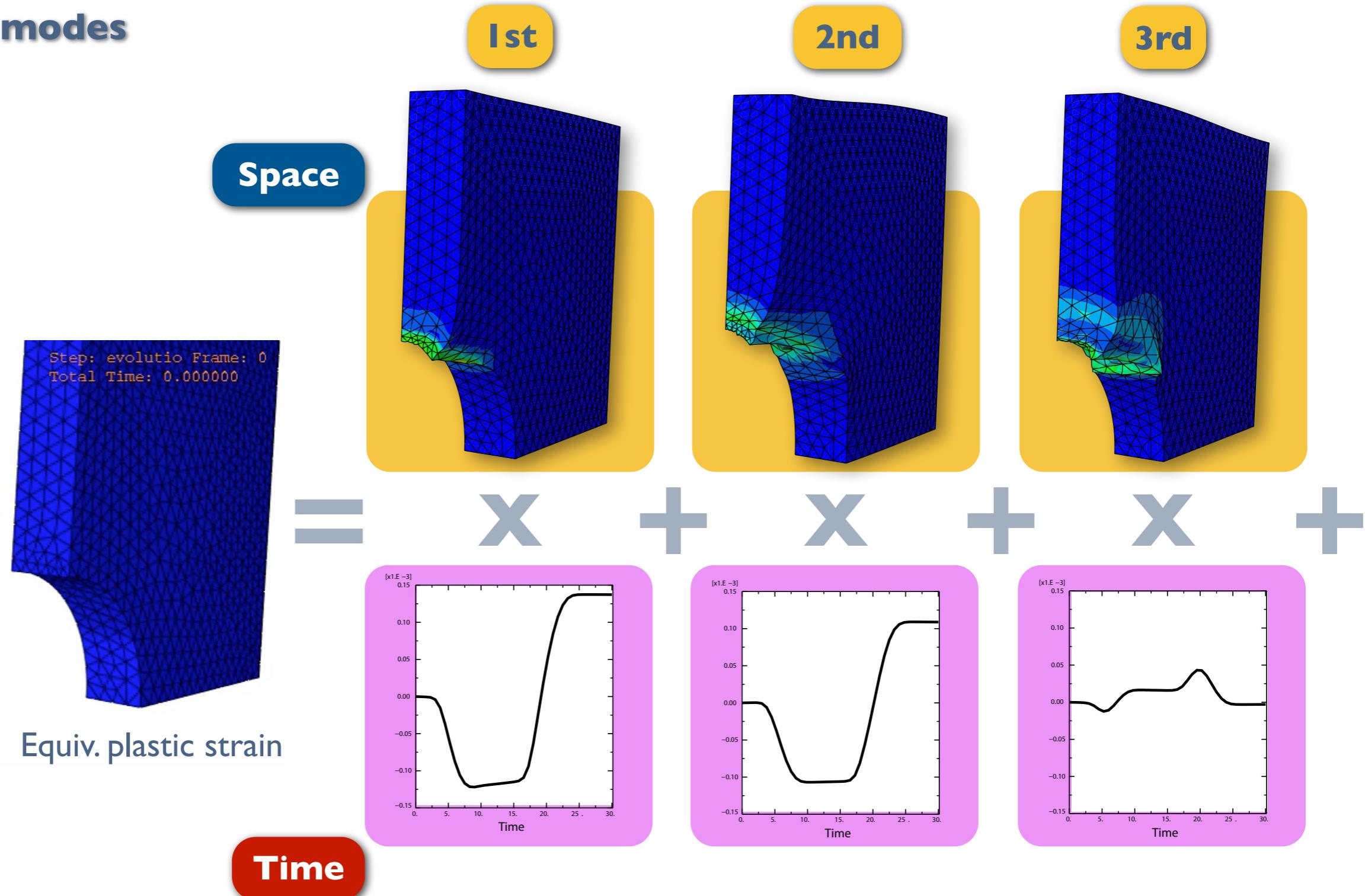


Evolution equations
 Kinematic admissibility
 Static admissibility

13

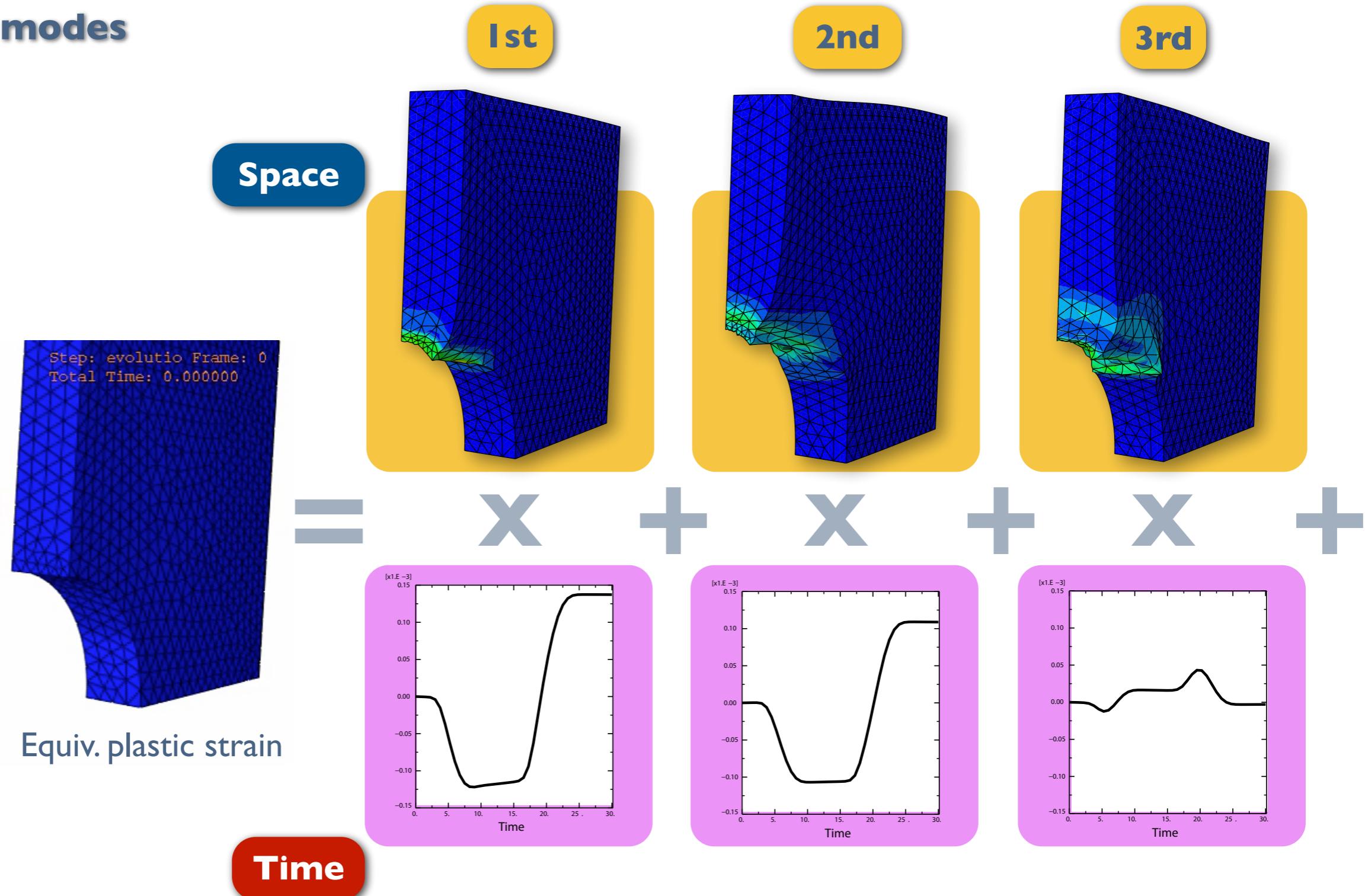
Mini example

■ PGD modes



Mini example

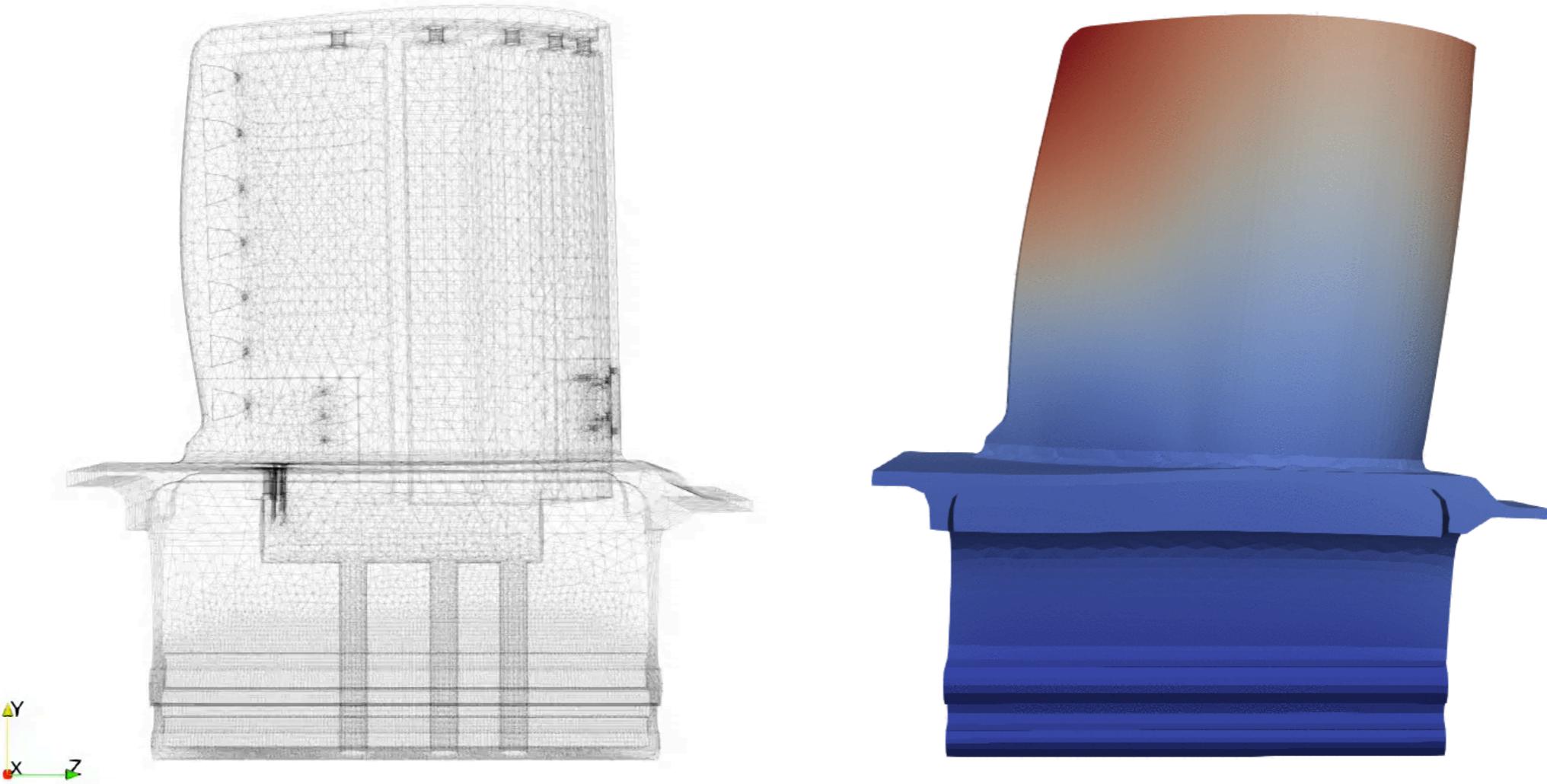
■ PGD modes



■ Blade of an aircraft engine

- Chaboche elasto-visco-plastic law with temperature dependence
- 5 MDOFs, 31 time steps, centrifugal inertial forces (rotational speed of 15,000 tr/min)
- [Nachar, Scanff, Ladevèze, Boucard, DN, 2022]

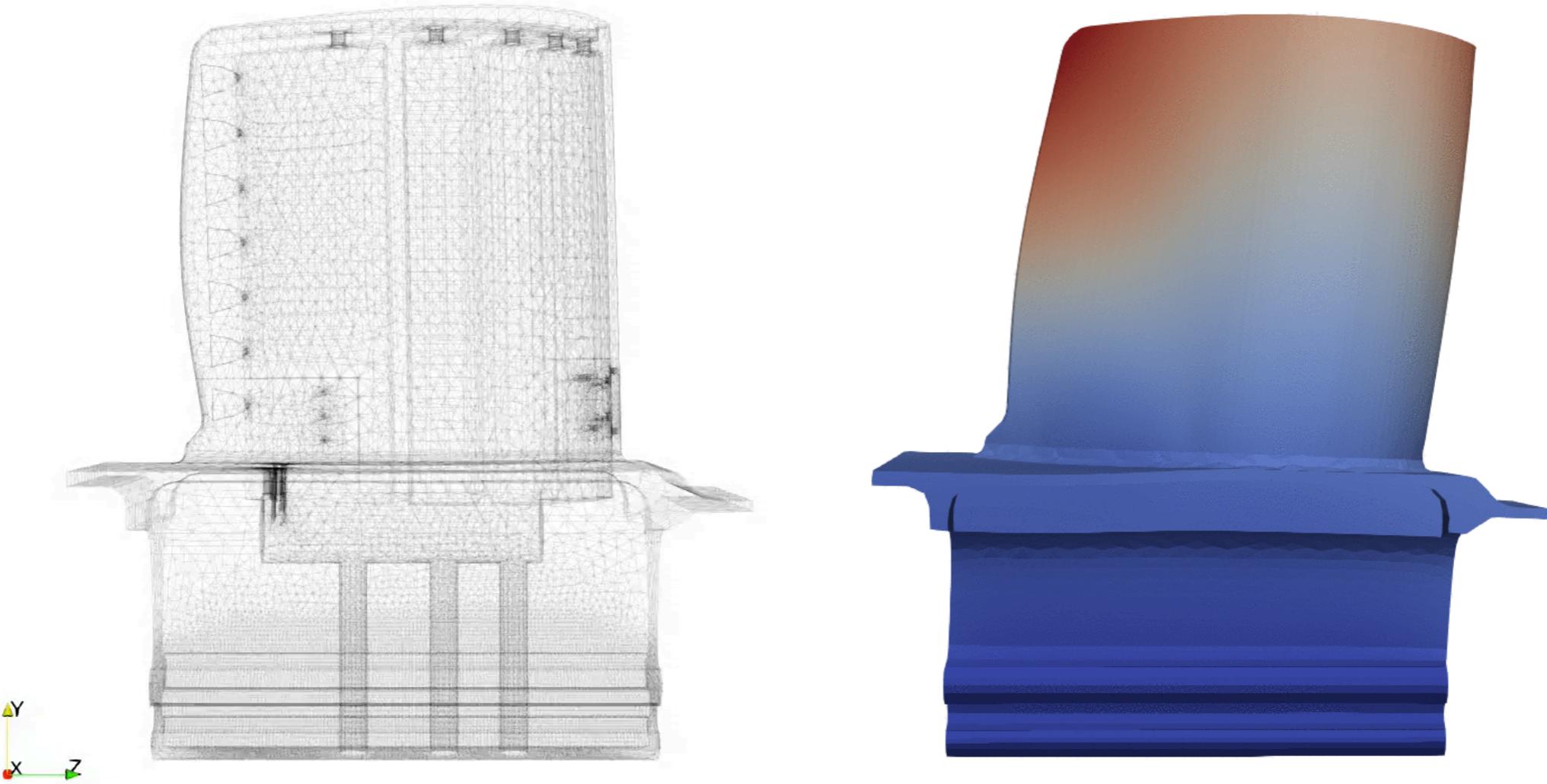
SIEMENS



■ Blade of an aircraft engine

- Chaboche elasto-visco-plastic law with temperature dependence
- 5 MDOFs, 31 time steps, centrifugal inertial forces (rotational speed of 15,000 tr/min)
- [Nachar, Scanff, Ladevèze, Boucard, DN, 2022]

SIEMENS

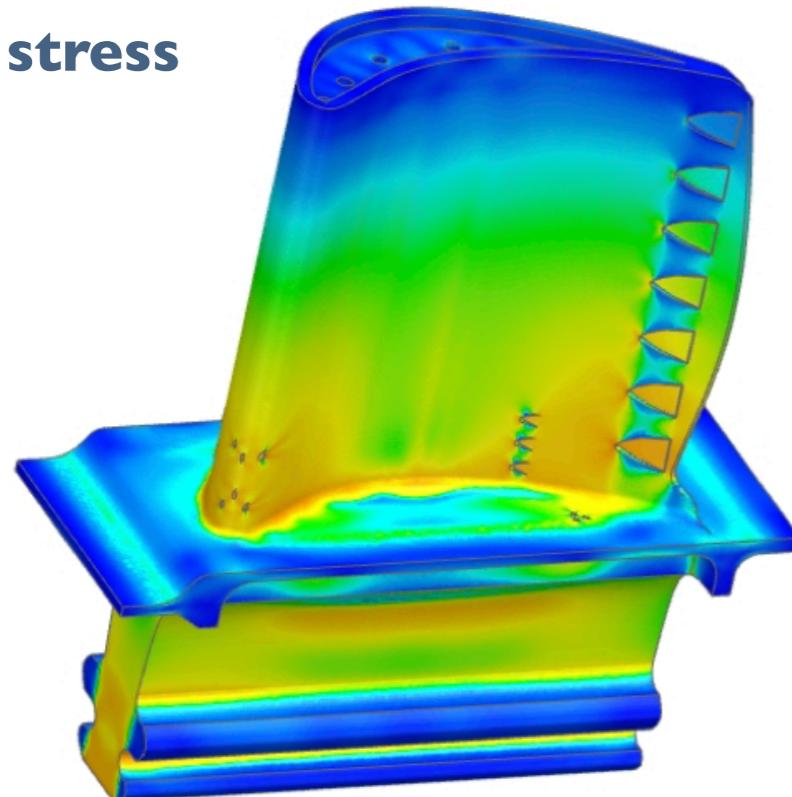


Bigger example

■ Blade of an aircraft engine

- Chaboche elasto-visco-plastic law with temperature dependence
- 5 MDOFs, 31 time steps, centrifugal inertial forces (rotational speed of 15,000 tr/min)
- [Nachar, Scanff, Ladevèze, Boucard, DN, 2022]

Mises stress



Space
ROB

Time
funct.

1st

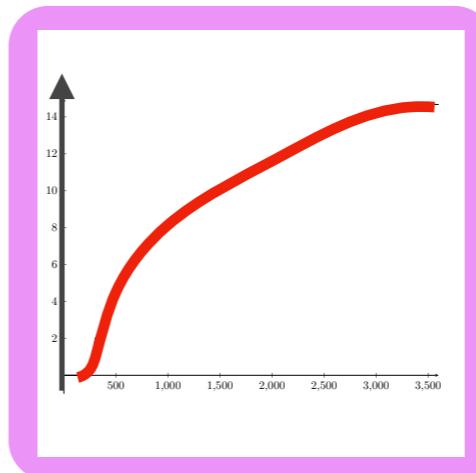
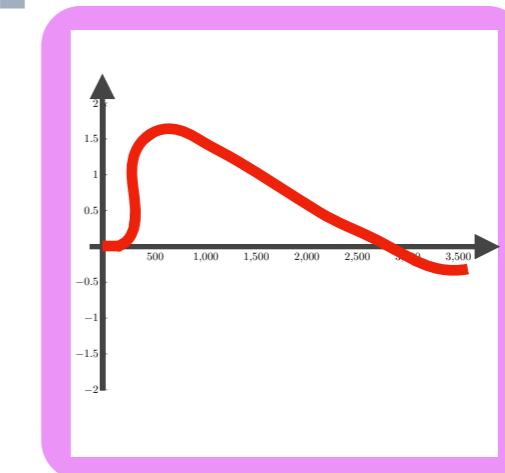
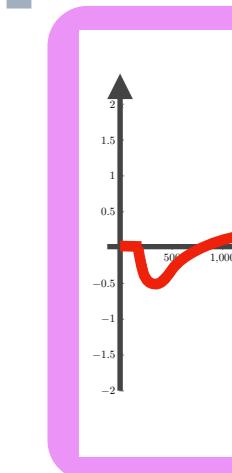
2nd

3

X

X

X

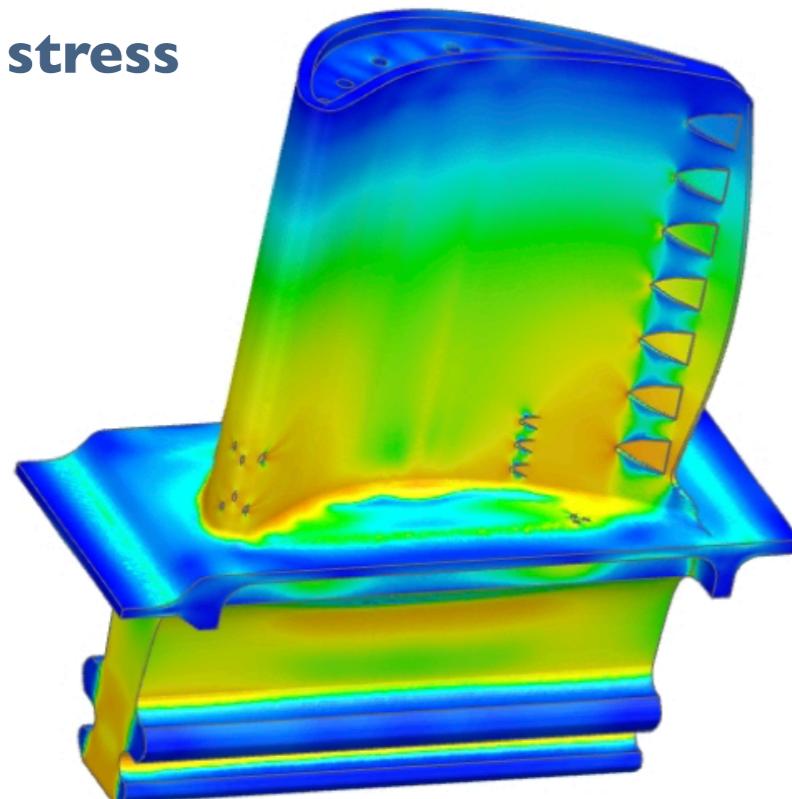


Bigger example

■ Blade of an aircraft engine

- Chaboche elasto-visco-plastic law with temperature dependence
- 5 MDOFs, 31 time steps, centrifugal inertial forces (rotational speed of 15,000 tr/min)
- [Nachar, Scanff, Ladevèze, Boucard, DN, 2022]

Mises stress



Space
ROB

Time
funct.

1st

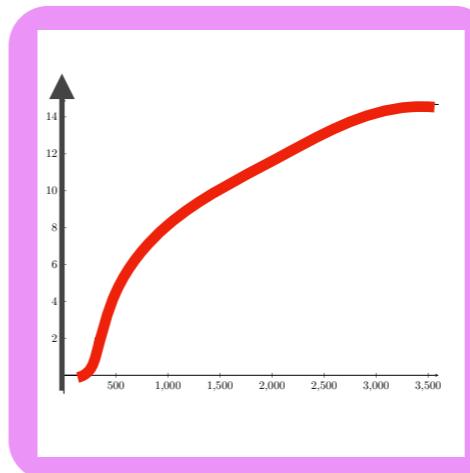
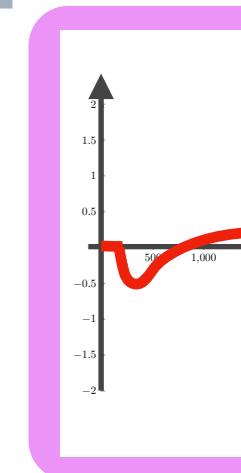
2nd

3

X

X

X



Outline

- 1. The LATIN method and Proper Generalized Decomposition**
- 2. Solving parametrized problems to build virtual charts**
- 3. Many queries in multiphysics problems**
- 4. Conclusion**

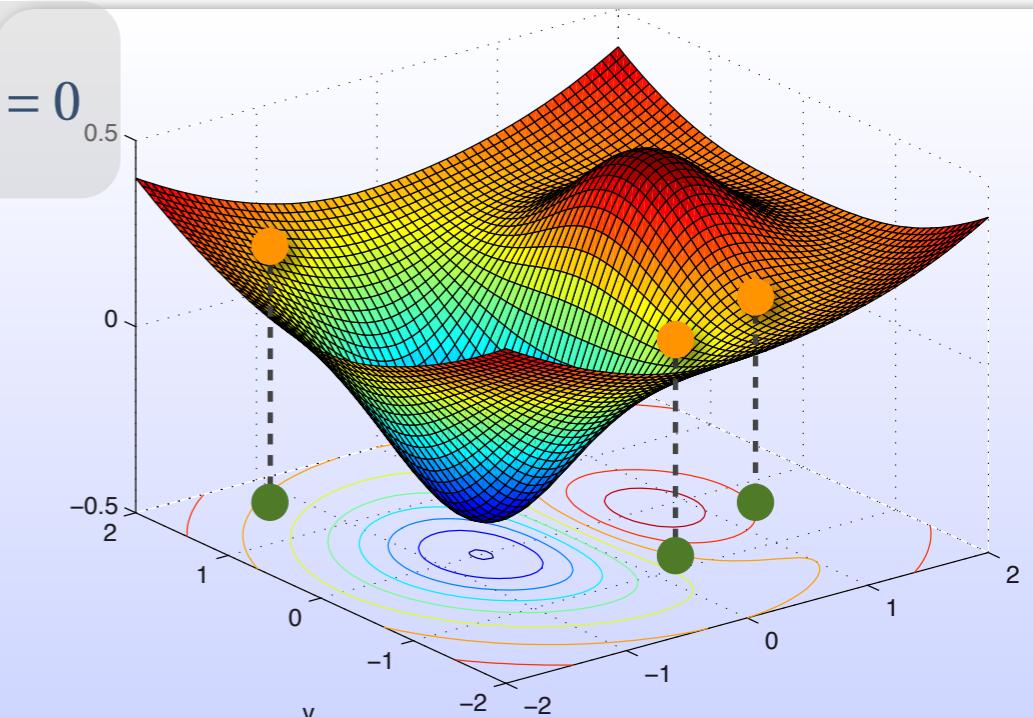
Parametrized problems

PDE: $\mathcal{L}(u(t, M)) = 0$

μ PDE: $\mathcal{L}(u(t, M), \mu_1, \mu_2) = 0$

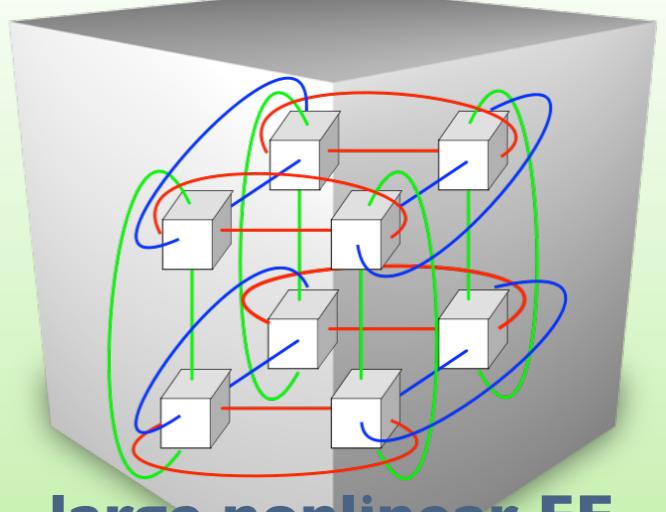
■ External driver algorithm

- reliability method
- optimization algorithm
- construction of a metamodel
- ...



■ Many queries

- same large nonlinear problem
- multiple runs for different sets of parameters
- very high CPU cost



large nonlinear FE computations

Parametrized problems

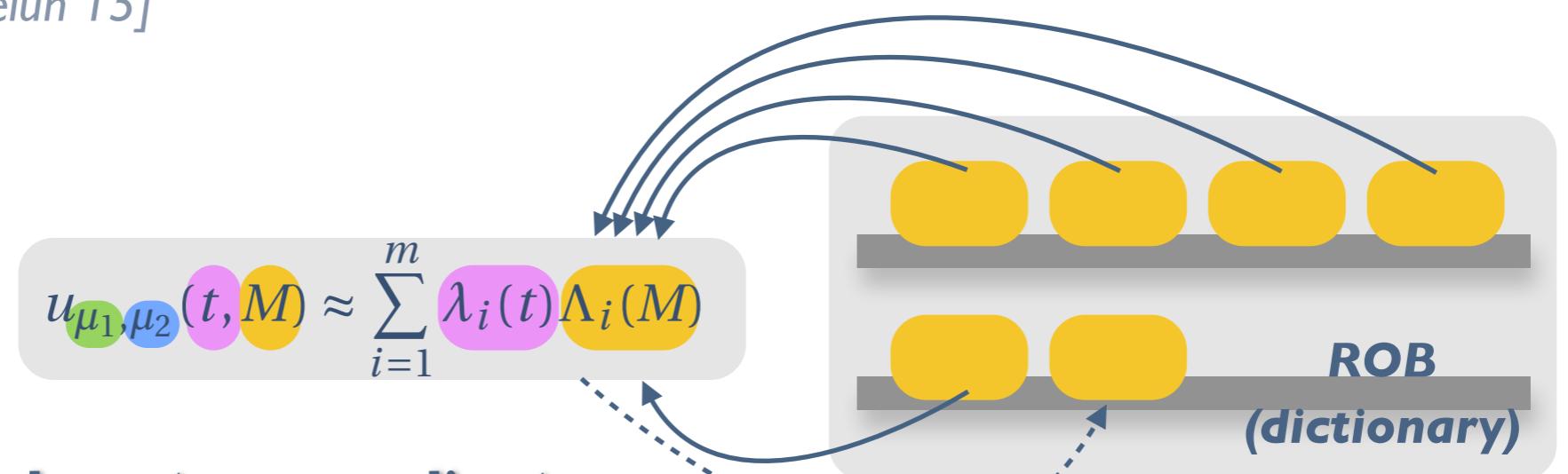
PDE: $\mathcal{L}(u(t, M)) = 0$

μPDE: $\mathcal{L}(u(t, M), \mu_1, \mu_2) = 0$

■ First approach: building a dictionary

- construction of a ROB common to all the sets of parameters

[Boucard, Ladevèze 99] [DN, Boucard et al. 12-14] [Heyberger, Boucard, DN 13]
[DN, Boucard, Relun 15]



■ Second approach: extra-coordinates

- introduction of parameters as new coordinates

[Chinesta, Ammar, Cueto, Huerta, Diez, Gonzalez, Leygue, Bordeu ... 12-]

$$u(t, M, \mu_1, \mu_2) \approx \sum_{i=1}^{m'} \lambda_i(t) \Lambda_i(M) \alpha_i(\mu_1) \beta_i(\mu_2)$$

Second approach

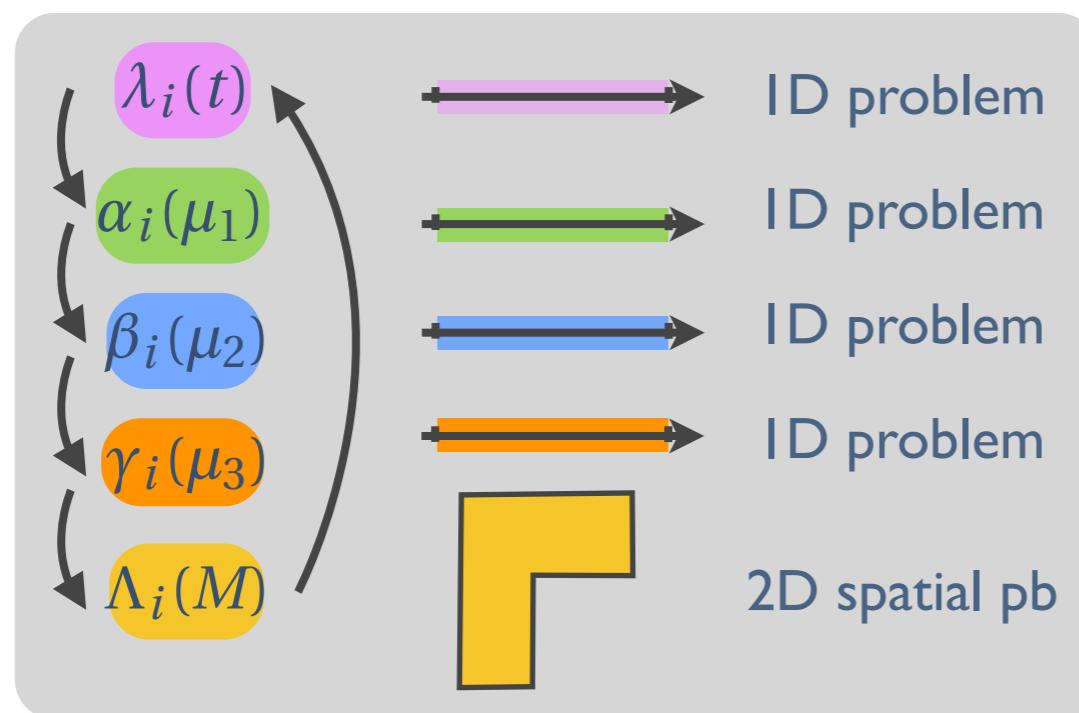
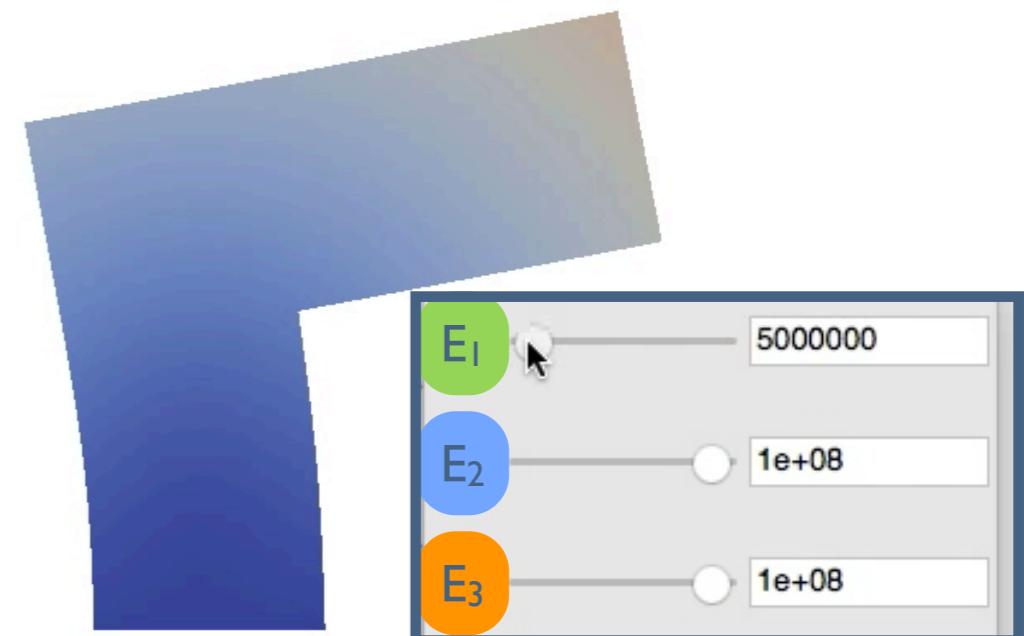
■ Parametrized PDE

- with 3 Young moduli as parameters

μPDE: $\mathcal{L}(u(t, M), \mu_1, \mu_2, \mu_3) = 0$

■ Separation of variables

i $u(t, M, \mu_1, \mu_2, \mu_3) \approx \sum_{i=1}^{m'} \lambda_i(t) \Lambda_i(M) \alpha_i(\mu_1) \beta_i(\mu_2) \gamma_i(\mu_3)$



Second approach

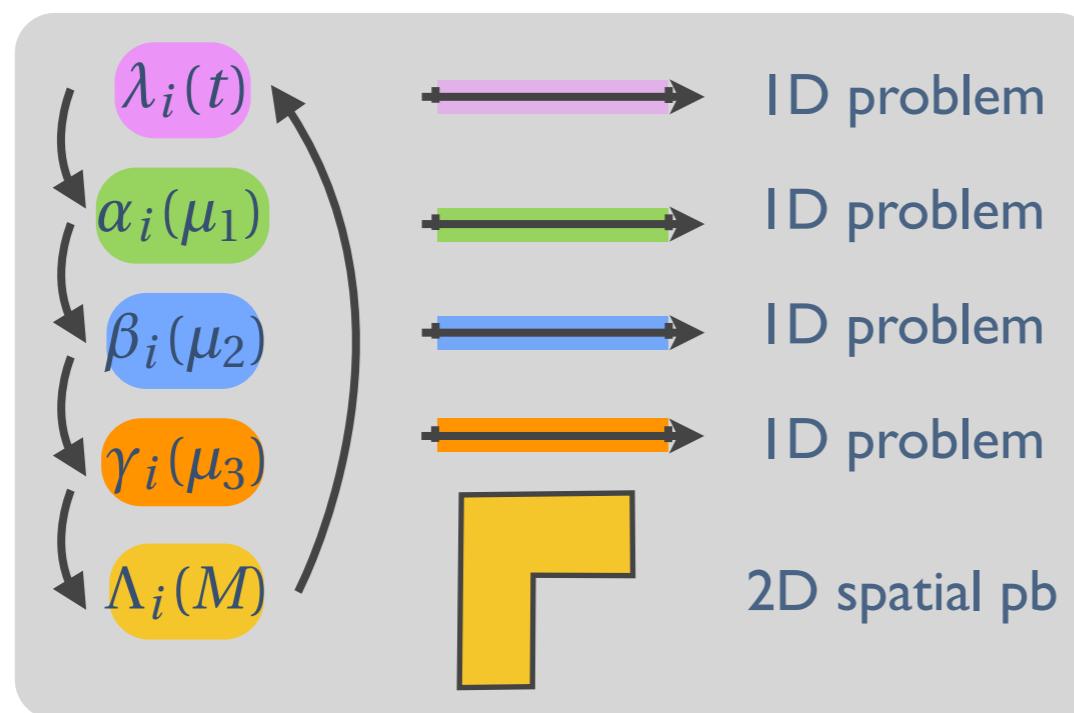
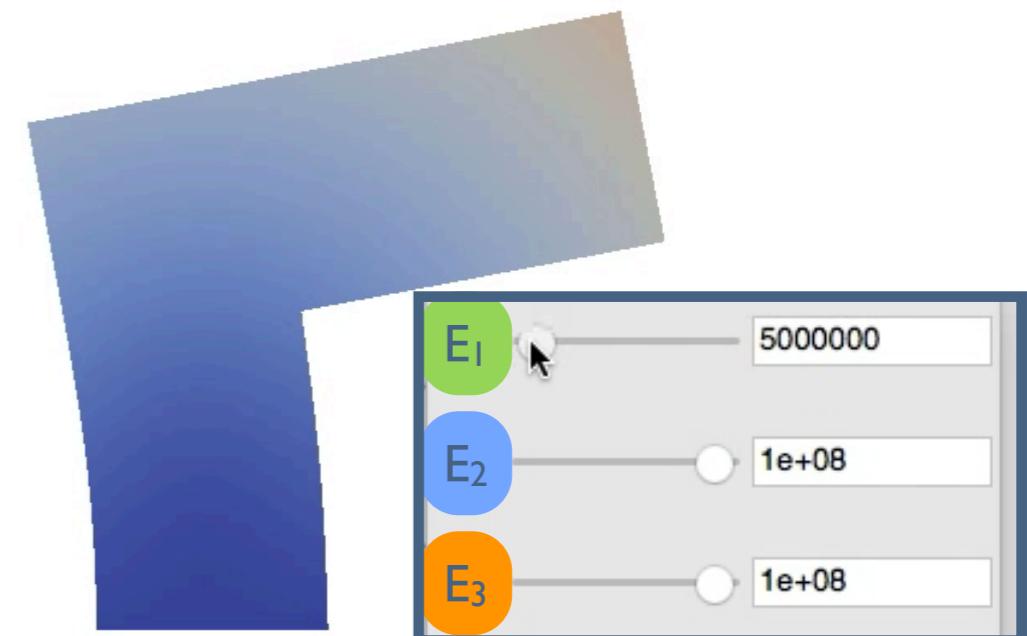
■ Parametrized PDE

- with 3 Young moduli as parameters

μPDE: $\mathcal{L}(u(t, M), \mu_1, \mu_2, \mu_3) = 0$

■ Separation of variables

i $u(t, M, \mu_1, \mu_2, \mu_3) \approx \sum_{i=1}^{m'} \lambda_i(t) \Lambda_i(M) \alpha_i(\mu_1) \beta_i(\mu_2) \gamma_i(\mu_3)$

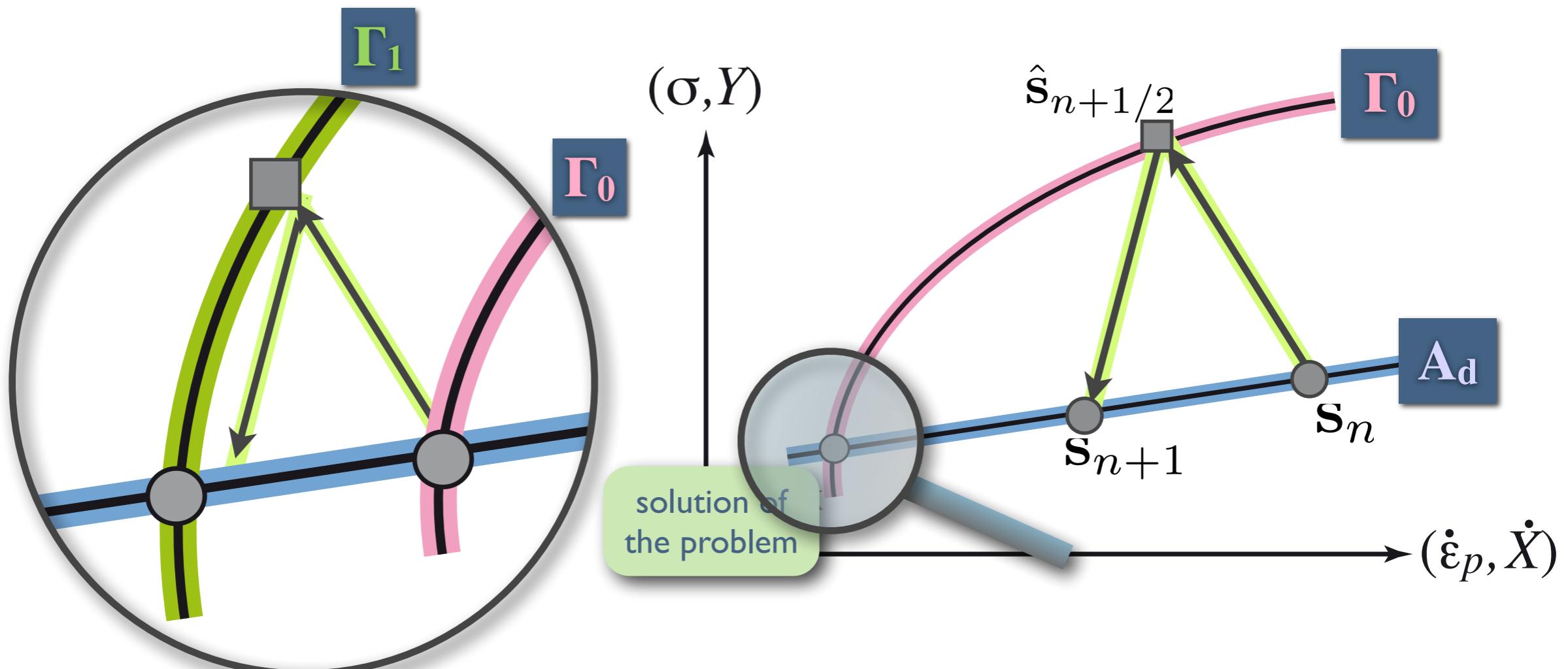


■ Taken into account variability of parameters

- for example: variation of a material parameter of the nonlinear law
- first computation for value k_1 : space Γ_0
- new computation for value k_2 : space Γ_1

→ reuse of the reduced model obtained from the PGD

→ addition of new pairs only if needed

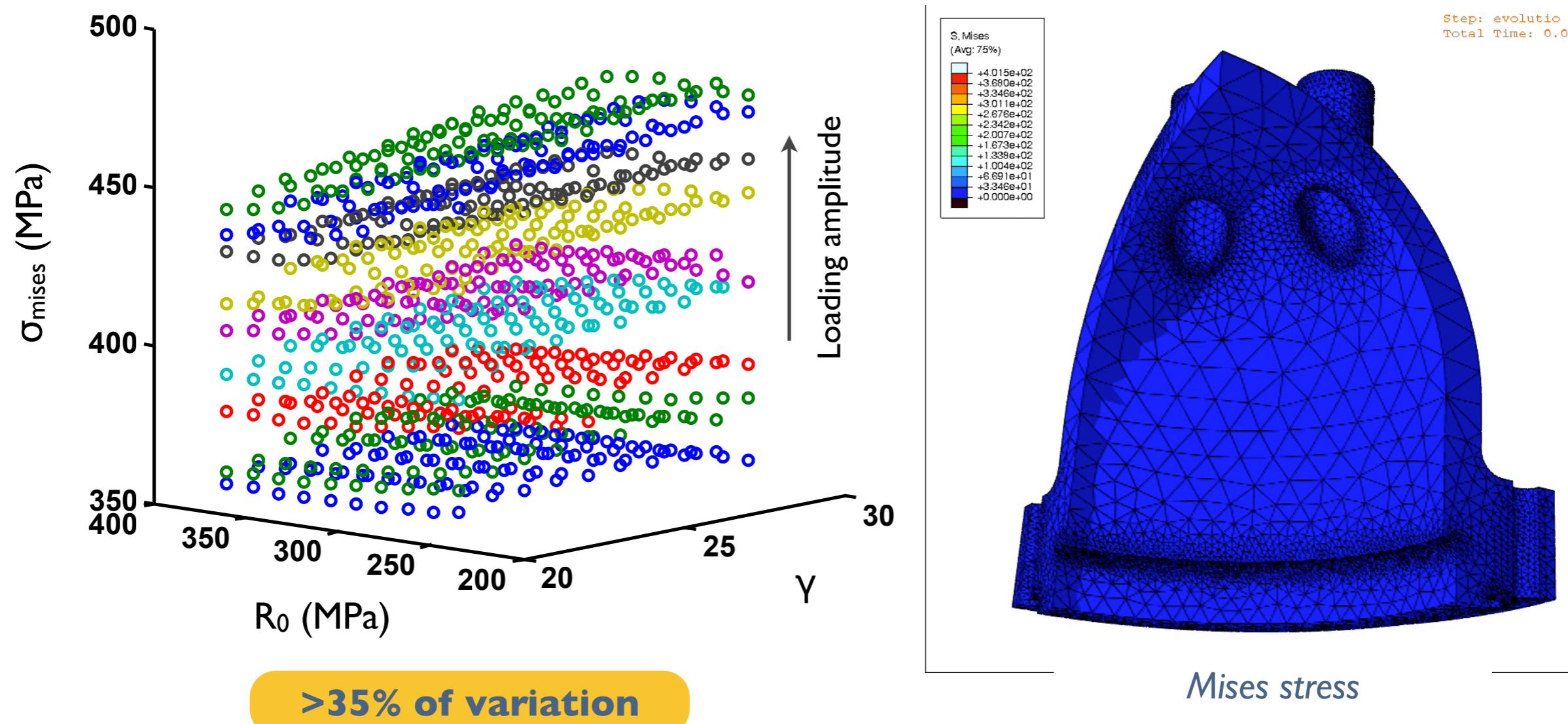


Vessel head of nuclear reactor

■ Parametric study

- parameters: loading amplitude and material characteristics (R_0, γ)
- 1,000 sets of parameters (**range of variation $\pm 30\%$**)
- wallclock time for 1 run: **LATIN (2.5 hours)** **ABAQUS (3.5 hours)**
- influence on the maximum value of the σ_{Mises}

740,000 DOFs
60 time steps

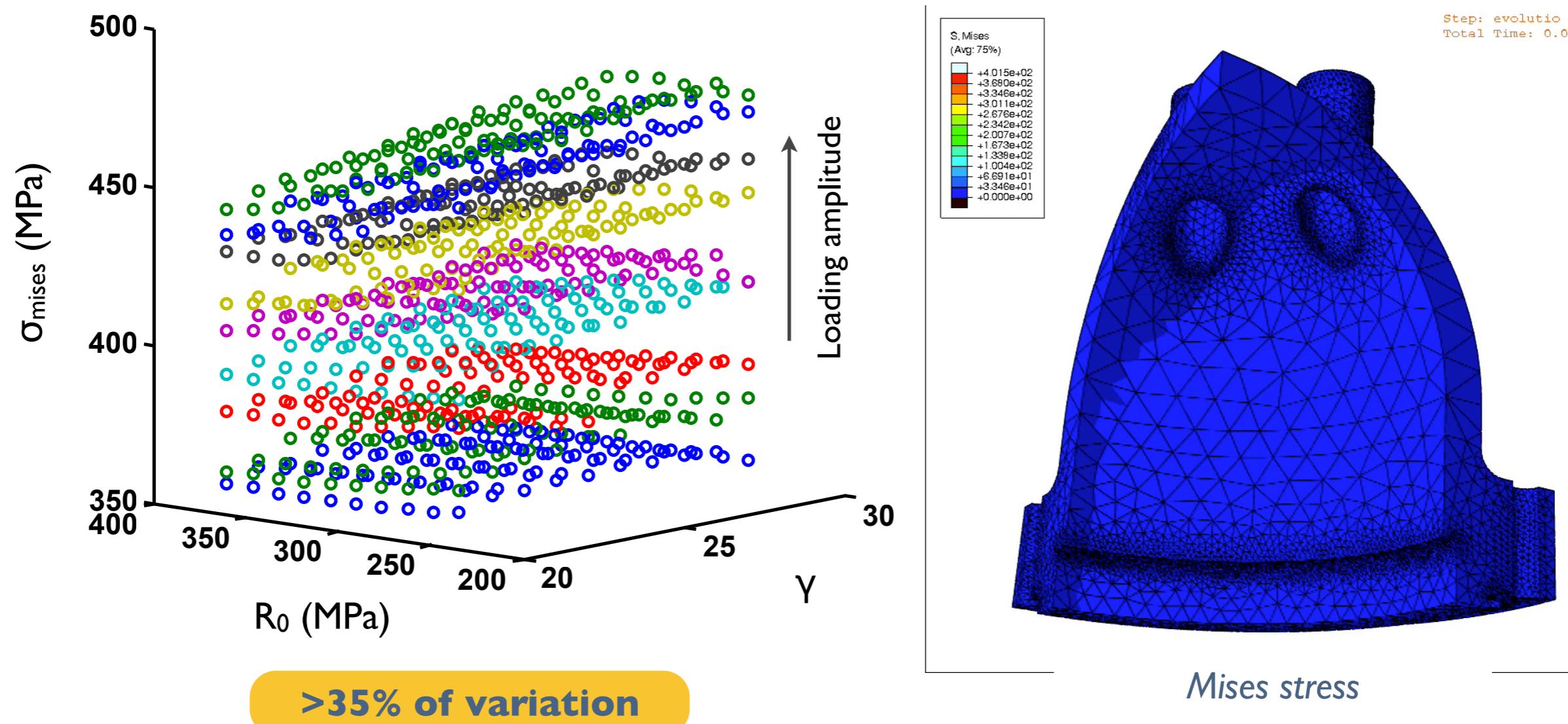


Vessel head of nuclear reactor

■ Parametric study

- parameters: loading amplitude and material characteristics (R_0, γ)
- 1,000 sets of parameters (**range of variation $\pm 30\%$**)
- wallclock time for 1 run: **LATIN (2.5 hours)** **ABAQUS (3.5 hours)**
- influence on the maximum value of the σ_{Mises}

740,000 DOFs
60 time steps



Vessel head of nuclear reactor

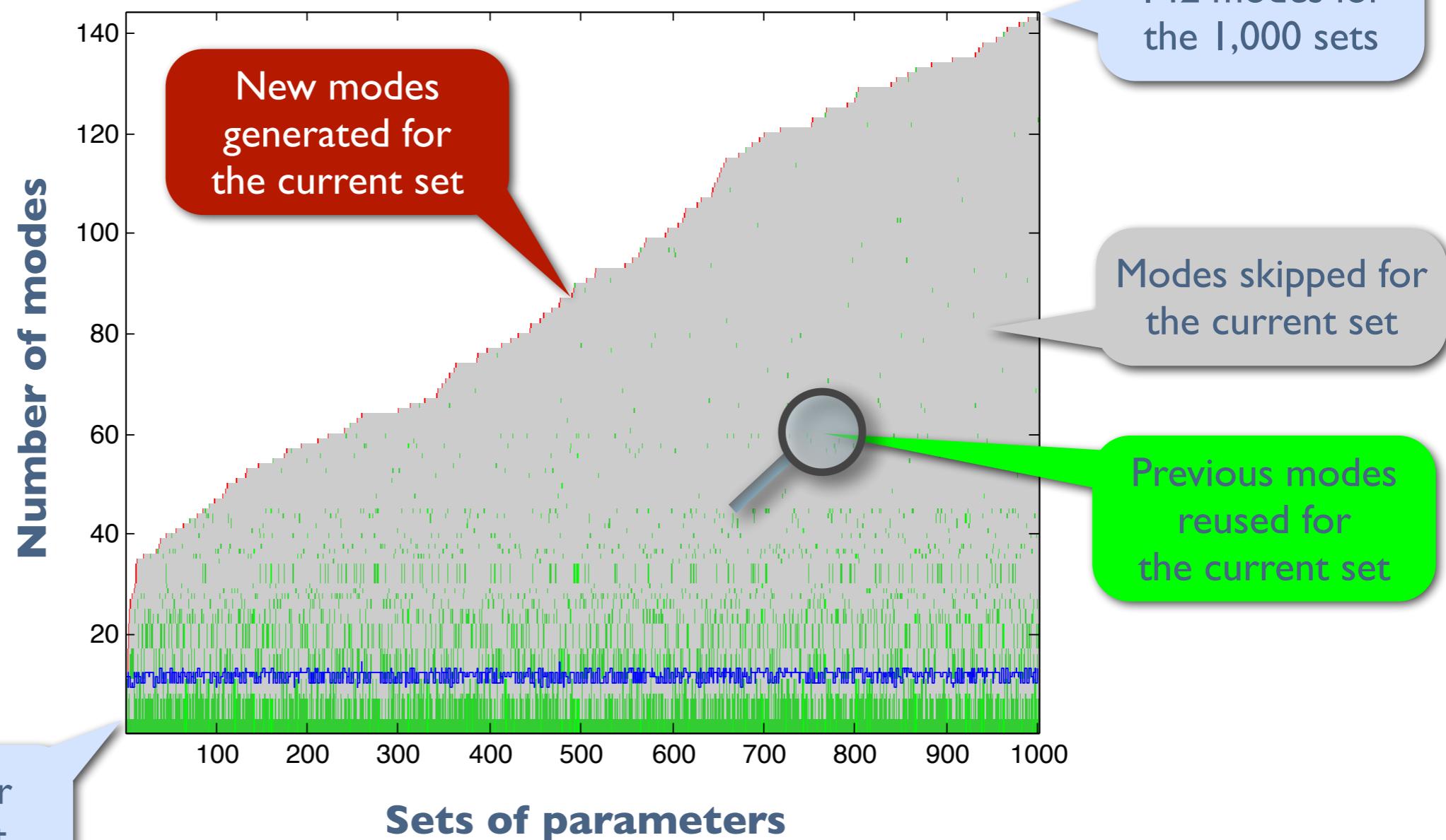
■ Parametric study

- parameters: loading amplitude and material characteristics (R_0, γ)
- influence on the maximum value of the σ_{mises}
- 1,000 sets of parameters (**range of variation $\pm 30\%$**)

4 months
with ABAQUS

LATIN+PGD
1 week (gain: 12)

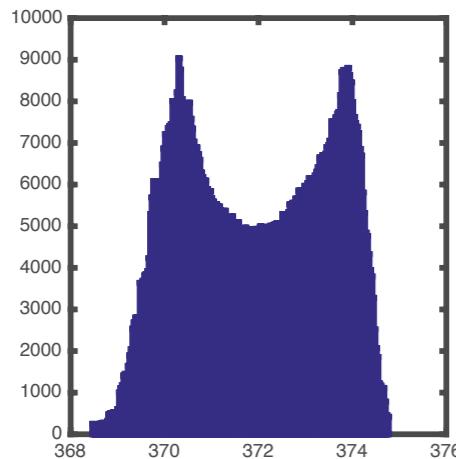
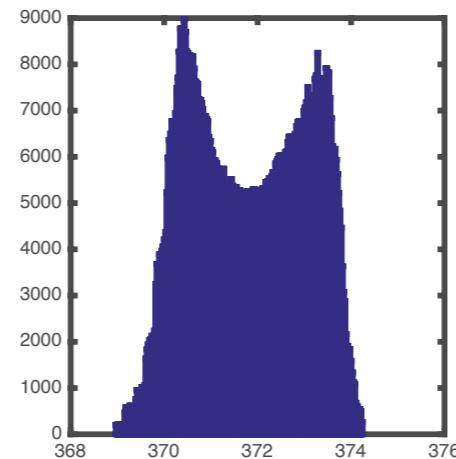
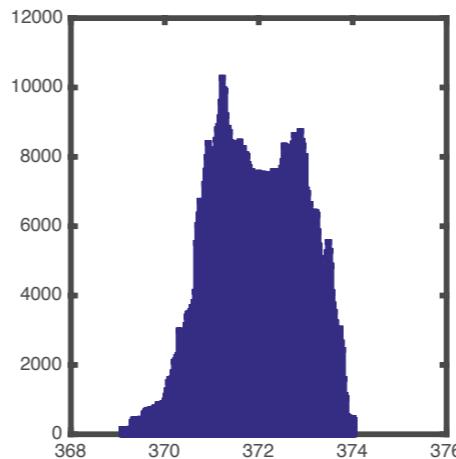
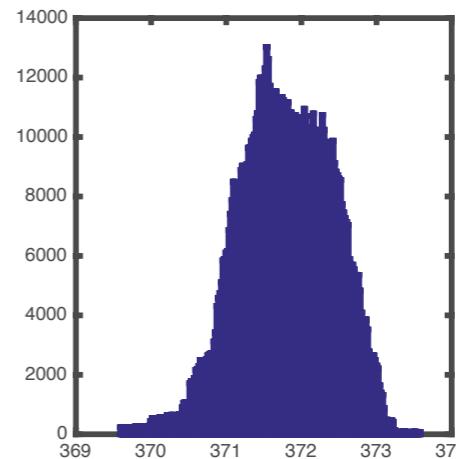
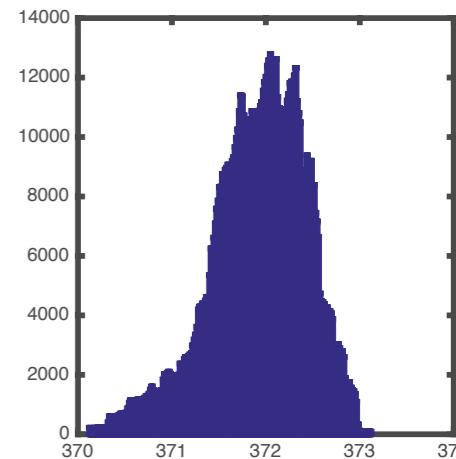
8 modes for
the first set



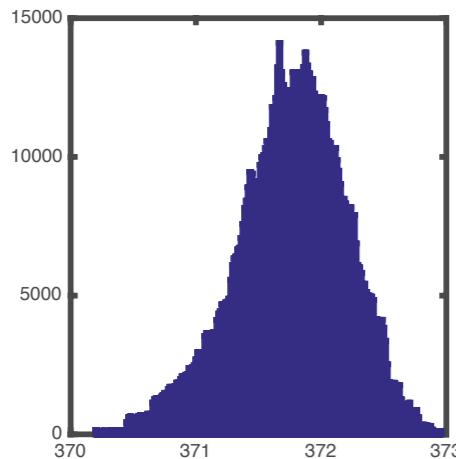
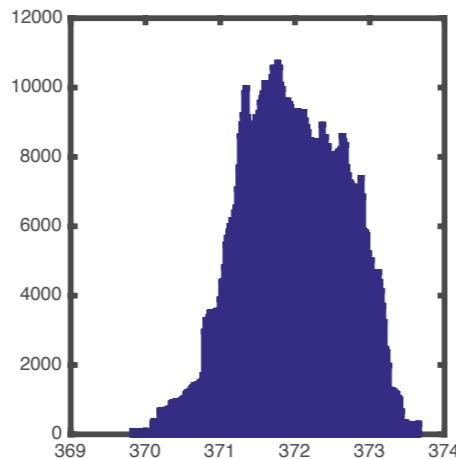
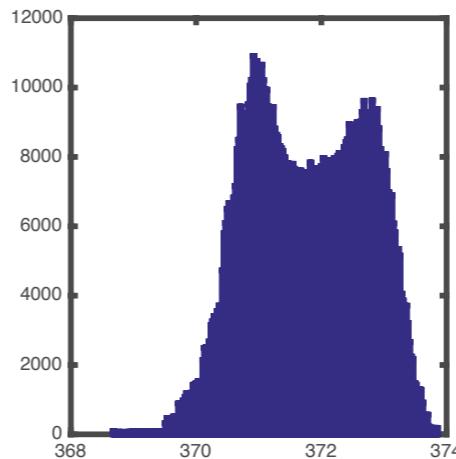
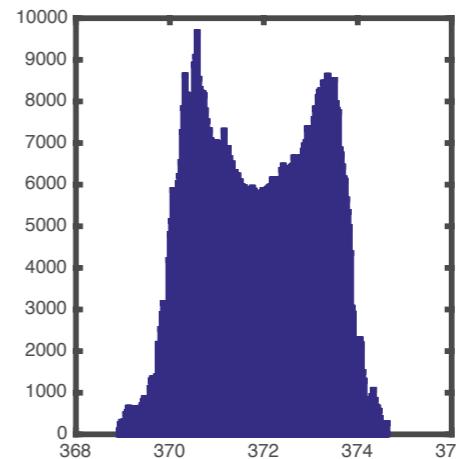
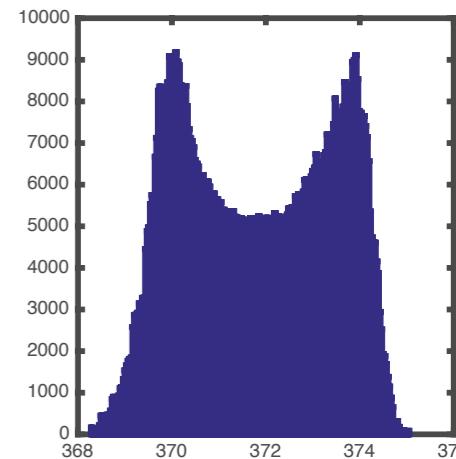
Post-treatment of virtual charts

■ Uncertainties

- material characteristics (R_0, γ) are **stochastic**
- loading parameter is described by an **interval**



PDFs of the maximum of sigma Mises max

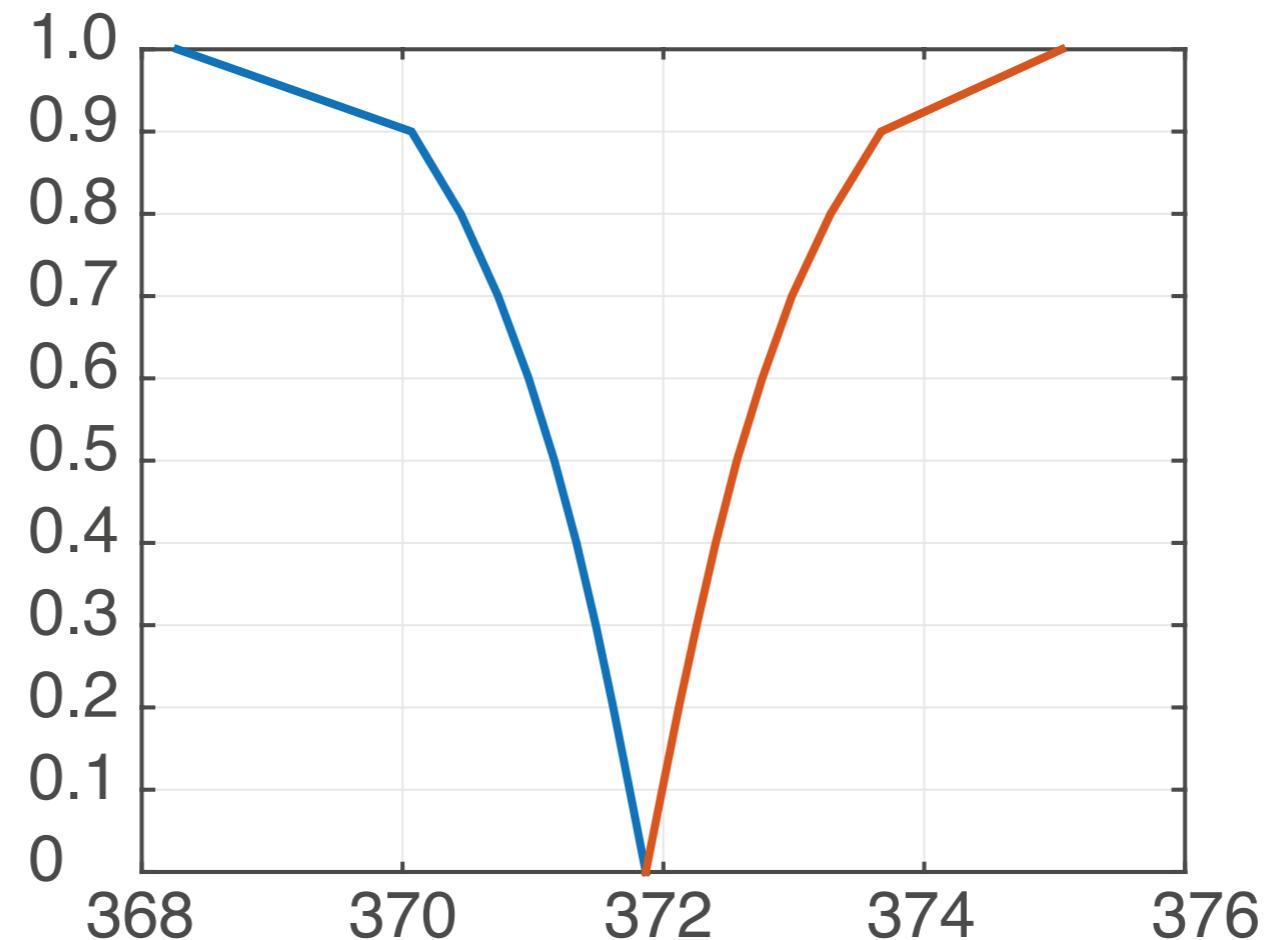


~ 5 s for 10 millions of Monte-Carlo calls

Post-treatment of virtual charts

■ Uncertainties

- material characteristics (R_0, γ) are **stochastic**
- loading parameter is described by an **interval**



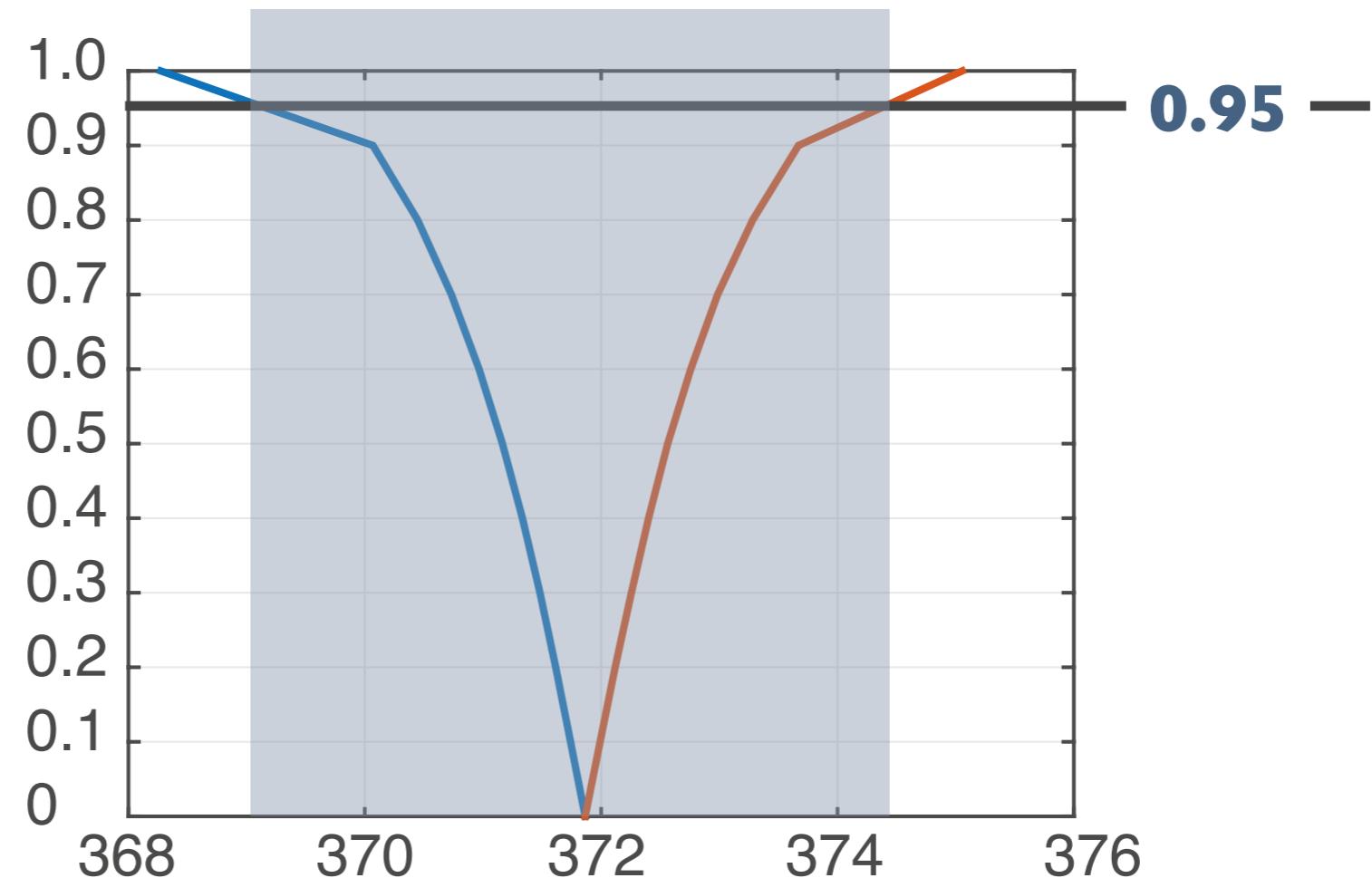
*Interval with stochastic bounds
for the maximum of sigma Mises max*

Post-treatment of virtual charts

■ Uncertainties

- material characteristics (R_0, γ) are **stochastic**
- loading parameter is described by an **interval**

369 MPa < σ_{Mises} < 374.5 MPa

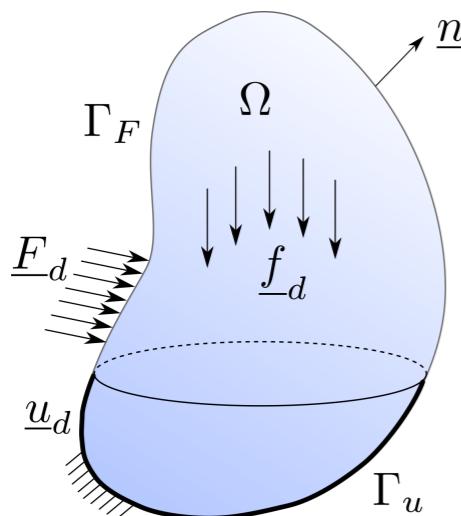


*Interval with stochastic bounds
for the maximum of sigma Mises max*

Outline

- 1. The LATIN method and Proper Generalized Decomposition**
- 2. Solving parametrized problems to build virtual charts**
- 3. Many queries in multiphysics problems**
- 4. Conclusion**

■ Simple problem: thermoelasticity



💡 Assumptions: quasi-static evolution, small strains, small temperature changes, homogeneous and isotropic material

Mechanical equilibrium

- Stress equilibrium
- Strain compatibility
- Boundary conditions

$$\nabla \cdot \boldsymbol{\sigma} + \underline{f}_d = 0 \text{ in } \Omega$$

$$\boldsymbol{\varepsilon} = \frac{1}{2}(\nabla \underline{u} + {}^T \nabla \underline{u}) \text{ in } \Omega$$

$$\underline{u} = u_d \text{ on } \Gamma_u \text{ and } \boldsymbol{\sigma} \underline{n} = \underline{F}_d \text{ on } \Gamma_F$$

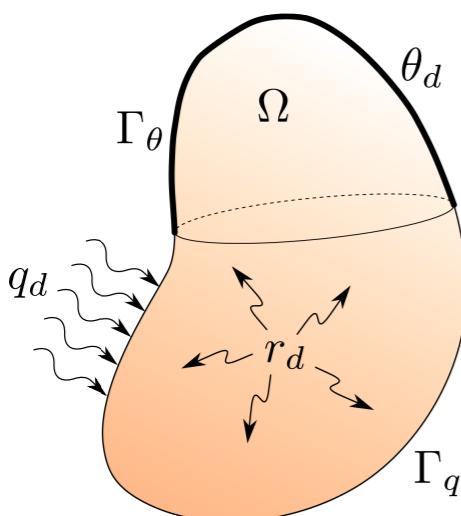
Strongly coupled constitutive equations

- Hooke's law
- Fourier's law
- Mechanical heat source

$$\boldsymbol{\sigma} = \mathcal{K} : \boldsymbol{\varepsilon} - \beta \theta \mathbf{I}$$

$$\underline{q} = -k \nabla \theta$$

$$\underline{r}_m = T_0 \beta \text{Tr } \dot{\boldsymbol{\varepsilon}}$$



Thermal equilibrium

- Heat equation
- Temp. grad. compatibility
- Boundary conditions

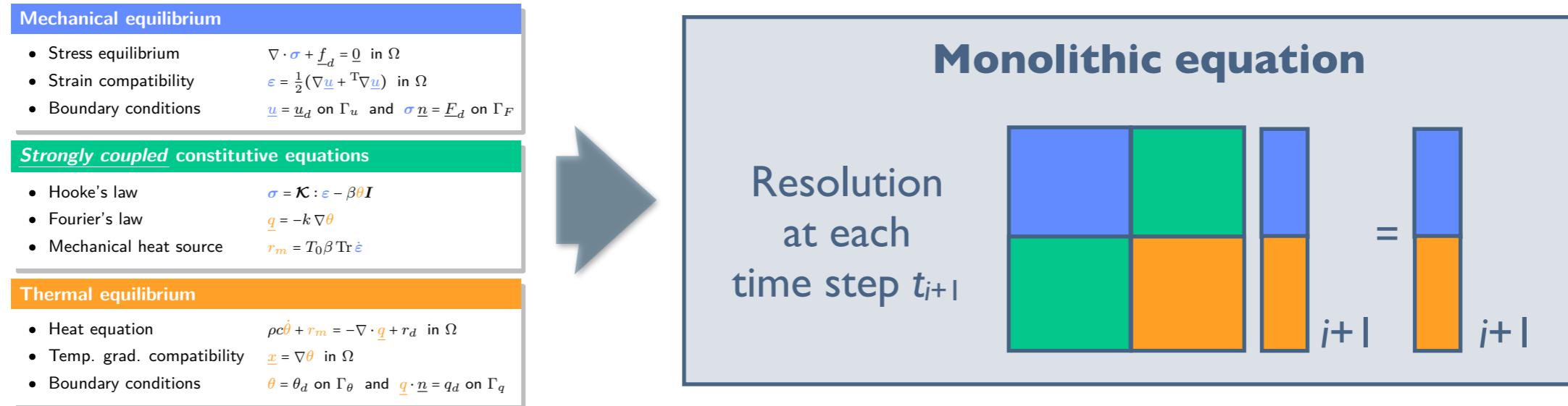
$$\rho c \dot{\theta} + \underline{r}_m = -\nabla \cdot \underline{q} + r_d \text{ in } \Omega$$

$$\underline{x} = \nabla \theta \text{ in } \Omega$$

$$\theta = \theta_d \text{ on } \Gamma_\theta \text{ and } \underline{q} \cdot \underline{n} = q_d \text{ on } \Gamma_q$$

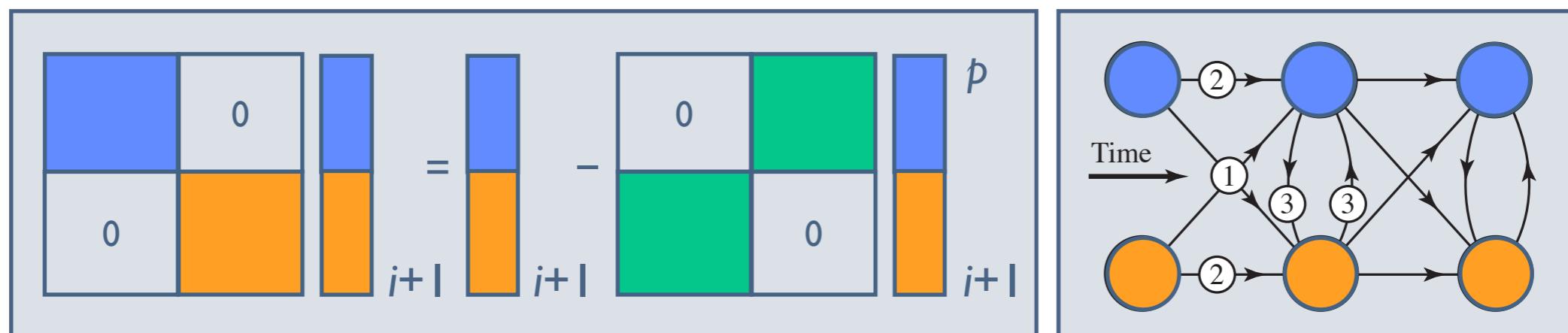
■ Monolithic coupled resolution

- direct resolution of the system: a priori CPU expensive



■ Partitioned procedures

- decoupled resolution of the physics [Felippa and Park 80, Belytschko and Hugues 83, Shrefler et al. 87, Zienkiewicz et al. 88, Farhat et al. 95, Morand and Ohayon 95, Lewis and Schrefler 98, ...]



■ Natural separation of the equations

linear decoupled
but
global-in-space

Mechanical equilibrium

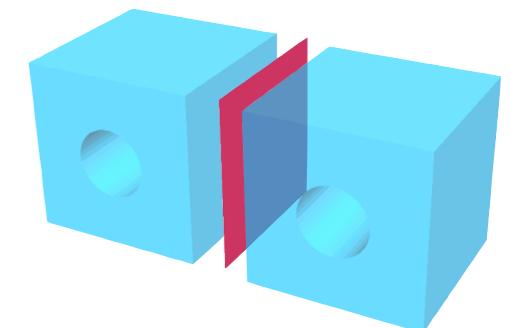
- Stress equilibrium
- Strain compatibility
- Boundary conditions

$$\begin{aligned}\nabla \cdot \underline{\sigma} + \underline{f}_d &= \underline{0} \quad \text{in } \Omega \\ \underline{\varepsilon} &= \frac{1}{2}(\nabla \underline{u} + {}^T \nabla \underline{u}) \quad \text{in } \Omega \\ \underline{u} &= \underline{u}_d \quad \text{on } \Gamma_u \quad \text{and} \quad \underline{\sigma} \underline{n} = \underline{F}_d \quad \text{on } \Gamma_F\end{aligned}$$

Interface
between
physics

local in space
but
coupled

similar to



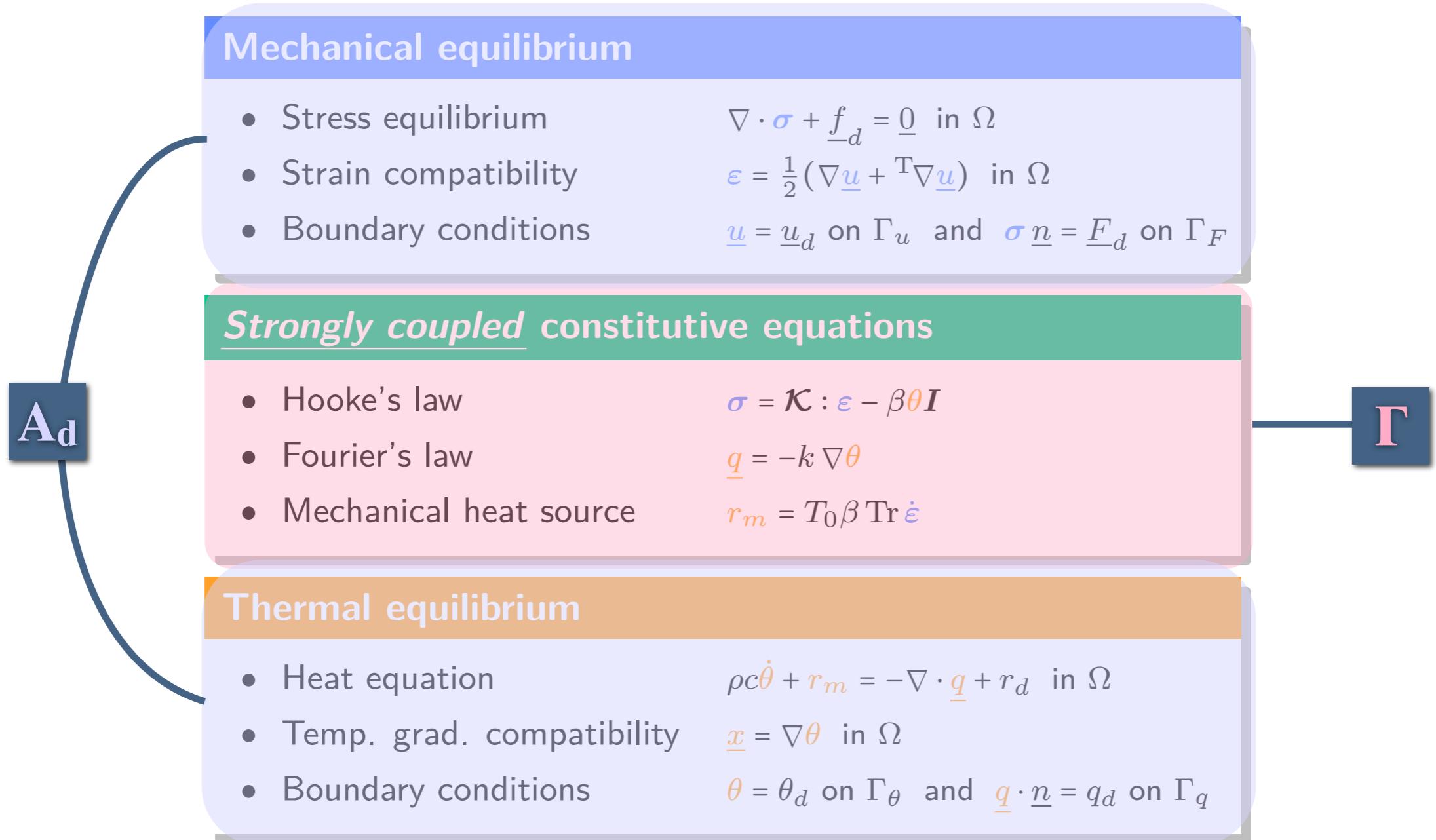
linear decoupled
but
global-in-space

Thermal equilibrium

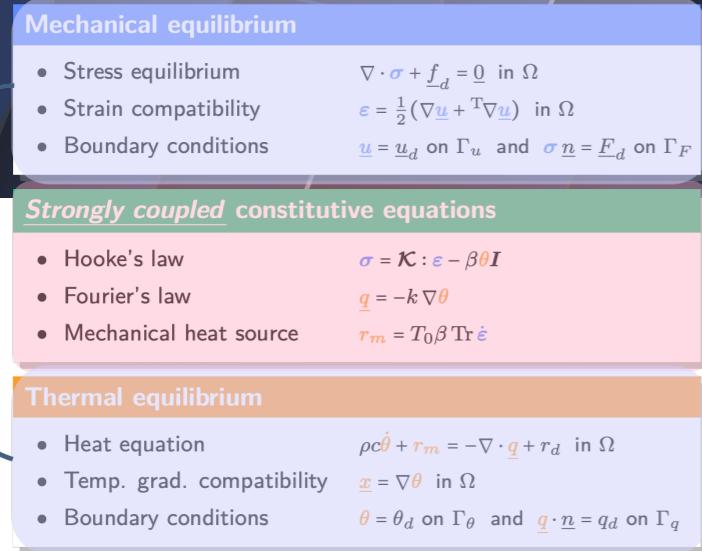
- Heat equation
- Temp. grad. compatibility
- Boundary conditions

$$\begin{aligned}\rho c \dot{\theta} + \underline{r}_m &= -\nabla \cdot \underline{q} + \underline{r}_d \quad \text{in } \Omega \\ \underline{x} &= \nabla \theta \quad \text{in } \Omega \\ \theta &= \theta_d \quad \text{on } \Gamma_\theta \quad \text{and} \quad \underline{q} \cdot \underline{n} = q_d \quad \text{on } \Gamma_q\end{aligned}$$

■ Natural separation of the equations



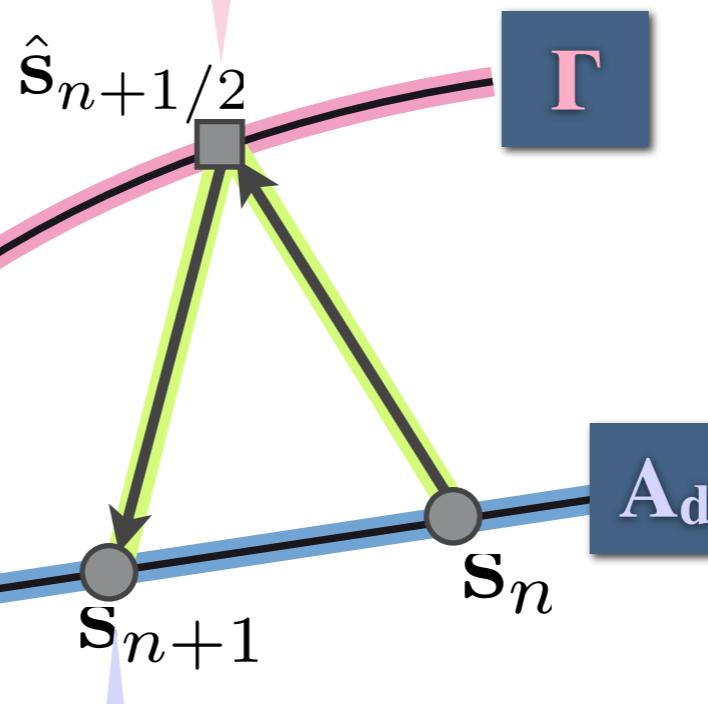
LATIN framework



Γ

Interface behavior

Search direction



Mechanical adm.

Thermal adm.

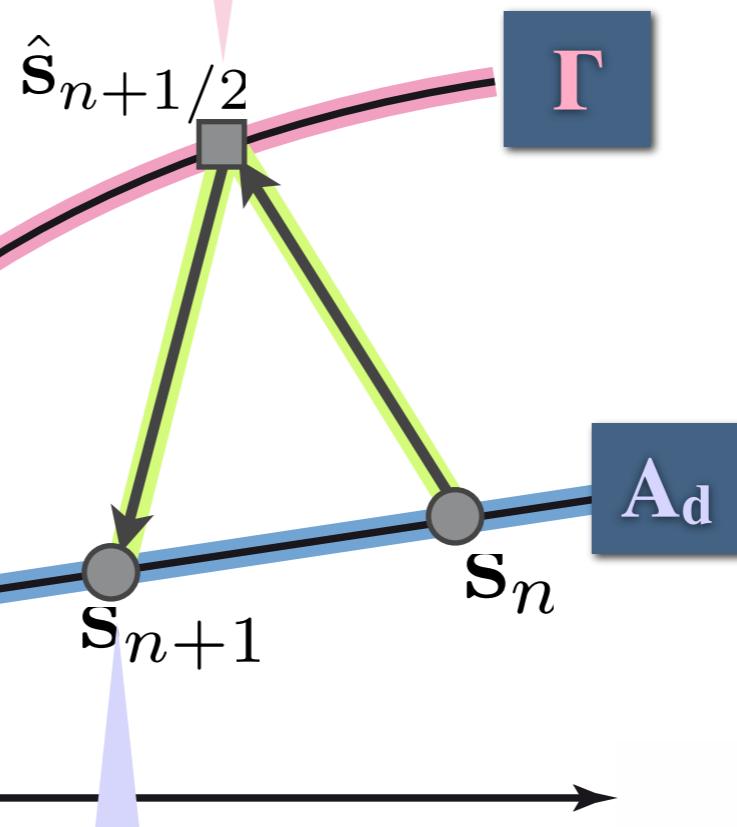
Search direction

LATIN framework

Mechanical equilibrium	
• Stress equilibrium	$\nabla \cdot \sigma + f_d = 0 \text{ in } \Omega$
• Strain compatibility	$\varepsilon = \frac{1}{2}(\nabla \underline{u} + \nabla^T \underline{u}) \text{ in } \Omega$
• Boundary conditions	$\underline{u} = \underline{u}_d \text{ on } \Gamma_u \text{ and } \sigma \cdot \underline{n} = \underline{F}_d \text{ on } \Gamma_F$
Strongly coupled constitutive equations	
• Hooke's law	$\sigma = \mathcal{K} : \varepsilon - \beta \theta \mathbf{I}$
• Fourier's law	$\underline{q} = -k \nabla \theta$
• Mechanical heat source	$\underline{r}_m = T_0 \beta \text{Tr } \dot{\varepsilon}$
Thermal equilibrium	
• Heat equation	$\rho c \dot{\theta} + \underline{r}_m = -\nabla \cdot \underline{q} + r_d \text{ in } \Omega$
• Temp. grad. compatibility	$\underline{x} = \nabla \theta \text{ in } \Omega$
• Boundary conditions	$\theta = \theta_d \text{ on } \Gamma_\theta \text{ and } \underline{q} \cdot \underline{n} = q_d \text{ on } \Gamma_q$

Ad

Coupled but local-in-space
« interface »



Time-space **PGD**
for **mechanics**

Time-space **PGD**
for **thermics**

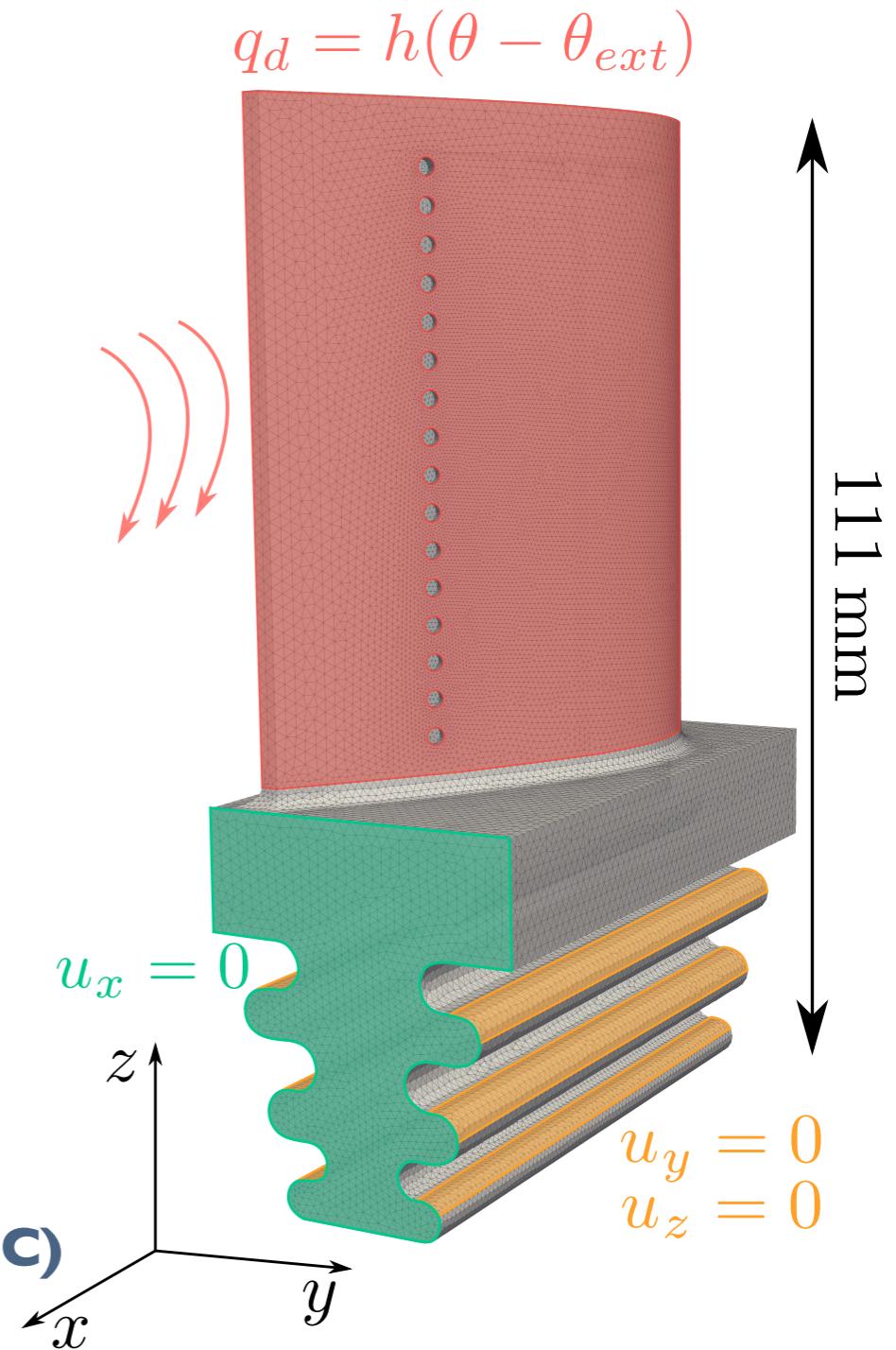
Turbine blade

■ Number of DOFs

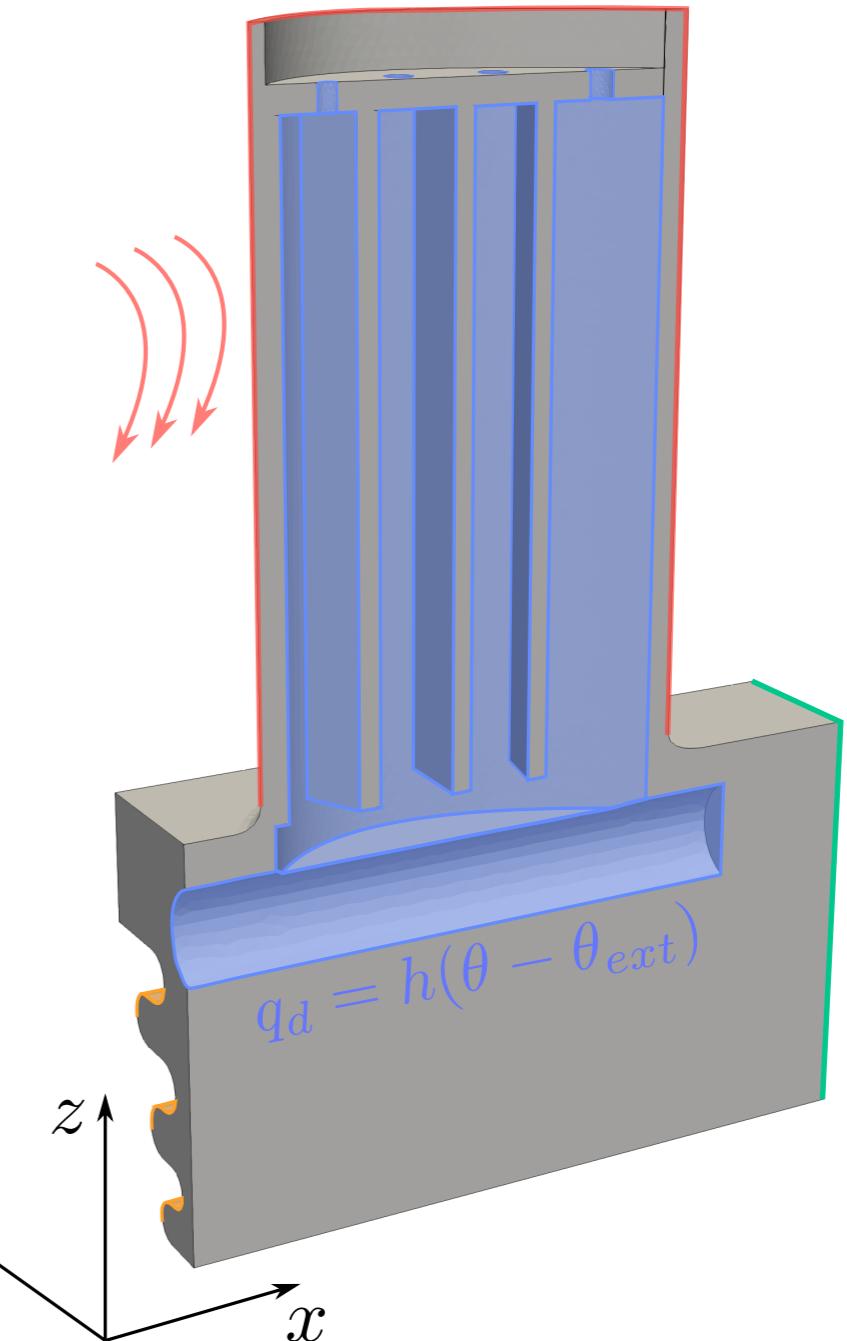
- mechanical part: 2,370,000 DOFs
- thermal part: 118,300 DOFs

■ Boundary conditions

- from [Kin et al., AIAA Journal, 2018]
- **clamped on the lower tree root**
- **centrifugal load up to 15,000 rpm**
- **forced convective flux on airfoil surface (270°C)**
- forced convective flux on cooling holes (40°C)



Turbine blade



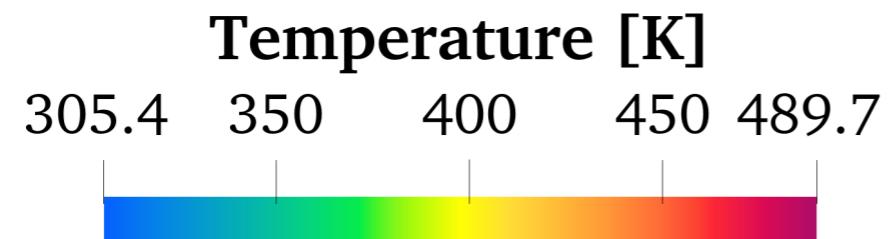
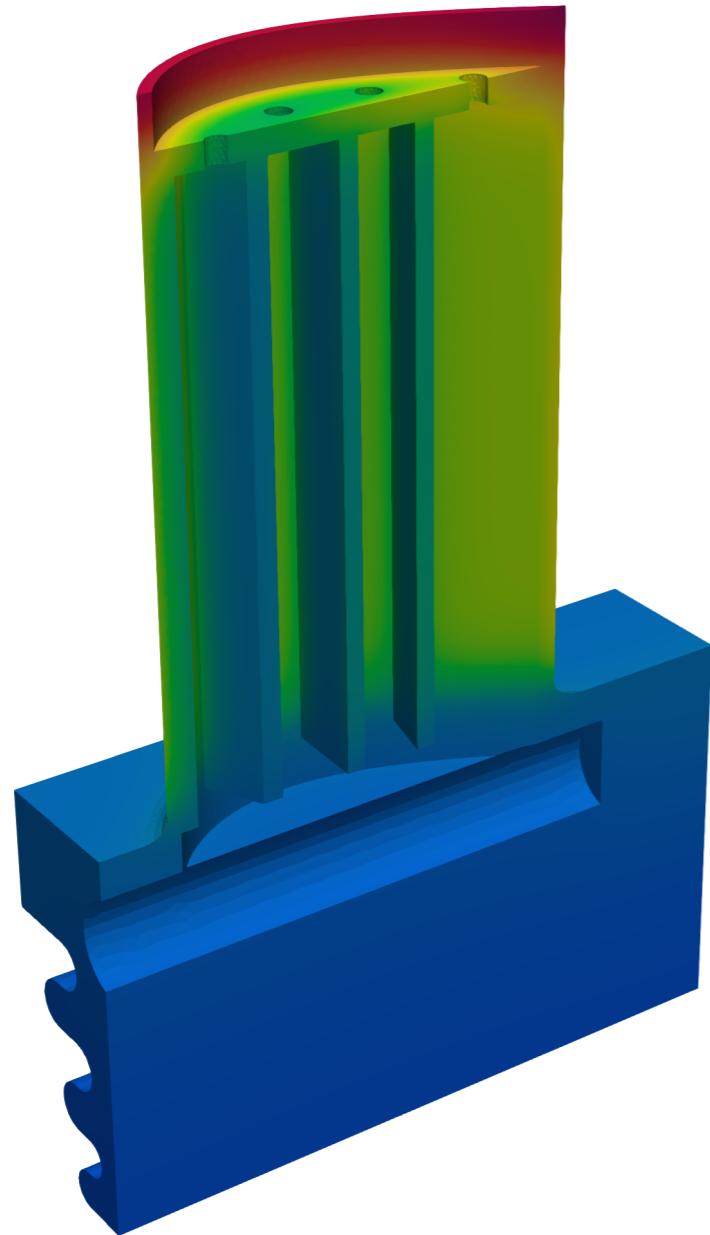
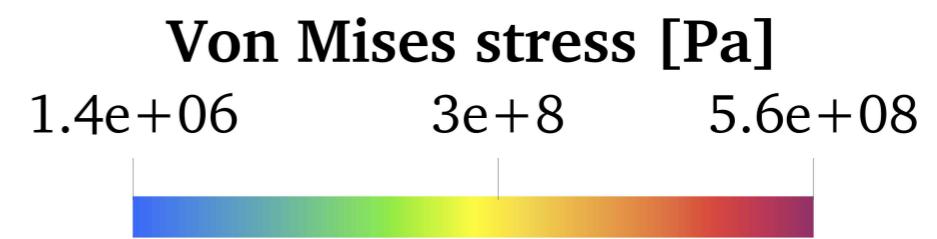
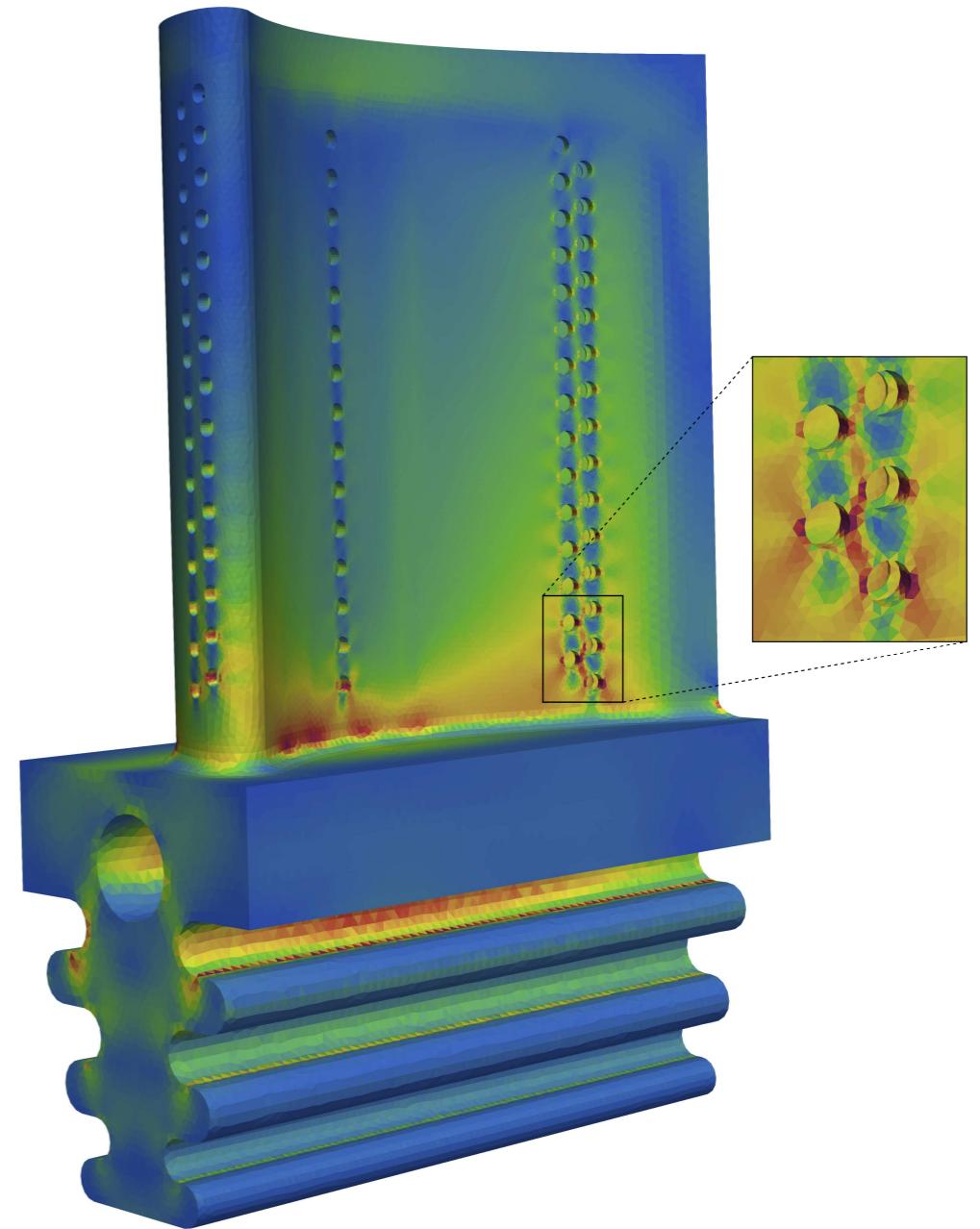
■ Number of DOFs

- mechanical part: 2,370,000 DOFs
- thermal part: 118,300 DOFs

■ Boundary conditions

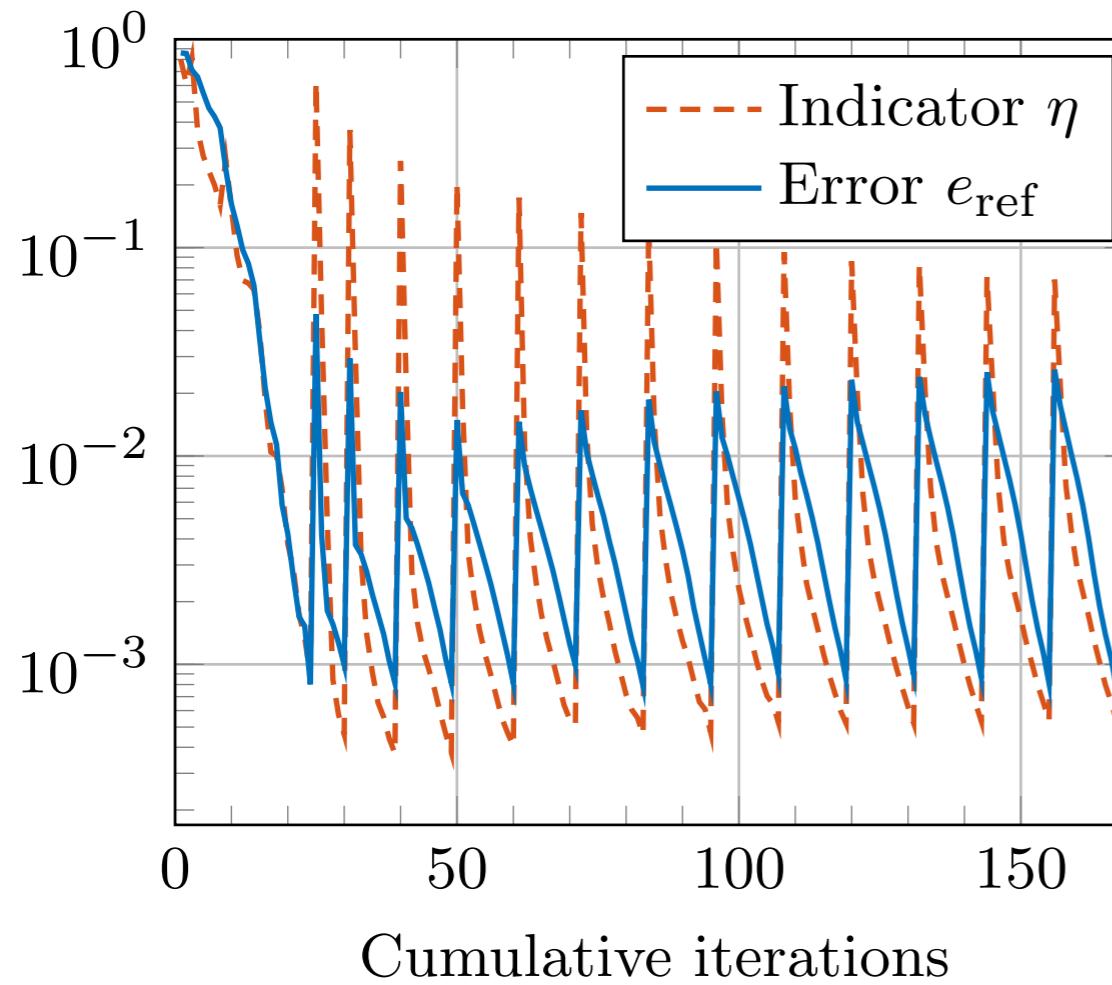
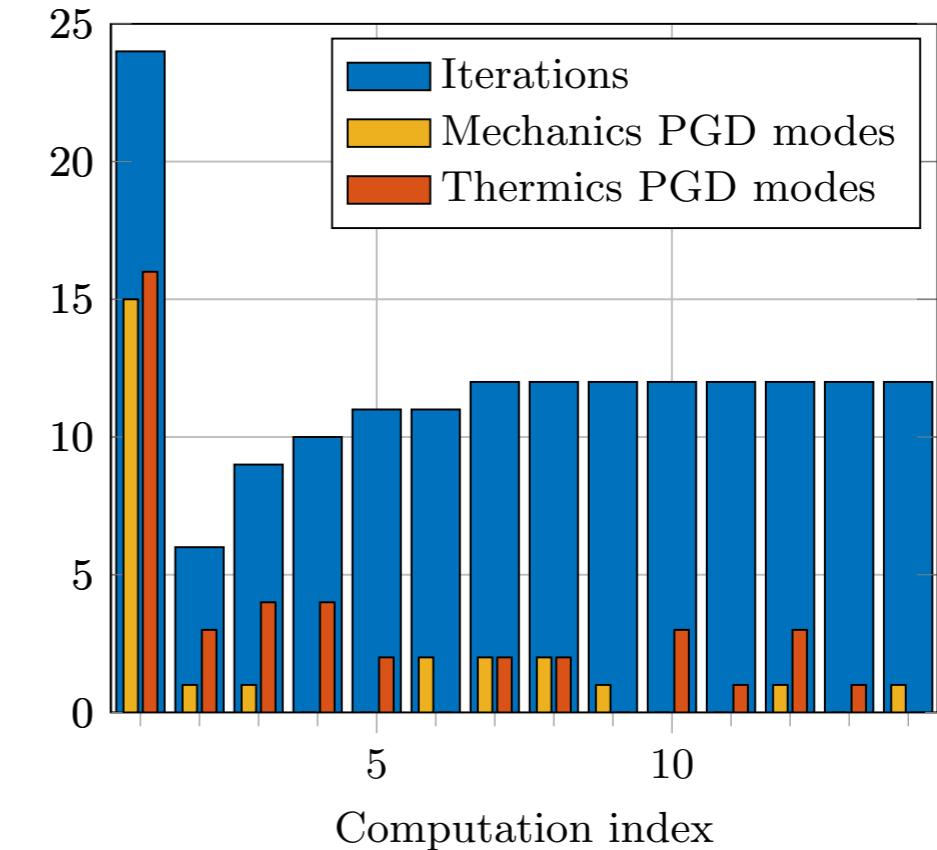
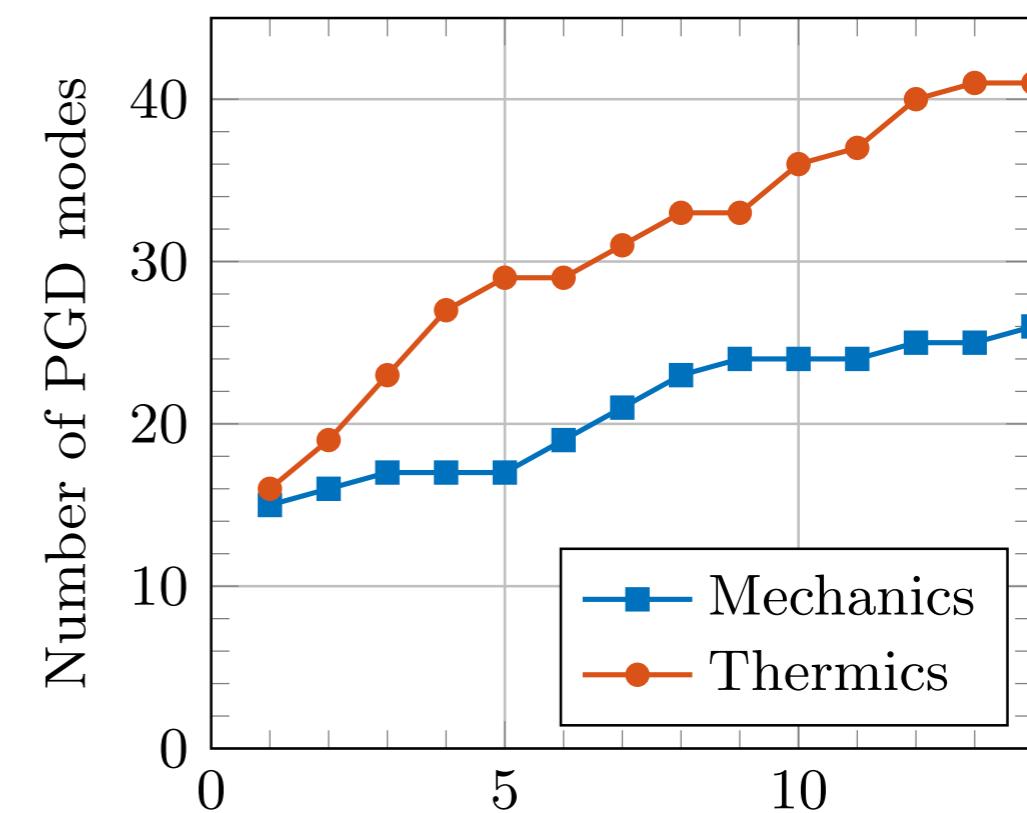
- from [Kin et al., AIAA Journal, 2018]
- clamped on the lower tree root
- centrifugal load up to 15,000 rpm
- forced convective flux on airfoil surface (270°C)
- **forced convective flux on cooling holes (40°C)**

Turbine blade



■ Parametric study

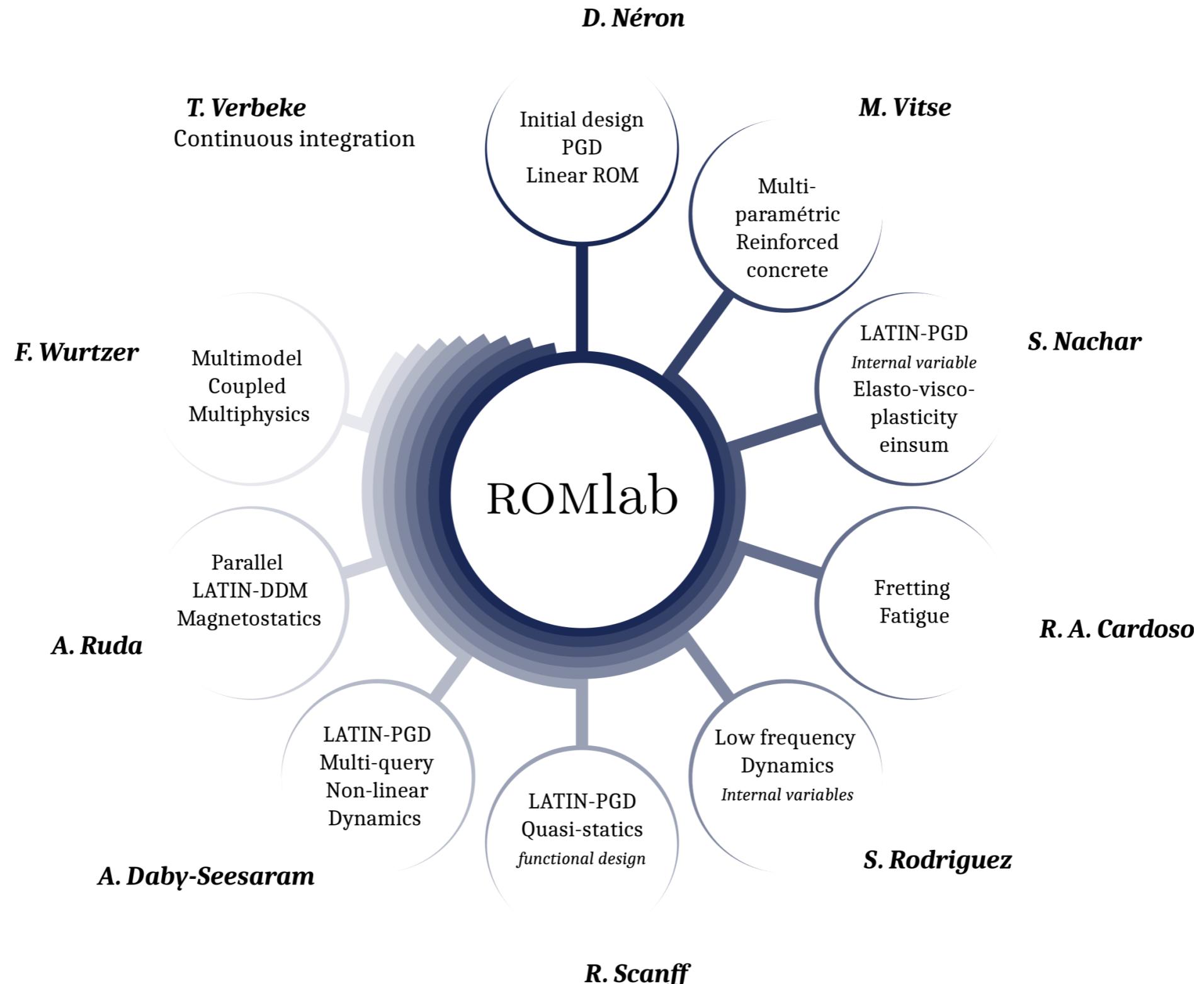
- parameter thermal expansion parameter β (influence the coupling between the 2 physics)
- 14 values of the parameter in the range of variation



Outline

- 1. The LATIN method and Proper Generalized Decomposition**
- 2. Solving parametrized problems**
- 3. Many queries in multiphysics problems**
- 4. Conclusion**

Implementation



Implementation

Conclusion and prospects

■ **LATIN-PGD**

- to solve a variety of nonlinear problems

■ **Reduced-Order Modeling**

- allows to build new methods for high performance computing
- concept of virtual charts (overall fields, not only metamodels) opens new perspectives in terms of engineering design

■ **Numerical certification using high-fidelity models**

- available in engineering sciences now reproduce accurately complex physics
- but direct handling is completely impossible due to CPU time and big data issues
- implementation or coupling with existing softwares must not be overlooked!

■ **Recent works in the nonlinear context**

- computation of fragility curves (coll CEA)
- simulation of frictional contact in wire ropes (coll IFP Energies Nouvelles)
- native implementation in industrial optimisation software (coll SIEMENS)
- coupling ROM with AI for non parametrisable geometries (coll SAFRAN)
- coupling ROM with AI for multiphysics problems
- ...

Merci