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In our team, model reduction by; 
 

LATIN
+

Proper Generalized Decomposition (PGD)

Initially introduced for the nonlinear problems
many works for more than 30 years

Since adapted to many other situations 
using the same initial « spirit » 



Outline
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3. Many queries in multiphysics problems
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Reduced-Order Modeling (ROM)

5

Tentative definition
capture main features of the behavior, retaining the accuracy of the approximation 

use the redundancy of information

➡possibility of approximating a complex system using only a handful of DOFs

The behavior can be defined

explicitly      or implicitly 
 

Separation of variables
best finite sum decomposition

  Given: u(t ,M)    PDE: L (u(t ,M)) = 0
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POD and other stuff ...
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Particular cases
if one imposes to one of the families      or       to be orthogonal

POD (Proper Orthogonal Decomposition)

also known (depending on the community) as

KLD [Karhunen 43] [Loeve 55], PCA [Pearson 1901] [Hotteling 33]

in finite dimension (our case after discretization)

SVD [Ekardt & Young 39] 

in finite dimension but with more than two variables

HOSVD [Baranyi et al. 06]

More generally
linear algebra of tensor decomposition

‣ 1st-order = vector,  2nd-order = matrix,  >2-order = high-order tensors

∏i §i

TENSOR DECOMPOSITIONS AND APPLICATIONS 463

Table 3.1 Some of the many names for the CP decomposition.

Name Proposed by
Polyadic form of a tensor Hitchcock, 1927 [105]
PARAFAC (parallel factors) Harshman, 1970 [90]
CANDECOMP or CAND (canonical decomposition) Carroll and Chang, 1970 [38]
Topographic components model Möcks, 1988 [166]
CP (CANDECOMP/PARAFAC) Kiers, 2000 [122]

X

c1 c2

aR

b1

a1

b2

a2

bR

cR

≈ + + · · ·+

Fig. 3.1 CP decomposition of a three-way array.

The CP decomposition factorizes a tensor into a sum of component rank-one
tensors. For example, given a third-order tensor X ∈ RI×J×K , we wish to write it as

(3.1) X ≈
R∑

r=1

ar ◦ br ◦ cr,

where R is a positive integer and ar ∈ RI , br ∈ RJ , and cr ∈ RK for r = 1, . . . , R.
Elementwise, (3.1) is written as

xijk ≈
R∑

r=1

air bjr ckr for i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K.

This is illustrated in Figure 3.1.
The factor matrices refer to the combination of the vectors from the rank-one

components, i.e., A =
[
a1 a2 · · · aR

]
and likewise for B and C. Using these

definitions, (3.1) may be written in matricized form (one per mode; see section 2.4):

X(1) ≈ A(C$B)T,(3.2)

X(2) ≈ B(C$A)T,

X(3) ≈ C(B$A)T.

Recall that $ denotes the Khatri–Rao product from section 2.6. The three-way model
is sometimes written in terms of the frontal slices of X (see Figure 2.2):

Xk ≈ AD(k)BT, where D(k) ≡ diag(ck:) for k = 1, . . . , K.

Analogous equations can be written for the horizontal and lateral slices. In general,
though, slicewise expressions do not easily extend beyond three dimensions. Following
Kolda [134] (see also Kruskal [141]), the CP model can be concisely expressed as

X ≈ !A,B,C" ≡
R∑

r=1

ar ◦ br ◦ cr.

matlab
[U,S,V] = svd(X)
X = U*S*V'



How to chose/build the ROB?

Building a given ROB before solving the PDE (a posteriori method)
principle: offline/online computations, learning phase
Proper Orthogonal Decomposition (POD)

[Sirovich 87] [Holmes et al. 93] [Krysl et al 00] [Kunisch and Wolkwein 02]

[Willcox et al. 02] [Picinbono et al. 03] [Bergmann et al. 05] [Lieu et al. 06]

[Gunzburger et al. 06] [Niroomandi et al. 08] [Farhat et al. 08] [Matthies et al. 10] ...

Reduced-Basis (RB) especially for parametrized problems

[Maday et al. 02] [Patera et al. 02] [Rozza et al. 07] [Haasdonk et al. 08] [Boyaval et al. 09] ...

Without assuming any ROB before solving the PDE (a priori method)
principle: automatic generation of the most relevant ROB
Proper Generalized Decomposition (PGD)

[Ladevèze 85, 99] ... [Ladevèze et al. 99-11] [Nouy and Ladevèze 03, 04]

[Ladevèze et al. 08, 09, 10] [DN and Dureisseix 08] [Boucard, DN 11-13] ...

[Chinesta 06-] [Nouy et al. 07-] [Ammar and Chinesta 06] [Leygue et al 10-]

[Ryckelynck 06] [Beringhier et al. 10] ...
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PGD in a nutshell

Idea
minimization of a residual, Galerkin formulation, Petrov-Galerkin formulation

Reformulation in the separated-variable framework
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LATIN
non incremental computational strategy

books [Ladevèze 85] [Ladevèze 99]

originally designed for nonlinear problems

separation between nonlinear and linear equations

since used for coupled problems

separation between coupled and uncoupled equations

or for multiscale problems

separation between equations defined at the scale of

subdomains and equation which link subdomains…

Model reduction method PGD
formerly « radial loading approximation »

renamed in 2010 by P. Ladevèze and F. Chinesta

Proper Generalized Decomposition (PGD) to show the link with POD

PGD in the LATIN framework
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u(t ,M) º
mX

i=1
∏i (t )§i (M)

sex
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Mechanical problem

Framework
small perturbation, quasi-static evolution, isothermal

State of the structure
defined by  s = (εp , X, σ, Y)

‣     εp inelastic part of strain field

‣     X remaining internal variables

‣     σ stress field

‣      Y variables conjugate of X
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Mechanical problem

Framework
small perturbation, quasi-static evolution, isothermal

State of the structure
defined by  s = (εp , X, σ, Y)

Governing equations
kinematic admissibility

compatibility of strain

prescribed displacement

static admissibility
equilibrium equation

nonlinear material behavior (Marquis-Chaboche elastic-viscoplastic material)

state equations

 
 evolution laws 
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. .

Computational aspects
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Mini example

Open hole plate
using symmetries: eighth of the plate
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Mini example

PGD modes
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Bigger example

Blade of an aircraft engine
Chaboche elasto-visco-plastic law with temperature dependence

5 MDOFs, 31 time steps, centrifugal inertial forces (rotational speed of 15,000 tr/min)

[Nachar, Scanff, Ladevèze, Boucard, DN, 2022]
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Parametrized problems

External driver algorithm
reliability method

optimization algorithm

construction of a metamodel

...

Many queries
same large nonlinear problem

multiple runs for different sets of parameters

very high CPU cost 
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xy
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? !

large nonlinear FE 
computations

  μPDE:  PDE: L (u(t ,M)) = 0 L (u(t ,M),µ1,µ2) = 0



Parametrized problems

First approach: building a dictionary
construction of a ROB common to all the sets of parameters

[Boucard, Ladevèze 99] [DN, Boucard et al. 12-14] [Heyberger, Boucard, DN 13]

[DN, Boucard, Relun 15]

Second approach: extra-coordinates
introduction of parameters as new coordinates

[Chinesta, Ammar, Cueto, Huerta, Diez, Gonzalez, Leygue, Bordeu ... 12-]

19

u(t ,M ,µ1,µ2) º
m0X

i=1
∏i (t )§i (M)Æi (µ1)Øi (µ2)

uµ1,µ2 (t ,M) º
mX

i=1
∏i (t )§i (M)

ROB
(dictionary)

  μPDE:  PDE: L (u(t ,M)) = 0 L (u(t ,M),µ1,µ2) = 0



Second approach

Parametrized PDE
with 3 Young moduli 
as parameters

Separation 
of variables

20
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sex

Γ

Ad

(εp, X)

(σ,Y)

. .

First approach

Taken into account variability of parameters
for example:  variation of a material parameter of the nonlinear law

first computation for value k1:   space 

new computation for value k2:   space 

➡reuse of the reduced model obtained from the PGD
➡addition of new pairs only if needed
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Ad
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Γ0

Γ1

Γ0
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[Boucard and Ladevèze 99], [Allix and Vidal 02], [Boucard and Champaney 03]...

solution of
the problem



Vessel head of nuclear reactor

Parametric study
parameters: loading amplitude and material characteristics (R0 ,γ)

1,000 sets of parameters (range of variation ±30%)

wallclock time for 1 run: 

influence on the maximum value of the σmises

22
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Vessel head of nuclear reactor

Parametric study
parameters: loading amplitude and material characteristics (R0 ,γ)

influence on the maximum value of the σmises 

1,000 sets of parameters (range of variation ±30%)
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Post-treatment of virtual charts 

Uncertainties
material characteristics (R0 ,γ) are stochastic
loading parameter is described by an interval
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Introduction

Simple problem: thermoelasticity
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Introduction The LATIN-PGD method for multiphysics Use of di�erent meshes Parametric analysis Conclusions and future work

Case of thermoelasticity [Carlson 73, Nowacki 75]

� Assumptions: quasi-static evolution, small strains, small temperature
changes, homogeneous and isotropic material

Mechanical equilibrium
● Stress equilibrium ∇ ⋅ ‡ + f

d
= 0 in �

● Strain compatibility Á = 1
2 (∇u + T∇u) in �

● Boundary conditions u = ud on �u and ‡ n = F d on �F

Strongly coupled constitutive equations

● Hooke’s law ‡ =K ∶ Á − —◊I

● Fourier’s law q = −k∇◊

● Mechanical heat source rm = T0— Tr Á̇

Thermal equilibrium
● Heat equation flc◊̇ + rm = −∇ ⋅ q + rd in �
● Temp. grad. compatibility x = ∇◊ in �
● Boundary conditions ◊ = ◊d on �◊ and q ⋅ n = qd on �q

2/20
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Resolution
at each

time step ti+1

Monolithic equation

=

i+1 i+1

Monolithic coupled resolution
direct resolution of the system: a priori CPU expensive

Partitioned procedures
decoupled resolution of the physics [Felippa and Park 80, Belytschko and Hugues 83, Shrefler et al. 
87, Zienkiewicz et al. 88, Farhat et al. 95, Morand and Ohayon 95, Lewis and Schrefler 98, ...]
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LATIN framework

Natural separation of the equations
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Turbine blade 

Number of DOFs
mechanical part: 2,370,000 DOFs

thermal part: 118,300 DOFs

Boundary conditions
from [Kin et al., AIAA Journal, 2018]

clamped on the lower tree root
centrifugal load up to 15,000 rpm
forced convective flux on airfoil surface (270°C)
forced convective flux on cooling holes (40°C)

32[Wurtzer, DN, Boucard 2024]
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Turbine blade 

Parametric study
parameter thermal expansion parameter β 
(influence the coupling between the 2 physics)

14 values of the parameter in the range of 
variation
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Figure 13 puts into perspective the iterations required for convergence and the number of PGD
modes added to the reduced bases during each computation of the parametric analysis. After the initial
computation, only a small number of modes are generated. The additional iterations needed to achieve
convergence can be attributed to the necessity of performing coupled stages, essential for recovering the
coupled behavior directly influenced by the variation of ↵.
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Fig. 13: PGD modes added at each computation

The cumulative cardinality of both the mechanical and thermal reduced bases during the computations
of the parametric study is illustrated in Figure 14. Notably, the thermal reduced basis is enriched with
more modes than the mechanical counterpart. This discrepancy in cardinality is allowed by the inherent
modularity of the method.
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Fig. 14: Size of the PGD reduced bases for both physics through the computations

Finally, the achieved gains in terms of computation time are investigated. All computations are con-
ducted utilizing 8 computational threads, thus taking advantage of the parallelizability of the coupled
stage within the LATIN algorithm. In the following, the resolution using the LATIN-PGD algorithm will
be referred to as:

• naive when all computations are performed independently, one after the other;
• enhanced when the ongoing computation is initialized with a previous solution, and the PGD bases are
reused and enriched on the fly.
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Fig. 11: Temperature field (left) and Von Mises stress (right) obtained with the LATIN-PGD method
at t = 60 s on the turbine blade test case

4.2.1 Variation of one parameter

A first parametric study is carried out with only one extra-parameter: the thermal expansion coe�cient
↵. This parameter directly a↵ects the coupling between the two physics. The same interval as in the
previous subsection is considered (see Table 4). The computations of the parametric study are conducted
in ascending order of ↵ values, and a stopping criterion based on the error with respect to the monolithic
reference is chosen, with a threshold ec = 10�3.

In Figure 12, the evolution of the convergence indicator ⌘ (as defined in (19)) and the true error
eref (refer to (38)) is depicted as a function of the cumulative iterations of the several LATIN-PGD
computations. When initializing the algorithm with the previous solution, the error starts at a lower
level, thus reaching the stopping criterion within fewer iterations. While the first computation requires
23 iterations to meet the stopping criterion, subsequent computations exhibit a significant reduction in
the number of necessary iterations (see Figure 13).
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Fig. 12: Error and convergence indicator as a function of the cumulated iterations with a stopping
criterion ec = 10�3
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Appendix B. ROMlab

Figure B.1 • ROMlab contributors, reproduced from [Ruda, 2023]

constructed during the pre-processing stage. Depending on the physics and chosen solver,
the appropriate solving step is then executed, and the results can be exported in a file format
compatible with the Paraview software.

One of the key challenges in developing ROMlab, capable of handling quasi-industrial
cases, is paying particular attention to software optimisation, making the most of current
multi-threaded parallel architectures. The entire code is thus vectorised, notably utilising
the ‘einsum’ function developed in MATLABr by Stéphane Nachar, which enables the use of
Einstein summation.

3 Personal contributions

The work carried out during this thesis has expanded ROMlab’s capabilities. It can now
handle non-linear dynamics. The damage behaviour driven by plasticity, accounting for
crack closure effects as presented in Chapter 1, has also been implemented.
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« Hey guy, what about my 
favorite industrial

finite element software? »

Talk of Pierre-Eliot Malleval 
(coll. SIEMENS)



Conclusion and prospects

LATIN-PGD
to solve a variety of nonlinear problems

Reduced-Order Modeling
allows to build new methods for high performance computing

concept of virtual charts (overall fields, not only metamodels) opens new perspectives in terms 
of engineering design

Numerical certification using high-fidelity models
available in engineering sciences now reproduce accurately complex physics

but direct handling is completely impossible due to CPU time and big data issues

implementation or coupling with existing softwares must not be overlooked!

Recent works in the nonlinear context
computation of fragility curves (coll CEA)

simulation of frictional contact in wire ropes (coll IFP Energies Nouvelles)

native implementation in industrial optimisation software (coll SIEMENS)

coupling ROM with AI for non parametrisable geometries (coll SAFRAN) 

coupling ROM with AI for multiphysics problems

…

38



Merci


