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Introduction
Heat and Mass transfer in porous material

solid

8 D matrix hm’,‘ia ~—
v | Vi 1.2 water
ot ji+tvie {1.2} me [ e
Je e D et
3 = —-V-.-q + q, oD pa(x,1)
nges:

complex interfaces with resistances

BC = f(x,t, T)

multi-dimensional transfer

uncertain material properties = g(x,t, T, p;)

dynamic adsorption and desorption cycles with hysteresis

Objective: Build reliable models = fast & accurate
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Introduction
why model reduction?
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computer clock speeds [1]
vs
model development in building porous wall [2]
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Mathematical problem

For the sake of simplicity, 1D governing equation:

oT d aT
c(T,x,t)E = 8—X(A(T,x,t)§), xefo,L],t

\Y
o

(1)
with

e C [J .m~3 K *1] the volumetric heat capacity

o A\ [W .m~1. K _1] the thermal conductivity

ROBIN-type boundary conditions:

)\(T,x,t)i;—z =h(T,t) (T = Tu(t)) — qu(T,t), x =0,t>0,

oT
“AT,x, )5 = he(T,t) (T = Ta(t)) — ar(T,t), x = L,t>0

Initial condition:

T(x,t) = To(x), x€ [0, L]t =0,
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Numerical Model

Two approaches:

Large (Complete) original model (LOM):

N, A U=
e solution T (x, t)
e FDM, FVM, FEM, etc.
—_—
o degree of freedom Dof = N - N Ny
Physical
Reduced Order model (ROM): phenomena
] ~ Jranslated
e solution T (x, t), Explain
e Dof =N <« Nx-Ng,
e the fidelity of the physical model NUN’E%reifal Ma;?gﬁeaﬁqical
is not degraded,

ROM] Solved

Numerically

& Reduced order model # Lumped (RC) model
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Model reduction techniques

Definitions ?

1. Numerical method that enables to compute the solution with a lower degree of
freedom than the large original model

2. Compute the solution with reduced computational cost without lowering the
accuracy

Two approaches:

e a posteriori: requires a known solution Physical
(or experimental data) phenomena

e a priori: no requirement

Basic idea: Decomposition of the solution

~ N Numerical Mathematical
T(x,t)= Zcp,,(o)a,,(t) Model Problem
n=1
4 methods: MIM, POD, PGD, Spectral ROM. ’yﬁor\r 3 priotl
S
known 2 o

solution
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Modal Identification Method
Description [3-5]

e a posteriori technique
e use experimental data to build the ROM

e solution is approximated by:

Ny

Oan

9t 7]:nn3n+zgnkgk7
k=1

N
T, t) = Y einan(t),
n=1

where
® a, are the internal states, no physical meaning,
e N is the order of the reduced model (=~ 10 hopefully),
° :F(Xj, t) is the output of the system with physical meaning,

e Q(t) are the Ny inputs of the system,
o Dof =N-N;.

References
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Modal Identification Method
Basic steps
offline phase:
a. Assume a reduced model based on a state-space representation:

MIM model /ﬂ

T'rtTr
qar QR}QA-}

Ny, inputs

b. Build the reduced model
® using (standardized) experimental data of the system T (x;, t™),

® estimate (incrementally) the N (2 + Ny ) unknowns through least square

estimator:
N 5
(Fonseoo s Guics o) = argmind (Tl em) = T em))
m=1

online phase:
c. Use the model for control & command, inverse problem, etc.
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Modal Identification Method

Illustration: bio-inspiring wall [6]

Conclusion
(e}

References
o

MIM model

-t

[

e Inputs: irradiance, inside, outside T

e Outputs: rear face heat flux g"& % % ﬁ& %

e 2 control parameters T g-néx X
(angle & color flap) X s

e Offline: 4 x 1 days K

o N =10,e2 = 5W.m™2 [ an | % s

e Online (validation): 47 days s | \} om

2
168

L L
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Modal ldentification Method

lllustration: thermal diffusivity estimation [7, 8]

10°
-@-a=10-10"7 (m2s!)
N —4—2=50-10"7 (m%s7!)
N ——a=10-10"°% (m?s!)
s W a=70-10" (m%s")
10 n - - 00107
o
10°
MIM model 107
L . 0 5 10 15 20
e Inputs: inside, outside T Order N (-)

e Outputs: Temperature & sensitivity (3 points)
e 1 control parameter (thermal diffusivity)
Offline: 3 days

e N =7,e0 = 024 °C

e Parameter estim.: 3 days (OED)

Ty (°C)

Online (validation): 111 days
0.19 - tepu( LOM)
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Proper Orthogonal Decomposition
Description

e a posteriori technique

e use previous computation of the LOM

e solution is approximated by:

N
T(x,t) = Y ealx)an(t),
n=1

where

e N is the order of the reduced model (~ 10 hopefully).
Two possibilities:

1. known space function basis { ©n } nN:1 ~ VP to compute { an } ,,:1:1’

most of works [9-12]
Dof = (Nx + N) - N;

2. known time function basis { an } anl ~» BVP to compute {(p,, } ,,N,l
Dof = (N: + N) - Nx

References
[¢]
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Proper Orthogonal Decomposition
Basic steps (IVP approach)

offline phase:
a. Assume a known solution T of the problem (computed with the LOM)

® Compute covariance matrix:
CxTt T
® Compute eigenvectors A & eigenvalues A

® Extract the main components by sorting the N highest eigenvalues:

iilm > .> i’“;/ ~ {an(t)}an:1
b. Insert decomposed solution

N
T(xj,t) = Y @n(x)an(t) — Eq (1)

n=1

N
c. Project the result on each time function { an(t) } L
n=

d. Obtain the boundary value problem:
N

an,,mcp,,—)\d:jzn =0, VnE{l,...,N},

m=1

online phase: Solve the boundary value problem (2).

[e]

()

References
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Proper Orthogonal Decomposition

Parametric solutions

Solution depends on extra-parameters of the problem (diffusivity, surface transf.
coeff., etc.):

N
T(x,t,p) = Y ea(x)an(t, p),

n=1
. . . N
where the time function basis { an(t, p) } %
n=

e is computed for a set of parameters (offline phase)
e is interpolated on a tangent space of GRASSMANN manifold

for a new parameter [14] (online phase)

13/ 32



0000

SROM Conclusion
000 (e}

Proper Orthogonal Decomposition

Illustration: thermal design under climate change [13]
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Proper Orthogonal Decomposition
lllustration (IVP): building 2D heat transfer [15, 16]
online
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Proper Generalized Decomposition
Description [17-19]

e a priori technique
e no-need of known solution

e solution is approximated by:

N
TOat) = Y enlx)an(t),
n=1

where
e the functions space ¢ n(x) and an(t) are unknown,

e N is the order of the reduced model (=~ 30 hopefully),
o Dof =N - (Nx + Ni).

References

o
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Proper Generalized Decomposition
Basic steps

N
TOxt) = Y enlx)an(t),

n=1

1. Online phase: Set N = 1

2: while Res( Eq (1)) < €1 do

3: i=1

4: initial guess <p‘,'v, a;'\,

5: while||<p;'v+1—gpfv|’2,Haﬁl—a§V|’2<£2do
. . dal -

6: (Eq (1), pp(x))x ~ a7t — Bray = 71
. . cd2pd

£ (Eq (1), ap(t))e ~azely — By 524 = 72

8: i=i+1

9: end while

10: Update oy = go;V, ay = ajv

11: Increment N = N + 1

12: end while

References
o
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Proper Generalized Decomposition
Parametric solutions [12, 20-25]

Conclusion References
(e}

o

Solution depends on extra-parameters of the problem (diffusivity, surface transf.

coeff.,

etc.):

N

TOotp) = ) ealx)an(t)falp),

n=1

where the solution is computed at once by multiple projection of Eq. (1) [18]
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Proper Generalized Decomposition
Illustration: building 2D heat and mass transfer [26]
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e coupling issues
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Spectral Reduction Method
Description [27-31]

e a priori technique

e no-need of known solution

e solution is approximated by:
,ils [\ ZS[\T

N
T(x,t) = Z on(x)an(t),
n=1

High order global representation

where #\ N
e the space functions @ n(x) = Tp(x)

xT
Uj—1 Uj Ujty
the CHEBYSHEV polynomials, Local representation
< Global representation of the solution
e a, are the only unknowns,
e N is the order of the reduced model (~ 10 hopefully),

o Dof =N - N;.
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Spectral Reduction Method
Basic steps
a. Insert decomposed solution into the Equation:
N
T(x,t) = E Ta(x)an(t) — Eq. (1)
n=1
b. Minimization of the residual (GALERKIN-TAU method):
R(x,t)Tn(x
(Res(Eq (1)), Tn) ROGOT () 4, = g
V1 — x2
c. Obtain a reduced system of ODE to solve:
an(t) = A-an(t), Vne{1,....,N}.
1400
Chebfun 1o —4—Spectral
1300 | TT5 N ° e e
| 9
1200 ’\ \'k
—_ )i L ]
s ¢ X
£ 1100 e F1072F | «
o s | S Y
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1320 ) 909004y
900 1300 \ ?‘ oo
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800 . 2
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z (m) Modes M
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Spectral Reduction Method
Illustration: parametric solution [32] (SFT 2025)

Solution depends on extra-parameters: 35

—— Reference
30 - - ~Spectral

N M
:I:(X,t,p) = Z Z Tn(X)anm(t)Pm(p)7 25

n=1m=1 ;520
and the sensitivity coefficient: =
15
oT
X(x,t,p) = — 10
op

A dP
- Z Z Tn(x)anm(t)T;’(p),
n=1m=1

~ Gradient-based algorithm for Inverse Problem

J(p) = || T, t™) = T(x;, t™)]], — min

X (K.s/m?)

and freely V, 7 !

Reference
- - - Spectral
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[ 1]
Conclusion

4 Model Reduction Techniques: MIM, POD, PGD, Spectral ROM

e requires preliminary (mathematical) developments,

e verified with reference solutions,

e compared with experimental observations,

e bench-marked with complete models.
ROM reduction accuracy  whole T offline cost  coupling parametric
MIM + - no +/- ++ -
POD ++ ++ yes ++ ++ +
PGD + + yes - - ++
Spectral ++ ++ yes - ++ ++
Open topics:

® treatment of non-linearities,

® coupling with parametric so

lution.
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Thank you for your attention
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