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Introduction
Heat and Mass transfer in porous material
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Mass conservation and energy balance
∂ρ i
∂t

= −∇ · j i + I i , ∀ i ∈
{
1 , 2

}
,

∂e
∂t

= −∇ · q + q̇ ,

solid

matrix liquid

water

water

vapour
dry air

object of interest:
Challenges:
• complex interfaces with resistances
• BC = f ( x , t , T )
• multi-dimensional transfer
• uncertain material properties = g( x , t , T , ρ i )
• dynamic adsorption and desorption cycles with hysteresis

Objective: Build reliable models = fast & accurate
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Introduction
why model reduction?
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Mathematical problem

For the sake of simplicity, 1D governing equation:

c( T , x , t )
∂T
∂t

=
∂

∂x

(
λ( T , x , t )

∂T
∂x

)
, x ∈

[
0 , L

]
, t > 0 , (1)

with
• c

[
J .m−3 .K−1

]
the volumetric heat capacity

• λ
[
W .m−1 .K−1

]
the thermal conductivity

Robin-type boundary conditions:

λ( T , x , t )
∂T
∂x

= h L( T , t )
(

T − T L( t )
)
− q L( T , t ) , x = 0 , t > 0 ,

−λ( T , x , t )
∂T
∂x

= h R ( T , t )
(

T − T R ( t )
)
− q R ( T , t ) , x = L , t > 0

Initial condition:

T ( x , t ) = T 0( x ) , x ∈
[
0 , L

]
, t = 0 ,
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Numerical Model

Two approaches:

Large (Complete) original model (LOM):
• solution T ( x , t )
• FDM, FVM, FEM, etc.
• degree of freedom Dof = N x · N t

Reduced Order model (ROM):

• solution T̃ ( x , t ),
• Dof = N � N x · N t ,
• the fidelity of the physical model

is not degraded,

Reduced order model 6= Lumped (RC) model
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Model reduction techniques

Definitions ?
1. Numerical method that enables to compute the solution with a lower degree of

freedom than the large original model
2. Compute the solution with reduced computational cost without lowering the

accuracy

Two approaches:
• a posteriori: requires a known solution

(or experimental data)
• a priori: no requirement

Basic idea: Decomposition of the solution

T̃ ( x , t ) ≈
N∑

n = 1

ϕ n( • ) a n( t )

4 methods: MIM, POD, PGD, Spectral ROM.
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Modal Identification Method
Description [3–5]

• a posteriori technique
• use experimental data to build the ROM
• solution is approximated by:

∂a n

∂t
= F n n an +

N k∑
k=1

G n k Q k ,

T̃ ( x j , t ) =
N∑

n=1

ϕ j n an ( t ) ,

where
• a n are the internal states, no physical meaning,
• N is the order of the reduced model (' 10 hopefully),

• T̃ ( x j , t ) is the output of the system with physical meaning,
• Q k ( t ) are the N k inputs of the system,
• Dof = N · N t .
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Modal Identification Method
Basic steps

offline phase:
a. Assume a reduced model based on a state-space representation:

MIM model

inputs outputs

b. Build the reduced model
• using (standardized) experimental data of the system T̂ ( x j , t m ),
• estimate (incrementally) the N ( 2 + N k ) unknowns through least square

estimator:(
F n n , . . . , G n k , . . . , ϕ n

)
= arg min

N t∑
m=1

(
T̃ ( x j , t m ) − T̂ ( x j , t m )

) 2

online phase:
c. Use the model for control & command, inverse problem, etc.
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Modal Identification Method
Illustration: bio-inspiring wall [6]
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MIM model
• Inputs: irradiance, inside, outside T
• Outputs: rear face heat flux
• 2 control parameters

(angle & color flap)
• Offline: 4 × 1 days
• N = 10 , ε 2 = 5 W .m−2

• Online (validation): 47 days
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Modal Identification Method
Illustration: thermal diffusivity estimation [7, 8]

10 / 32

0 5 10 15 20
10

-1

10
1

10
3

10
5

0 20 40 60 80 100

-10

-5

0

5

10

15

20

25

30
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• Inputs: inside, outside T
• Outputs: Temperature & sensitivity (3 points)
• 1 control parameter (thermal diffusivity)
• Offline: 3 days
• N = 7 , ε 2 = 0.24 ◦C
• Parameter estim.: 3 days (OED)
• Online (validation): 111 days
• 0.19 · t cpu( LOM )
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Proper Orthogonal Decomposition
Description

• a posteriori technique
• use previous computation of the LOM
• solution is approximated by:

T̃ ( x , t ) =
N∑

n = 1

ϕ n( x ) a n( t ) ,

where
• N is the order of the reduced model (' 10 hopefully).

Two possibilities:

1. known space function basis
{
ϕ n
}N

n=1
 IVP to compute

{
a n
}N

n=1
,

most of works [9–12]
Dof =

(
N x + N

)
· N t

2. known time function basis
{

a n
}N

n=1
 BVP to compute

{
ϕ n
}N

n=1
[13]

Dof =
(

N t + N
)
· N x
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Proper Orthogonal Decomposition
Basic steps (IVP approach)

offline phase:
a. Assume a known solution T of the problem (computed with the LOM)
• Compute covariance matrix:

C ' T t · T
• Compute eigenvectors A & eigenvalues λ
• Extract the main components by sorting the N highest eigenvalues:

λ 1∑
i
λ i

> . . . >
λ N t∑

i
λ i

;
{

a n( t )
}N

n=1

b. Insert decomposed solution

T̃ ( x j , t ) =
N∑

n = 1

ϕ n( x ) a n( t ) −→ Eq (1)

c. Project the result on each time function
{

a n( t )
}N

n=1

d. Obtain the boundary value problem:
N∑

m = 1

c α n m ϕ n − λ
d 2ϕ n

dx 2 = 0 , ∀n ∈
{
1 , . . . , N

}
, (2)

online phase: Solve the boundary value problem (2).
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Proper Orthogonal Decomposition
Parametric solutions

Solution depends on extra-parameters of the problem (diffusivity, surface transf.
coeff., etc.):

T̃ ( x , t , p ) =
N∑

n = 1

ϕ n( x ) a n( t , p ) ,

where the time function basis
{

a n( t , p )
}N

n=1
:

• is computed for a set of parameters (offline phase)
• is interpolated on a tangent space of Grassmann manifold

for a new parameter [14] (online phase)
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Proper Orthogonal Decomposition
Illustration: thermal design under climate change [13]
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Proper Orthogonal Decomposition
Illustration (IVP): building 2D heat transfer [15, 16]
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Model POD NN
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Proper Generalized Decomposition
Description [17–19]

• a priori technique
• no-need of known solution
• solution is approximated by:

T̃ ( x , t ) =
N∑

n = 1

ϕ n( x ) a n( t ) ,

where
• the functions space ϕ n( x ) and a n( t ) are unknown,
• N is the order of the reduced model (' 30 hopefully),

• Dof = N ·
(

N x + N t
)
.
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Proper Generalized Decomposition
Basic steps

T̃ ( x , t ) =
N∑

n = 1

ϕ n( x ) a n( t ) ,

1: Online phase: Set N = 1
2: while Res( Eq (1) ) 6 ε 1 do
3: i = 1
4: initial guess ϕ i

N , a i
N

5: while
∣∣∣∣ϕ i+1

N − ϕ i
N

∣∣∣∣
2
,
∣∣∣∣ a i+1

N − a i
N

∣∣∣∣
2
6 ε 2 do

6: 〈Eq (1) , ϕ i
N ( x ) 〉x ; α i

1
da i

N
dt − β i

1 a i
N = γ 1

7: 〈Eq (1) , a i
N ( t ) 〉t ; α i

2 ϕ
i
N − β i

2
d 2ϕ i

N
dx 2 = γ 2

8: i = i + 1
9: end while
10: Update ϕN = ϕ i

N , a N = a i
N

11: Increment N = N + 1
12: end while
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Proper Generalized Decomposition
Parametric solutions [12, 20–25]

Solution depends on extra-parameters of the problem (diffusivity, surface transf.
coeff., etc.):

T̃ ( x , t , p ) =
N∑

n = 1

ϕ n( x ) a n( t ) f n( p ) ,

where the solution is computed at once by multiple projection of Eq. (1) [18]

0 0.02 0.04 0.06 0.08 0.1

800

900

1000

1100

1200

1300

1400

0.08 0.085 0.09

1300

1350

N�

0 10 20 30 40 50

C
P
U
ti
m
e
(s
)

0

10

20

30

40

50

PGD

Euler implicit

18 / 32



Introduction MIM POD PGD SROM Conclusion References

Proper Generalized Decomposition
Illustration: building 2D heat and mass transfer [26]
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Spectral Reduction Method
Description [27–31]

• a priori technique
• no-need of known solution
• solution is approximated by:

T̃ ( x , t ) =
N∑

n = 1

ϕ n( x ) a n( t ) ,

where
• the space functions ϕ n( x ) ≡ T n( x )

the Chebyshev polynomials,
↪→ Global representation of the solution

• a n are the only unknowns,
• N is the order of the reduced model (' 10 hopefully),
• Dof = N · N t .
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High order global representation

Local representation
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Spectral Reduction Method
Basic steps

a. Insert decomposed solution into the Equation:

T̃ ( x , t ) =
N∑

n = 1

T n( x ) a n( t ) −→ Eq. (1)

b. Minimization of the residual (Galerkin-Tau method):

〈Res( Eq (1) ) ,T n 〉 =
∫

R ( x , t ) T n (x)
√
1 − x 2

dx = 0

c. Obtain a reduced system of ODE to solve:
ȧ n ( t ) = A · a n ( t ) , ∀n ∈

{
1 , . . . , N

}
.
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Spectral Reduction Method
Illustration: parametric solution [32] (SFT 2025)
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Solution depends on extra-parameters:

T̃ ( x , t , p ) =
N∑

n = 1

M∑
m = 1

T n( x ) a n m( t ) Pm( p ) ,

and the sensitivity coefficient:

X ( x , t , p ) =
∂T
∂p̄

=
N∑

n = 1

M∑
m = 1

T n( x ) a n m( t )
dPm

dp
( p ) .

; Gradient-based algorithm for Inverse Problem

J ( p ) =
∣∣∣∣ T̃ ( x j , t m ) − T̂ ( x j , t m )

∣∣∣∣
2
−→ min

and freely ∇ p J !
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Conclusion

4 Model Reduction Techniques: MIM, POD, PGD, Spectral ROM
• requires preliminary (mathematical) developments,
• verified with reference solutions,
• compared with experimental observations,
• bench-marked with complete models.

ROM reduction accuracy whole T offline cost coupling parametric

MIM + - no +/- ++ -

POD ++ ++ yes ++ ++ +

PGD + + yes - - ++

Spectral ++ ++ yes - ++ ++

Open topics:
• treatment of non-linearities,
• coupling with parametric solution.
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Thank you for your attention
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