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Dense spray – 
convoluted interfaces : 	

 Dilute spray. 	



Intermediate region:  
progressive coarsening 
downstream. 	



Typical structure and simulation strategy	
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Dense spray – 
convoluted interfaces : 
Full DNS necessary for 
accuracy	



Dilute spray: 
droplets may be 
accurately modelled 
as Lagrangian 
particles.	



Intermediate region: modelling 
necessary	



Simulation methodology	
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VOF methodology	
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- 1 Compute an evolving surface : computational geometry	


 	


-  Solve	


	


  2 the Navier-Stokes equations with 	


	


  3 surface tension,  	


	


and 	


	


  4 variable viscosity and density, 	


	


  5 ensure robustness,	


	


  6 have a multiscale approach. 	
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Old Codes:	


	


  Surfer	


  Gerris  gfs.sf.net 	


	


New codes	


	


  Basilisk   basilisk.fr	


  ParisSimulator   parissimulator.sf.net	


	


Improvements: better stability, accuracy, faster, HPC-compatible.	


	


All our codes are free. 	
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Gerris is very accurate: Capillary wave test. L2 error norm:	



(Gerris)	
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But Gerris is slow.   ParisSimulator and Basilisk are faster	
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Atomization	
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Kelvin-Helmholtz instability : unstable shear flow	
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2D simulations of the planar « Grenoble » setup. 	



Gas 

Liquid 

The Grenoble quasi 2D experiment set up	
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Use Gerris flow solver with adaptive oct-tree and quad-tree grids	
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Elementary multiscale treatment: Navier-Stokes with variable minimum grid size	


according to a subdivision of the computational domain. 	



Gas 

Liquid 

small 
minimum Δx	



medium 
minimum  Δx	



large 
minimum Δx	
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Simulation with a separator plate at density ratio (1/r = 100)	



m	

 r	
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 Rel	

 Weg	
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 M	



0.017	
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 290	

 19	

 8	

 2,4	



Movie by Daniel Fuster and Jérôme Hoepffner using the Gerris Flow solver	
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Compare to experiments in Grenoble (Cartellier, Matas) . Flow from right to left. 	


Video with help of Jérôme Hoepffner and Jon Soundar. 	
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To compare numerical results with theory , we need: 	


	


	


Linear stability theory of the Kelvin-Helmholtz instability: 	


Viscous, Error-function profiles	


	


a)  Yecko, Fullana, Boeck, Zaleski,	


b) Gordillo, Perez-Saborid, Ganan-Calvo,	


c)  Spelt, Valluri, O’Naraigh	


d)  Matas	
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Convective/absolute instabilities	


	


	


1) Absolute: a spatially localized perturbation at x=0 and t=0	


 grows in the entire space	


	


	


	


	



	

 	

unstable region	


	


	


	


	


	


	


	


	


corresponds to a well-defined oscillator frequency in the entire	


domain, a so-called « global mode ». Upstream turbulence has little influence. 	


	


	



time	



space	
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2) Convective instability: a spatially localized perturbation at t=0	


 is convected downstream with the flow	


	


	


	


	


	


	


	


	


	


	


	


	


	


No single frequency is observed but instead, broadband noise is seen. 	


The system is seen to be a noise amplifier. Upstream turbulence matters	


	



Convective/absolute instabilities	



time	



space	



unstable region	
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Linear theory has an enormous dependence on the wake flow 
correction. 	



Wake flow 

So what does linear theory say about our problem ? Is it convective or absolute ? 	
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Simplified base flows	
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       Effect of upstream turbulence on instability growth. 	


	


	


The effect of upstream turbulence will be important if the spatial 
analysis reveals a convective instability. 	


	


It will be unimportant if an absolute instability is found. 	
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Most « important » parameter: momentum flux ratio	


(or ratio of dynamic pressures. It is the only parameter that 	


does not involve small-scale characteristics of the flow)	



M =
!gug

2

!lul
2



23/79 
 

convective, noise amplifier                 ambiguous                   absolute, global mode	



Grenoble experiments: Cartellier, Matas, Marty	
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Now the ultimate test !  Compare  :	


	


- Experiments	


- Numerics	


- Linear theory	


	


	


We need linear theory, again but for spatially developping flows. 	


	


For that, we need to know what are absolute and convective instabilities ! 	
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What about the simulation ?	
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Comparison experiment-simulation	
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3D flows	
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Air-Water 	


uliq = 0.6 m s−1, ugas = 35 m s−1  	


	


injection diameter D = 7.8 mm	


	


Reg  = 16000, Weg = 200	


based on D1	


	


Reδ  = 400	


	


Simulation :  six weeks on 64 AMD 
processors 	


	


line of eight 5123 boxes – (equivalent 
regular mesh but we use octree 
adaptation)	


	


Difficult to go to higher levels of 
refinement	


	



The iconic Marmottant-
Villermaux case	
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Boundary layer size	


157 µm	


	


smallest	


grid size 50 µm	


	


25µm case currently 	


running	


	


 	


Injector thickness	


comparable. 	
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Simulation: Gilles Agbaglah	
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Particle size distributions	


	


experimental and computed	


at UPMC	


	


	


u2 = 35 m / s	
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Lagrangian Point Particle model	
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The modelling depends on the type of simulation. 	



With oct-treeAMR we will move from more or less resolved cases. 	


	


Do simultaneously VOF->LPP conversion and  massive grid coarsening ?	


	


Question: ( unanswered) how much accuracy do we lose by going from a	


fully resolved drop to a « very unresolved » one	


	


In a first step we work on a regular cubic grid code without AMR, ParisSimulator	
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Test case : driven cavity flow with LPP.   Re=16, Rep=0,34	
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Pulsed Diesel-type jet 	
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VOF to LPP conversion  - Higher Reynolds	



time	
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Conditions de l’article de Deschamp et al dans lequels les trajectoires	


de particules sont mesurées	


	


Reδ  = 1000	


	


Simulation 64 x 256 x 512	
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Coflowing air and liquid jets (moderate density ratio)	
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Simulation 128 x 512 x 1024	
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PDF of droplet diameters - (a) t = 0.4s, (b) t = 0.41s, and (c) t = 0.42s. �
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Immediate Perspectives:	


	


	


   - A well understood, consistent, verified theory of the 3D instability: at present many	


theories, and almost no numerics.	


	


  - A proof of convergence of the Lagrangian point particle model.	


	


  - VOF technology: AMR-VOF-LPP with basilisk. (new octree code).	


	


	


Longer term perspectives: 	


	


  - coupling with thermal / reaction effects.	


	


  - use DNS to develop and validate large-scale particle ejection models. 	


	


  - full combustion chamber simulations.	
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High resolution	



LPP	



Still a lot of work !	



Simulation methodology	
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The End	
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