

Éléments sur la physique du climat et des changements climatiques

Jean-Louis Dufresne jean-louis.dufresne@lmd.ipsl.fr

Laboratoire de Météorologie Dynamique et Institut Pierre-Simon Laplace

Journée SFT, Lyon, 18 novembre 2021 "Thermique atmosphérique et adaptation au changement climatique"

Outlook

- I. Basics of climate physics
- II.The greenhouse effect
- III.Climate modelling
- IV. Future climate changes

Emergence of the physics of climate

J. Fourrier:

- *Mémoire sur les températures du globe terrestre et des espaces planétaires*, Mémoires de l'Académie des Sciences de l'Institut de France,1824
- General remarks on the Temperature of the Terrestrial Globe and the Planetary Spaces; American Journal of Science, Vol. 32, N°1, 1837.
- He consider the Earth like any other planet
- The energy balance equation drives the temperature of all the planets
- The major heat transfers are
 - 1. Solar radiation
 - 2.Infra-red radiation
 - 3. Diffusion with the interior of Earth
- > He formulates the principle of the greenhouse effect
- > He envisages the importance of any *change of the sun*
- > He envisages that *climate may change*

Joseph Fourrier (1768-1830)

Equilibrium temperature of a planet

Equilibrium temperature of a planet

Incoming solar radiation on a plan: F₀=1364 W.m⁻²

Incoming solar radiation on a sphere: $F_s = F_0/4 = 341 \text{ W.m}^{-2}$

1/3 of incoming solar radiation is reflected

2/3 of incoming solar radiation is absorbed : F_a = 240W.m⁻²

 $T_s = 255K (-18°C)$

Equilibrium temperature of a planet

Incoming solar radiation on a plan: F₀=1364 W.m⁻²

Incoming solar radiation on a sphere: $F_s = F_0/4 = 341 \text{ W.m}^{-2}$

1/3 of incoming solar radiation is reflected

2/3 of incoming solar radiation is absorbed : F_a = 240W.m⁻²

Global mean surface temperature is 15°C due to greenhouse effect

 $T_s = 255K (-18°C)$

What radiation heat transfer theory tell us

Greenhouse effect: **G=F_s-F_e**

Computation of the radiative fluxes F_s and F_e and the greenhouse effect G

Current greenhouse effect and the

various contributions	$(W.m^{-2})$	(%)	
Total	150		
Water vapour	75	50	
CO_2	32	21	
ozone	10	7	
N_2O+CH_4	8	5	
Clouds	25	17	

Spectrum of the radiation emitted by the Earth as measured by satellites

Energy balance at the top of the atmosphere

Energy redistribution in latitude

Energy balance at the top of the atmosphere (W/m2)

Meridional heat transport (PW, 10¹⁵W)

Outlook

- I. Basics of climate physics
- II.The greenhouse effect
- III.Climate modelling
- IV. Future climate changes

Atmospheric layer:

- Isothermal
- Perfectly transparent to solar radiation
- Absorbs thermal infrared: emissivity=absorptivity=ε_a

Surface: albedo A, emissivity = 1

That gives:
$$\sigma T_s^4 = \frac{(1-A)I_0}{1-\epsilon_a/2}$$

Atmospheric layer:

- Isothermal
- Perfectly transparent to solar radiation
- Absorbs thermal infrared: emissivity=absorptivity=ε_a

Surface: albedo A, emissivity = 1

That gives: $\sigma T_s^4 = \frac{(1-A)I_0}{1-\epsilon_a/2}$

- The surface temperature T_s depends on the incoming solar flux I_s , albedo A and atmospheric absorptivity ϵ_s in the infrared
- The greenhouse effect $G = F_s F_e = (1 A)I_0 \left(\frac{1}{1 \epsilon_a/2} 1\right)$ varies between 0 when $\epsilon_a = 0$ and $(1-A)I_0$ when $\epsilon_a = 1$. It is maximum when $\epsilon_a = 1$

Surface temperature:

$$\sigma T_s^4 = \frac{(1-A)I_0}{1-\epsilon_a/2}$$

The single-layer model gives the right orders of magnitude, but has some important limitations, especially for CO₂

Surface temperature:

$$\sigma T_s^4 = \frac{(1-A)I_0}{1-\epsilon_a/2}$$

The greenhouse effect
$$G = F_s - F_e = (1 - A)I_0 \left(\frac{1}{1 - \epsilon_a/2} - 1\right)$$

Surface temperature:

$$\sigma T_s^4 = \frac{(1-A)I_0}{1-\epsilon_a/2}$$

The greenhouse effect
$$G = F_s - F_e = (1 - A)I_0 \left(\frac{1}{1 - \epsilon_a/2} - 1\right)$$

The single-layer model gives the right orders of magnitude, but has some important limitations, especially for CO₂

The CO₂ saturation paradox

Greenhouse effect as a function of **CO**₂ **concentration**

for different H₂O concentrations

The CO₂ saturation paradox

Greenhouse effect as a function of **CO**₂ **concentration**

for different H₂O concentrations

Total absorptivity ε_a of the atmosphere as a function of CO₂ concentration for different H₂O concentrations

The CO₂ saturation paradox

Greenhouse effect as a function of **CO**₂ **concentration**

for different H₂O concentrations

Total absorptivity ε_a of the atmosphere as a function of **CO₂ concentration** for different H₂O concentrations

Why does the greenhouse effect increase with CO₂ while absorptivity does not?

1) Why does the absorptivity of CO₂ saturate while that of H₂O does not?

Total absorptivity ε_a of the atmosphere as a function of CO₂ concentration for different H₂O concentrations

Spectral absorptivity ε_a of the atmosphere due to CO_2 and H_2O for different H_2O concentrations

1) Why does the absorptivity of CO₂ saturate while that of H₂O does not?

Total absorptivity ε_a of the atmosphere as a function of CO₂ concentration for different H₂O concentrations

Spectral absorptivity ε_a of the atmosphere due to CO₂ only for different CO₂ concentrations

2) Why is the greenhouse effect increasing even if the absorptivity is not increasing?

The concept of emission height

2) Why is the greenhouse effect increasing even if the absorptivity is not increasing?

The concept of emission height

Analogy between emission height and visibility distance

Greenhouse effect in a *stratified* atmosphere

solar radiation (SW)

F_{ir} outgoing infrared (LW) radiation

Ze: emission height

The concentration of greenhouse gases is vertically uniform.

Hidden zone (photons emitted upwards are absorbed and do not reach the space)

Greenhouse effect in a *stratified* atmosphere

Vertically uniform increase of the GHG concentration

Greenhouse effect in a *stratified* atmosphere

Vertically uniform increase of the GHG concentration

The concept of emission height

different optical thicknesses of the atmosphere

[Dufresne et al., 2020]

Spectrum of the radiation emitted by the Earth as measured by satellites

Outlook

- I. Basics of climate physics
- II. The greenhouse effect
- III.Climate modelling
- IV. Future climate changes

Numerical climate models (numerical weather simulators)

Wilhelm Bjerknes (1862-1951)

L. F. Richardson (1881–1953)

J. von Neumann (1903–1957)

Jule Charney (1917-1981)

Syukuro Manabe (1931-)

Large scale circulation: Meridional heat transport and the effects of Earth rotation

Relevant spatial and time scales

General circulation models (GCMs)

Dynamical core: discretized version of the equations of fluid mechanics

Mass Conservation

$$D\rho/Dt + \rho \operatorname{div}\underline{U} = 0$$

Energy Conservation

$$D\theta / Dt = Q / Cp (p_0/p)^{\kappa}$$

Momentum Conservation

$$D\underline{U}/Dt + (1/\rho) \operatorname{grad} p - g + 2 \underline{\Omega} ^{\bullet}\underline{U} = \underline{F}$$

Conservation of Water (and other species)

$$Dq/Dt = S_q$$

In red, source terms: other than fluid mechanics and unresolved scales

General Circulation Models

- → Developed in the 60s for the purpose of weather forecast
- → Based on a discretized version of the « primitive equations of meteorology »
- → On the Earth but also very rapidly on other planets
- → A number of important process are subgrid scale and must be parameterized

Modeling of unresolved scales Development of parameterization

A typical vertical atmospheric column

Typical time step: a few minutes to half an hour

Parameterization development and the use of high resolution explicit models

Evolution of climate models

The IPSL Earth System Model

Natural and anthropogenic forcings

Solar and volcanoes

Green house gases and active gases

CO₂ concentration

IPSL-CM5A-LR

Atmospheric composition

Radiative forcings

Climate changes

Authorized CO₂ emissions

Human activities and recent climate change

b) Change in global surface temperature (annual average) as **observed** and simulated using **human & natural** and **only natural** factors (both 1850-2020)

Origins of the global warming

Observed warming 2010-2019 relative to 1850-1900

Aggregated contributions to 2010-2019 warming relative to 1850-1900

Outlook

- I. Basics of climate physics
- II. The greenhouse effect
- III.Climate modelling
- IV. Future climate changes

First climate projections before global warming has been observed

[Hansen et al. 1981]

[IPCC 2021, TS]

Assessing past projections

Future emission based on different socioeconomic scenario

The IPSL Earth system model

Natural and anthropogenic forcings

Solar and volcanoes

Green house gases and active gases

CO₂ concentration

IPSL-CM5A-LR

Atmospheric composition

Radiative forcings

Climate changes

Authorized CO₂ emissions

Global mean surface temperature change

Past, recent and possible future changes

Arctic sea-ice

Arctic sea-ice

above 15% sea-ice concentration

Global mean sea level

Precipitation changes for SSP2-4.5, ([2081-2100] vs [1995-2014])

Surface temperature evolution: observation and models

Summer mean temperature over France

Evolution des températures estivales en France (Juin-Juillet-Août)

Internal variability and variations due to forcings

Climate variations have different origines:

$$\Delta T \approx \Delta T_{int} + \underbrace{\frac{\partial T}{\partial Q} \Delta Q_{nat}}_{\text{Variation}} + \underbrace{\frac{\partial T}{\partial Q} \Delta Q_{ant}}_{\text{Response to natural forcings}} + \underbrace{\frac{\partial T}{\partial Q} \Delta Q_{ant}}_{\text{Response to anthropogenic forcings}}$$

- The relative importance of these various termes depends on the spatial and time average considered, and on the amplitude of the forcings
- The differences between observations and models or between model results can include part or all of these terms, depending on the experimental setup

Climate change and climate variability

50 years trend of the winter surface temperature (°C/50 years) for an "intermediate-high scenario". *Average* response.

Climate change and climate variability

50 years trend of the winter surface temperature (°C/50 years). Response of *individual* simulations.

