

Transport éruptif de l'eau dans les couches de diffusion de gaz des piles à combustible

De l'oscillateur capillaire à la modification de la saturation

Dr. Stéphane CHEVALIER

Laboratoire de Thermocinétique de Nantes (CNRS-UMR 6607)
Polytech Nantes, The Graduate School of Engineering of the University of Nantes

Equipe transport dans les milieux poreux au LTN

4 chercheurs (3 permanents + 1 postdoc)

- Prof. B. Auvity
- Prof. J. Bellettre
- Dr. C. Josset (MdC)
- S. Chevalier (Postdoc Marie Curie fellow (Incoming))

Ces travaux s'inscrivent dans la suite de la thèse de G. Flipo

Objets d'étude Transport diphasique à micro-échelle

Gaz

Introduction – Motivations (1/2)

• Liquid water invasion in the GDL is well modelized by the Invasion Percolation mechanism.

Water distribution for two pore networks, Medici and Allen (2011 ECS Trans.)

• What about the liquid water discharge from the pore to pore? *Keywords:* Dynamic breakthrough, eruptive transport

Inertial effect (*Haynes jump*)? Viscous effect?

Interfacial Jumps and pressure bursts during fluid displacement, Moebius and Or (2012 J. Col. Int. Sc.)

Introduction – Motivations (2/2)

• As water emerges from the porous medium, it creates a partial flushing Potential modification of the preferential paths.

Water drainage process of a model capillary system as water emerges from the GDL surface, Lu et al. (2010 Int. J. Hydrogen Energy)

Motivations for the present work:

- How the eruptive nature of liquid water transport modifies the PN saturation?
- Is the eruptive phenomenon significant enough to be taken into account in porenetwork simulations?

First Part: embedded GDL experiments

• Motivation: Evidence of change in preferential breakthrough points

Experimental set-up: molded PDMS with embedded GDL (SGL 35 BC)

Pictures of the 3 parts of the set-up

Inlet liquid water flow controlled by a syringe pump

First Part: embedded GDL experiments

• Experimental conditions: SGL 35 BC (with MPL); water flow: 10.5 μl/min; air flow:43 cm³/min

• Evidence of changes in the preferential paths

Another possible explanation: may the eruptivity affect the liquid distribution in PN?

Motivation: clarify the interaction between two neighbooring pores

Two connected cylindrical pores

Once written with *h* (meniscus height) and non-dimensionalized, it becomes:

Poiseuille flow Laplace-Young law

$$\begin{cases}
p_i = \frac{8\mu L}{\pi R_i^2} \cdot \dot{V}_i + \frac{4\gamma \cos \theta}{R_i} + p_0 \\
p_1 = p_2 \\
Q = \dot{V}_1 + \dot{V}_2
\end{cases}$$

Hyp: constant water flow, spherical meniscus/drop

$$\begin{cases} f \left[\dot{h}_1(h_1^2 + 1) - R\dot{h}_2(h_2^2 + 1) \right] = Ca \left[R \frac{h_2}{h_2^2 + 1} - \frac{h_1}{h_1^2 + 1} \right] \\ \dot{h}_1(h_1^2 + 1) + \frac{1}{R^3} \dot{h}_2(h_2^2 + 1) = 1 \end{cases}$$

Problem driven by 3 parameters:

$$f=L/R_1$$
, pore aspect ratio $R=R_1/R_2$, pore radii ratio $C_a=\frac{U_0.\mu}{\gamma}$, capillary number

• First result of the model: capillary regime

i.e. low value of the product (Ca.f)

- Periodic emission of water drops from the larger tube
- inflation/deflation of the meniscus in the smaller tube.

The meniscus/drop growth in the bigger pore does act upon the meniscus in the neighbooring pore

• Second result of the model: mixed viscous/capillary regime

i.e. intermediate value of the product (Ca.f)

- Periodic emission of water drops in both tubes
- It has been called «capillary oscillator» characterized by a **duty cycle**, λ , being the ratio

$$\lambda = \frac{\text{drop numbers emitted from the smaller tube}}{\text{drop numbers emitted from the larger tube}}$$

As the viscous effects get more important, a change of « preferential path » appears

• Third result of the model: transition from the capillary to the mixed regime

- Higher the pore radius ratio, lower the duty cycle i.e. less drops are emitted from the smaller pore,
- Higher the viscous effects, higher the duty cycle.

Without inertial effects, the « two drops » model predicts that the location of the breakthrough pores change as the viscous effects get more important.

Third Part: the "inverted Y" network

• Motivation: highlighting the change in preferential paths in a simple capillary network

Conclusions & Prospects

Conclusion:

- Dynamic breakthrough is evidenced using relatively « simple » models and experiments
- The dynamic nature of the pore to pore transport may alter the invaded pattern

Open questions:

• Specify the limits of validity of the Invasion Percolation model for the liquid water transport in porous media

Contact information

Stéphane Chevalier

Laboratoire de Thermocinétique de Nantes (CNRS UMR 6607), Polytech Nantes, University of Nantes, rue Christian Pauc, 44306 Nantes, France

stephane.chevalier@univ-nantes.fr

Webpage: www.chevalierstephane.fr

Droplet condition detachment

