

Laboratoire des
Composites
ThermoStructuraux

Evaluation de la

diffusivité thermique à T > 1000°C de

composites SiC_f/SiC

à partir de microtomographies X:

Une méthode de marches aléatoires

Gérard L. Vignoles
Jean-François Bonnenfant
Ivan Szelengowicz

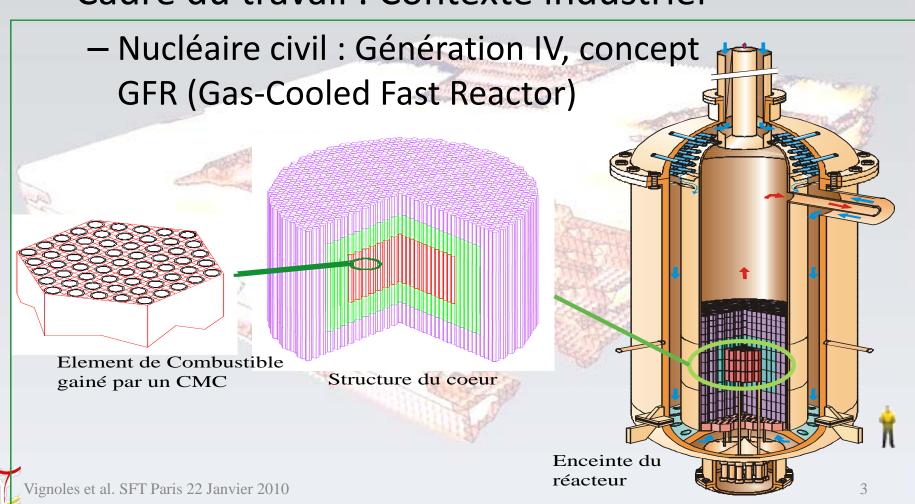
Lionel Gélébart, CEA/Saclay

Plan de la présentation

- Introduction (contexte industriel)
- Objectifs de l'étude
- Moyens mis en œuvre
- Principaux résultats
- Conclusion et perspectives

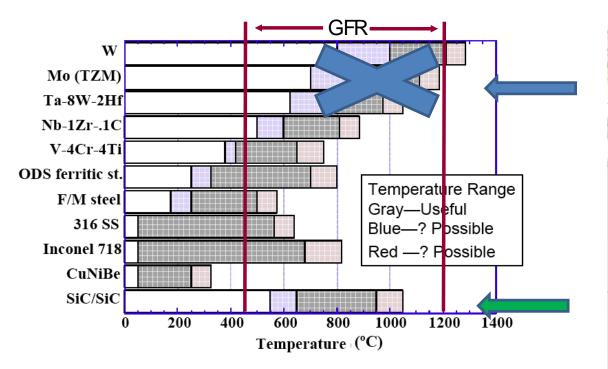
Introduction

Cadre du travail : Contexte industriel



Introduction

Cadre du travail - Contexte industriel



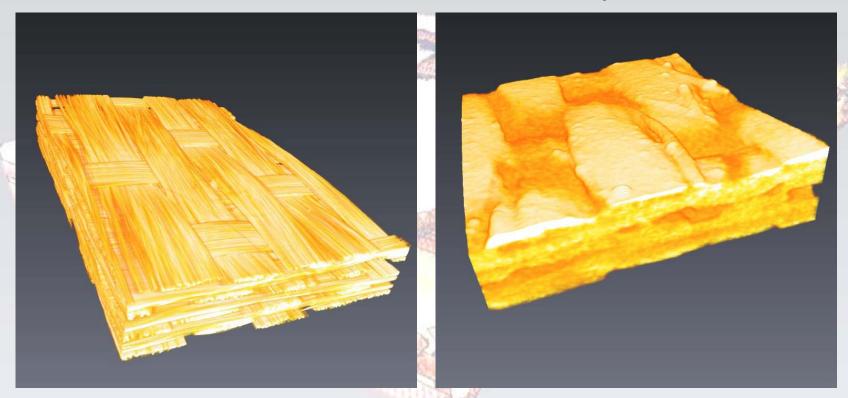
Absorption de neutrons trop élevée

SiC_f/SiC: très bon candidat, mais....

Il faut garantir une conductivité thermique suffisante

SiC_f/SiC

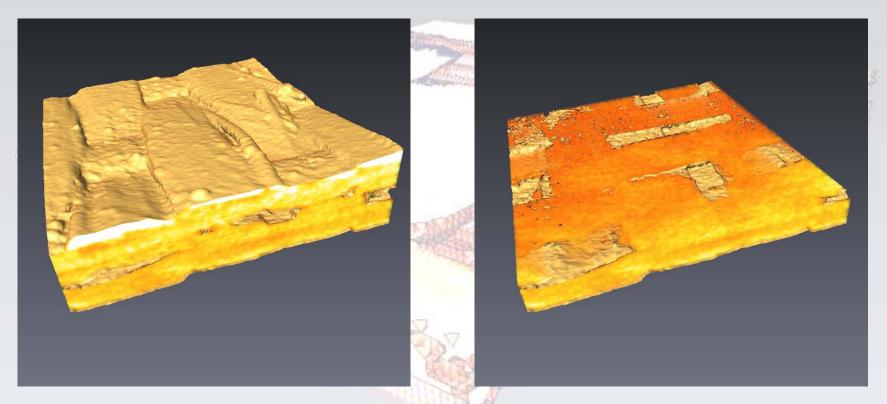
• Fibres tissées ; matrice obtenue par infiltration



Matériau hétérogène et anisotrope

SiC_f/SiC

Porosité résiduelle => cavités radiatives



Rôle du rayonnement à quantifier au-delà de ~1000°C

Objectifs

- A partir de tomographies de matériaux SiC_f/SiC, évaluer la conductivité thermique effective, en prenant en compte l'hétérogénéité, l'anisotropie et le rayonnement
- Développement d'une méthode numérique spécifique :
 - Code de marches aléatoires inspiré des codes développés par les hydrogéologues
 - Marche aléatoire hybride solide (hétérogène anisotrope)/cavité
 - Discrétisation/facettisation de l'image, détection des cavités rayonnantes

Méthode de marches aléatoires

- Mouvement brownien (hétérogène/anisotrope)
 - Représentation des phénomènes de diffusion
 - Equation de diffusion (2ème loi de Fick) : $\frac{\partial C}{\partial t} = div.(\underline{\underline{D}}\nabla C)$ $\rho Cp \frac{\partial T}{\partial t} + div(-\underline{\underline{k}} \cdot \underline{\nabla T}) = 0$

$$\rho Cp \frac{\partial T}{\partial t} + div(-\underline{\underline{k}} \cdot \underline{\nabla T}) = 0$$

$$-\underline{divk} \cdot \underline{\nabla T}$$

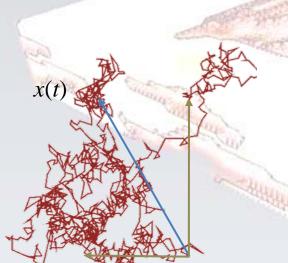
hétérogène

Advection

$$-\underline{k}\nabla^2 T$$

Diffusion par k

- Mouvement brownien (hétérogène/anisotrope)
 - Lien avec les marches aléatoires (Einstein)
 - Détermination de la diffusivité effective :



Probabilité de présence p en x à t ______ 2e Loi de Fick:

$$\frac{\partial p}{\partial t} = D_{loc} \frac{\partial^2 p}{\partial x^2} \quad \text{avec} \quad D_{loca} = \frac{\delta x^2}{2\delta t}$$

Intégration sur un grand nombre de marcheurs

$$\lim_{\substack{t \to \infty \\ N \to \infty}} \underline{\underline{cov}} (\underline{x(t)} - \underline{x}_0) = 2\underline{\underline{D}}^{eff} t \qquad \text{(en 3D)}$$
Relation d'Einstein

$$\underline{\underline{k}}^{eff} = (\rho C p)^{eff} \underline{\underline{D}}^{eff}$$

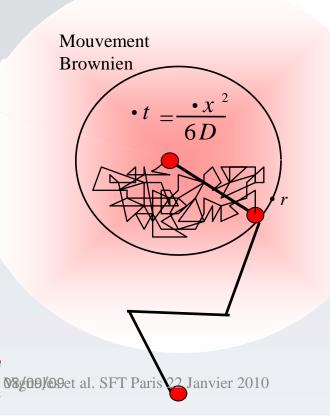
Schéma de Itō-Taylor:

(avec processus de Wiener = tirage aléatoire du pas diffusif)

$$\underline{\delta r} = -\underline{divk}.\delta t + \underline{P}. \underbrace{\sqrt{2D_{xx}\delta t}.\Omega_{x}}_{\text{pas convectif}} + \underline{P}. \underbrace{\sqrt{2D_{yy}\delta t}.\Omega_{y}}_{\text{pas diffusif}}$$

Où les Ω sont des tirages aléatoires normaux unitaires et centrés

- Méthode des marcheurs aléatoires :
- Régime Continu : méthode « Mouvement Brownien »



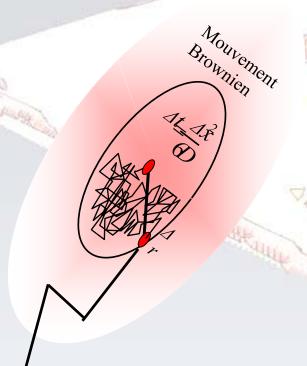
$$\bullet r = \Omega \delta x$$

•
$$t = \delta x^2 / 6D$$

- r : vecteur de direction de propagation
- $\bullet \delta x$: taille choisie d'un voisinage sphérique
- Ω : orientation aléatoire à densité isotrope

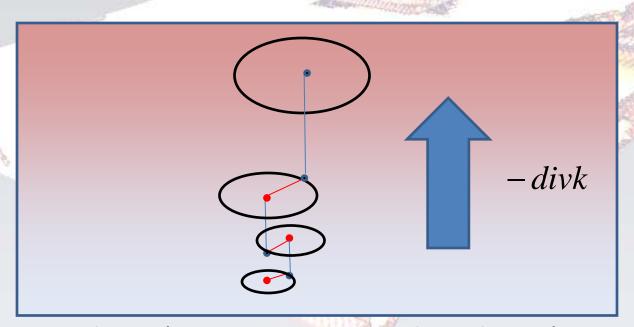
(angle solide)

- Méthode des marcheurs aléatoires :
- Prise en compte de l'anisotropie locale

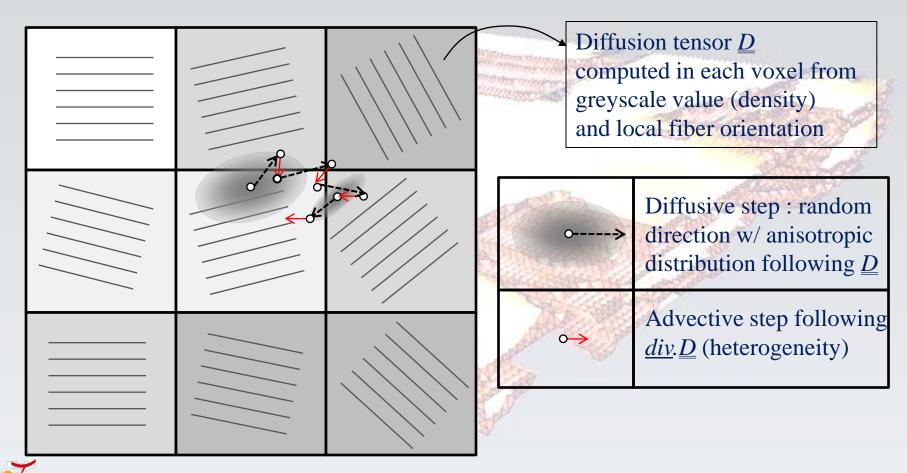


Idem précédemment, mais avec changement de base (rotation + mise à l'échelle différentiée)

- Méthode des marcheurs aléatoires
 - Représentation des pas advectifs et diffusifs :

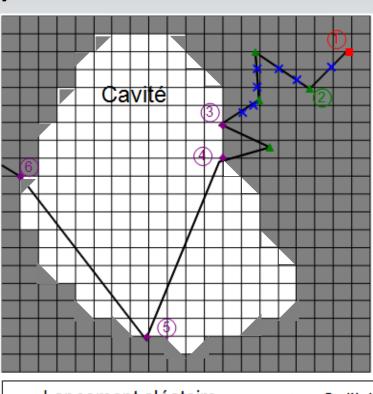


Conductivité anisotrope ET Gradient de conductivité



Code avec rayonnement

- Adaptation
 Marche dans les cavités
- Loi cosinus de Lambert aux interfaces



- 1 Lancement d'un marcheur
- 2 Pas diffusif ou advectif
- 3 Collision paroi
- (4) Passage dans la cavité
- 6 Réflexion paroi
- 6 Retour dans le solide

Lancement aléatoire

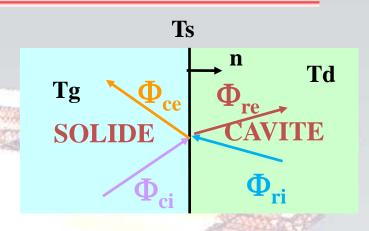
Collision binaire

Avancement jusqu'à la frontière du voxel

Collision paroi

- Code avec rayonnement
 - Echange entre milieux

P: probabilité de passage d'un marcheur dans la cavité



- Φ_r : densité de flux radiatif émis (W.m⁻²)
- Φ_c: densité de flux conductif (W.m⁻²)
- h : coefficient de transfert (W.m⁻²·K⁻¹)

$$P = \Phi_{re}/(\Phi_{ci} + \Phi_{ri})$$

$$1 - P = \Phi_{ce}/(\Phi_{ci} + \Phi_{ri})$$

$$\Phi_{ce} \cdot k.Ts/ \cdot r$$

$$\Phi_{ci} \cdot k.Tg/ \cdot r$$

$$\Phi_{re} \cdot h.Ts$$

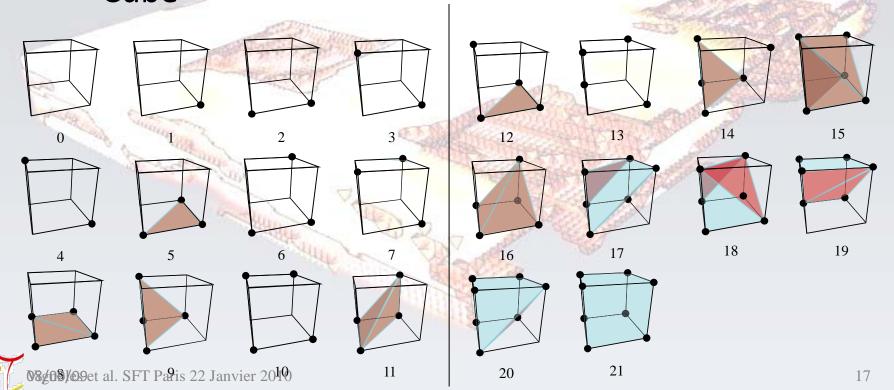
$$\Phi_{ri} \cdot hTd$$

$$P = \frac{Nu_p}{1 + Nu_p}$$

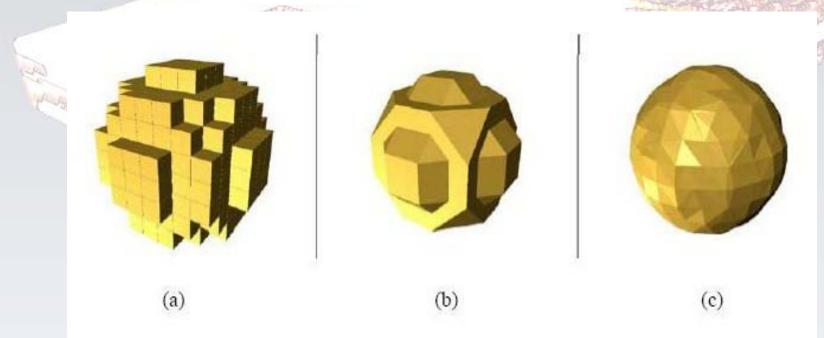
$$P = \frac{Nu_p}{1 + Nu_p}$$

$$P = \frac{Nu_p}{1 + Nu_p}$$

- Prétraitement de l'image
 - Discrétisation de l'image : Simplified Marching
 Cube



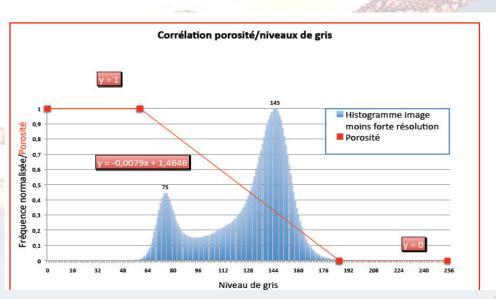
- Prétraitement de l'image
 - Discrétisation de l'image : Simplified Marching
 Cube



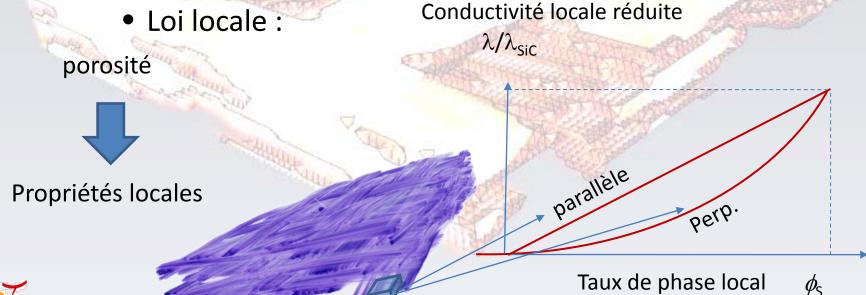
- Prétraitement de l'image
 - Acquisition d'une image : microtomographie X, ou génération « artificielle »
 - Paramétrage de l'image :
 - Calibration :

Niveau de gris

porosité

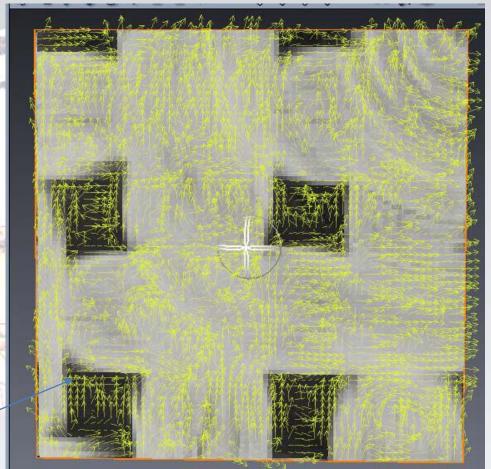


- Prétraitement de l'image
 - Acquisition d'une image : microtomographie X, ou génération « artificielle »
 - Paramétrage de l'image :

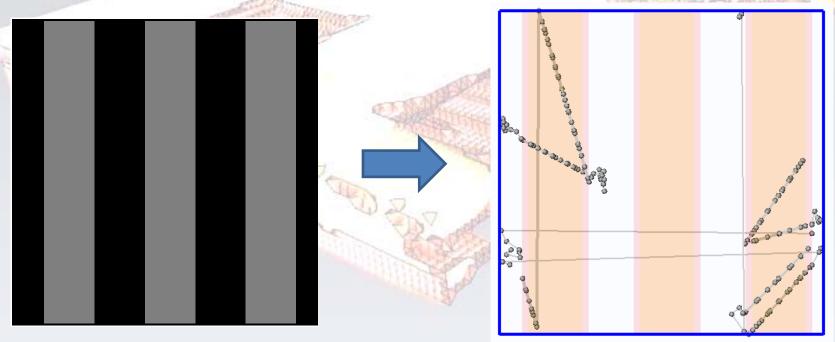


- Prétraitement de l'image
- Détection
 de l'anisotropie
 du matériau :
 calcul des
 orientations

calcul des valeurs propres du tenseur de structure $\nabla^2 I$



- Code avec rayonnement
 - Passage des « benchs »
 - Image « feuilletée » avec solution analytique :



- Code avec rayonnement
 - Passage des « benchs »
 - Image « feuilletée » avec solution analytique :

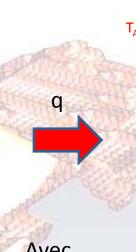
Dans le solide :

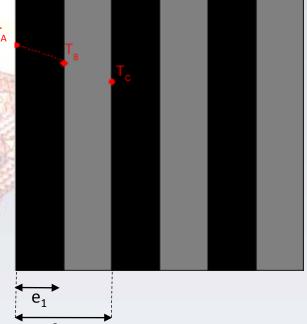
$$q = \frac{-k_{_{SiC}}.(T_B - T_A)}{e_1}$$

Dans le fluide :

$$q = \varepsilon \sigma (T_B^4 - T_C^4) = \varepsilon \sigma \widetilde{T}_B^3 (T_B - T_C)$$

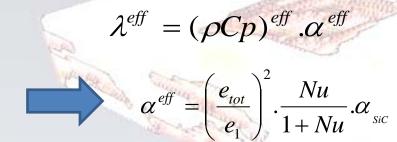
$$k^{eff} = \frac{e_{tot}}{e_1} \cdot \frac{Nu}{1 + Nu} \cdot k_{sic} \quad Nu = Nu_p \frac{e_1}{\delta r}$$





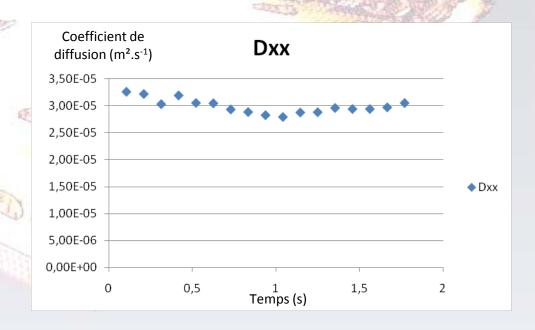
- Code avec rayonnement
 - Passage des « benchs »
 - Image « feuilletée » avec solution analytique :

$$\lambda^{eff} = (\rho Cp)^{eff} . \alpha^{eff}$$

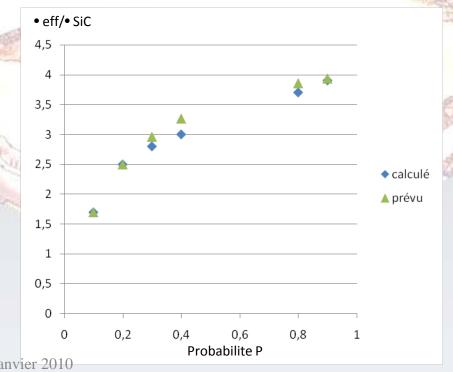


Avec
$$P = 0.4$$

 α^{eff} = 3,26. 10^{-5} m².s⁻¹



- Code avec rayonnement
 - Passage des « benchs »
 - Image « feuilletée » avec solution analytique :



- Code avec rayonnement
 - Passage des « benchs »
 - Sphère 3D:

Arrangement cubique centré → Solution analytique :

$$\frac{\lambda^{eff}}{\lambda_{SiC}} = 1 + \frac{3\beta\varepsilon}{1 - \beta\varepsilon - a_1 \frac{\beta^2}{1 + 2\beta/7} \varepsilon^{10/3}}$$
 Formule de Rayleigh

$$\epsilon = 0.27$$

$$a_1 = 0.073886$$

$$\lambda_{\text{SiC}} = 20 \text{ W/m/K}$$

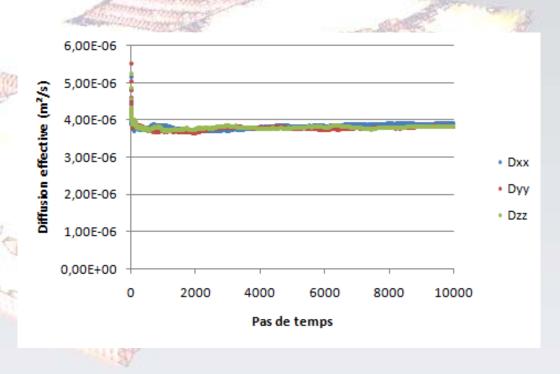
$$\lambda^{eff} = 12,86W/m/K$$

$$\beta = \frac{\lambda_{cavit\acute{e}} - \lambda_{SiC}}{\lambda_{cavit\acute{e}} + 2\lambda_{cav}} = -1/2$$

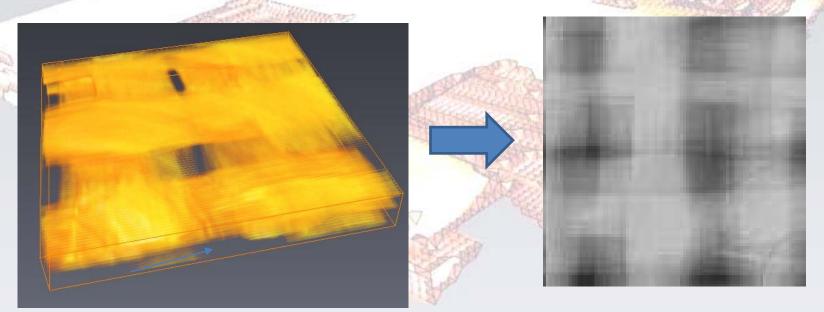
- Code avec rayonnement
 - Passage des « benchs »
 - Sphère 3D:

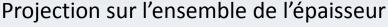
$$\lambda^{eff} = (\rho Cp)^{eff} \alpha^{eff}$$

$$\lambda^{eff} = 12,72W / m / K$$

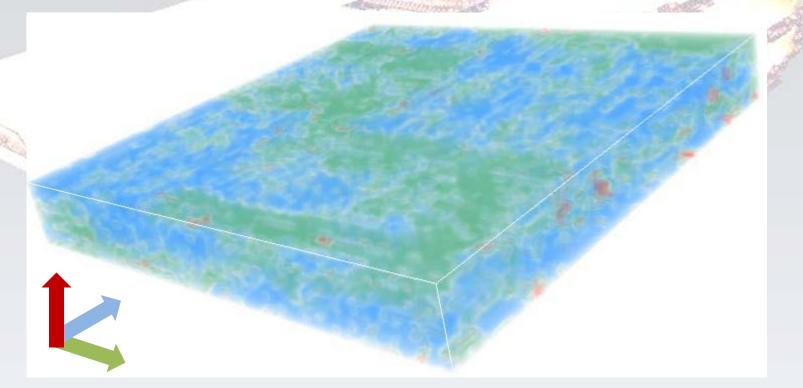


- Code sans rayonnement
 - Validation progressive du code
 - Application à l'image réelle

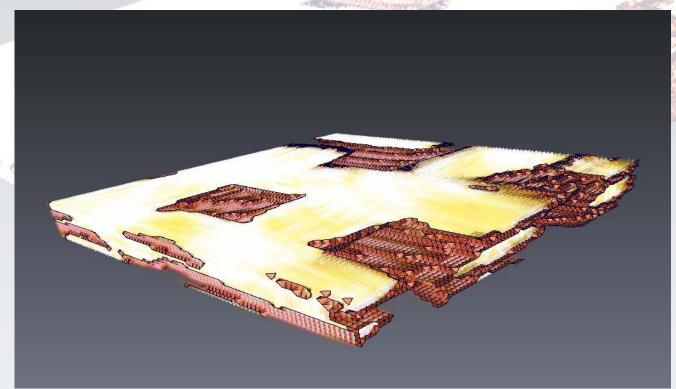




- Code sans rayonnement
 - Calcul des orientations

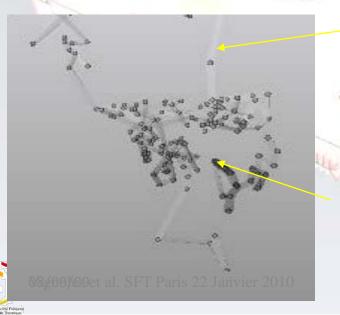


- Code sans rayonnement
 - Discrétisation fluide/solide (SMC)



- Code sans rayonnement
 - Résultats obtenus :

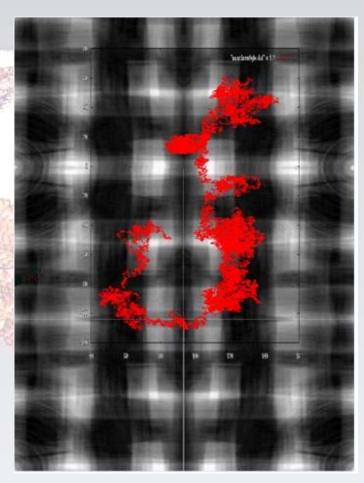
-Prise en compte de l'anisotropie et de l'hétérogénéité du matériau



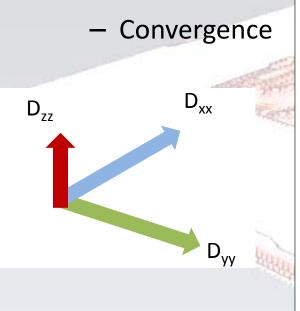
Points clairs =
Matériau bon
conducteur
= pas de marche longs

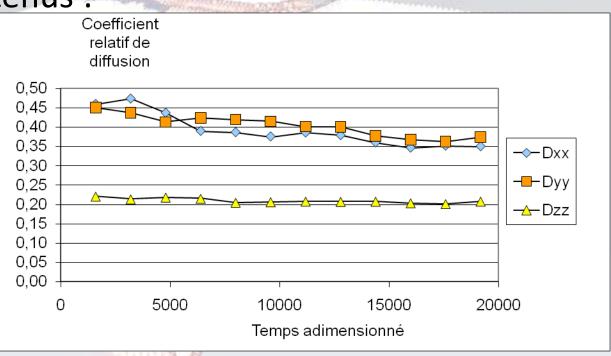
Points sombres =

Matériau peu
conducteur
= pas de marche courts



- Code sans rayonnement
 - Résultats obtenus :



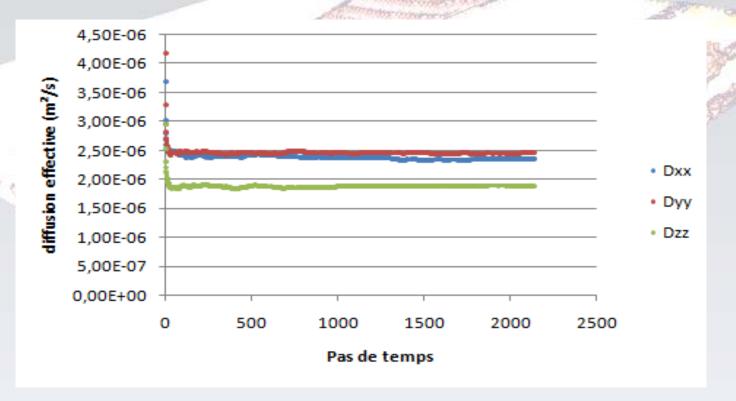


Valeurs du tenseur effectif : 37% en x et y , 20% en z !

=> la texturation macro pilote l'anisotropie globale effective

32

Code avec rayonnement : 10% de réduction d'anisotropie

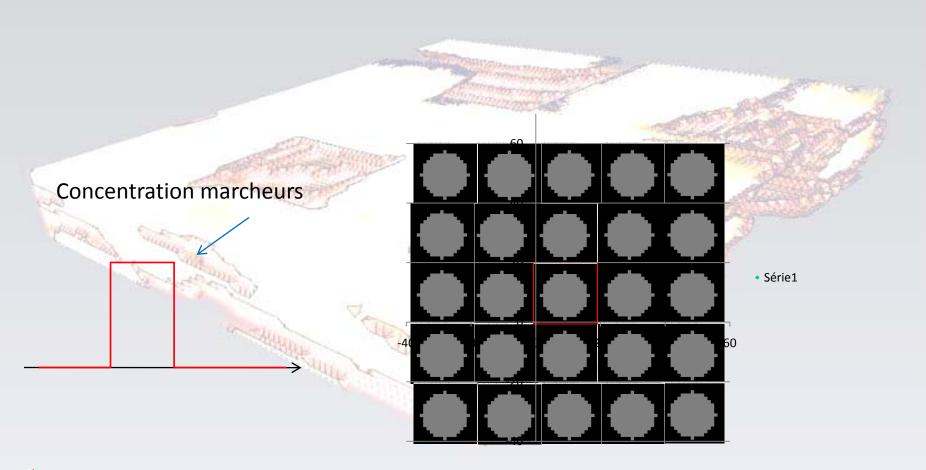


- Réponse au besoin
 - Analyse dimensionnelle du problème posé
 - Taille de cavités rayonnantes ~ 100 μm
 - Conductivité du SiC ~20 W/m/K
 - Emissivité ~ 0.7
 - => Nusselt « de cavité » ~ 3. 10⁻³

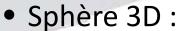
Calcul avec radiation seulement nécessaire pour l'anisotropie

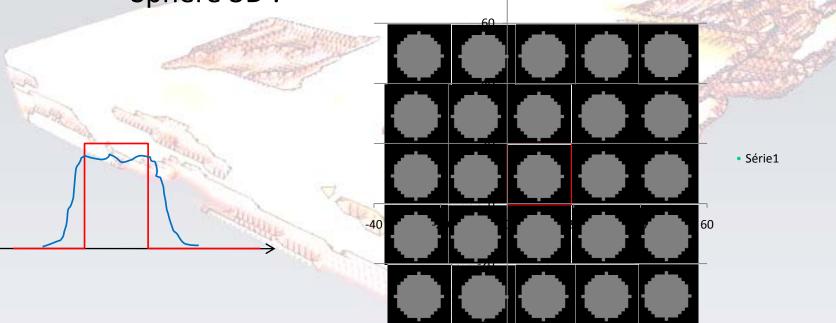
Conclusion et perspectives

- Validation progressive du code avec rayonnement sur des images simplifiées
- Validation du code sans rayonnement sur image réelle : convergence rapide, détection de l'anisotropie
- Application à l'image réelle Calcul de la conductivité effective du matériau.
- Comparaison avec les résultats précédemment obtenus sans rayonnement, afin d'observer son influence.
- Comparaison avec d'autres méthodes (Eléments finis)

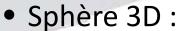


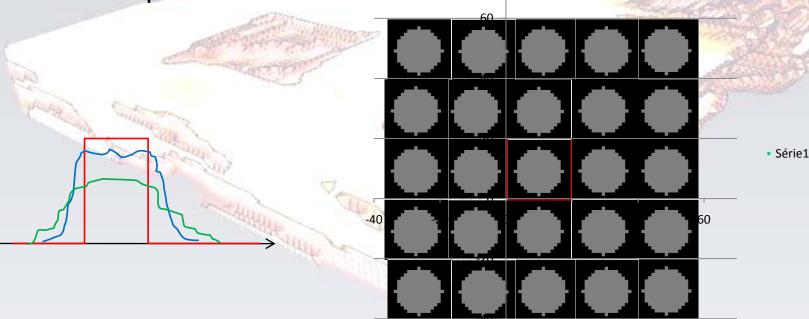
- Code avec rayonnement
 - Passage des « benchs »



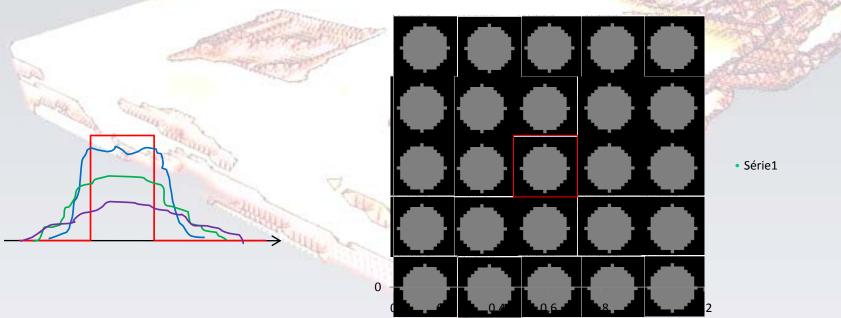


- Code avec rayonnement
 - Passage des « benchs »

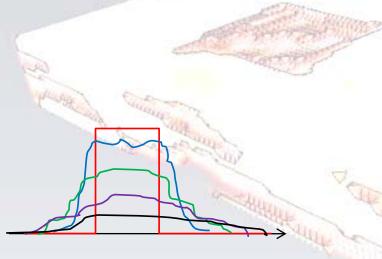




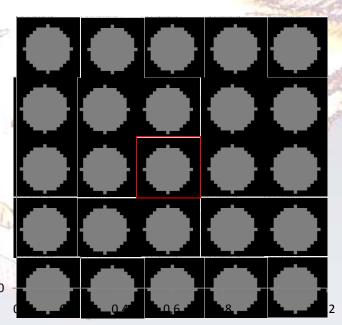
- Code avec rayonnement
 - Passage des « benchs »
 - Sphère 3D:



- Code avec rayonnement
 - Passage des « benchs »
 - Sphère 3D:



Gaussiennes, solutions de l'équation de diffusion



• Série1

- Code avec rayonnement
 - Passage des « benchs »
 - Cylindre 2D:

Parcours d'un marcheur sur un intervalle de temps

