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Abstract. The objective of this lecture is to present the main features of spectral and multispectral 
radiometry when applied for the purpose of temperature measurement, in particular pyrometry. The 
amount of thermal radiation emitted by a surface is only a fraction of the radiation emitted by a 
blackbody at the same temperature. The corresponding ratio is called emissivity. It is an additional 
unknown parameter which depends on material, wavelength, direction, and surface state. In passive 
radiation thermometry, whatever the number of considered wavelengths, we face an underdetermined 
problem, notwithstanding the fact that the atmosphere between the sensed surface and the sensor 
introduces itself additional unknown parameters. A series of solutions have been presented to solve 
the problem of emissivity and temperature separation in the field of multiwavelength pyrometry. Their 
performance and inherent difficulties will be discussed. 

List of acronyms: 

• LSMWP Least-Squares Multi-Wavelength Pyrometry 

• MCMC Markov Chain Monte Carlo 

• MLE Maximum Likelihood Estimation 

• MWP Multi-Wavelength Pyrometry 

• OLS  Ordinary Least Squares 

• RMS Root Mean Squares 

• TES Temperature Emissivity Separation 
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1. Introduction 
 
Matter spontaneously emits electromagnetic radiation in a broad spectrum encompassing 
UV, visible light, infrared (IR) and microwaves. The radiance emitted by a surface depends 
on wavelength, temperature, direction and on the considered matter. For a solid material it 
also depends on the surface state, e.g. roughness and possibly the presence of corrosion.  
Obviously, because the emitted radiance is quite sensitive to temperature, the measurement 
of the emitted power at a given wavelength could be used to infer the temperature. This idea 
is at the origin of pyrometry, thermography, and microwave radiometry. 
However, the spectral radiance emitted by a material not only depends on the temperature 
but also on its spectral emissivity, which has thus to be known or evaluated in the same time 
as the temperature. On the other hand, before reaching a remote optical sensor, the emitted 
radiation has been attenuated by the atmosphere. In addition it has been combined with the 
radiation emitted by the atmosphere itself and the environmental radiation reflected by the 
aimed surface. 
Evaluating the temperature from the at-sensor radiance is thus not an easy task. In this 
paper we will present some methods that enable estimating the surface temperature. A 
particular emphasis will be given to the temperature-emissivity separation problem. 
 

2. Basic relations for the measured thermal radiance 

2.1. Blackbody radiance 
 
The maximum radiance emitted at given wavelength and temperature is described by the 
Planck’s law (blackbody radiance) [1]: 
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The blackbody radiance ( )TB ,λ  is expressed in W/m3/sr, wavelength λ  is in m, temperature 

T  in K, with the constants 1C  = 1.191·10-16 W·m2 and 2C  = 1.439·10-2 m·K (notice that the 

blackbody radiance does not depend on direction). The blackbody radiance as expressed by 
the Planck’s law, is described versus wavelength in figure 1 for different temperature values 
(curves with a continuous line). The maximum emission is observed at a particular 

wavelength maxλ  such that ( )( ) 55exp maxmax =− xx  where TCx max2max λ≡ . The solution is 

965.4max ≈x  which corresponds to µmKT 2898max ≈λ  (Wien’s displacement law). Hence, the 

peak emissive intensity shifts to shorter wavelengths as temperature rises, in inverse 
proportion to T . 
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Figure 1.  Blackbody radiance vs. wavelength for T=300K, 500K, 700K, 900K and 1100K 
(from bottom to top). Planck’s law : continuous lines, Wien’s law : dashed lines. 

 
 
A common approximation to the Plank’s law is the Wien’s law which has been plotted in 
figure 1 as well (in dashed lines): 
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When using the Wien’s law, the approximation error increases with wavelength, yet, the 
Wien’s law can be consider quite accurate in the rising part of the radiance curve. As a 
matter of fact, at the apex of the curve, the error has reaches 0.7% only. Also, it is less than 
1% as long as the product Tλ is lower than µmK3124 .  

 
The sensitivity of the blackbody radiance to the temperature, when considering the Planck’s 
law, is plotted in figure 2. Figure 2-left refers to the absolute sensitivity TBS ∂∂=  whereas 

figure 2-right refers to the relative sensitivity TBB ∂∂−1 . The maximum of the absolute 

sensitivity is observed at a wavelength maxSλ  such that ( )( ) maxmaxmax 66exp SSS xxx +=−  where 

TCx SS max2max λ≡ . The solution is 969.5max ≈Sx  which corresponds to µmKTS 2410max =λ . 

Notice that for a blackbody at 300K, the maximum of radiance is observed at the wavelength 
µm65.9max =λ (see figure 1); however the maximum sensitivity to temperature variations is 

observed at a shorter wavelength, namely at µmS 03.8max =λ  (see figure 2-left). On the other 

hand, the relative sensitivity is continuously decreasing (see figure 2-right). The asymptotic 
evolution is actually like λ1  at short wavelengths. The decreasing nature of the relative 

sensitivity would thus favour short wavelengths for temperature measurement. However, in 
the meantime, the radiance progressively decreases at short wavelengths (see figure 1). 
Actually, several parameters should be considered when selecting a radiative sensor 
together with a spectral range for temperature measurement. One should evaluate the 
expected radiance in the temperature range of interest, its absolute and/or relative sensitivity, 
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together with the spectral detectivity of the candidate sensors or the corresponding noise 
(see e.g. [2]). 
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Figure 2.  Absolute (left) and relative (right) sensitivity of the blackbody radiance to 
temperature for T=300K, 500K, 700K, 900K and 1100K (resp. from bottom to top and top to 
bottom). 
 

2.2. Emissivity and related radiative parameters 
 
Consider a surface at temperature T  and a direction defined by the zenith and azimuthal 
angles ( )ϕθ , . The ratio between the radiance effectively emitted by the surface in this 

direction at wavelength λ , namely ( )ϕθλ ,,,TL , and the blackbody radiance ( )TBP ,λ  at same 

wavelength and same temperature, is called emissivity: 
 

( ) ( ) 1;,,,, ≤= ελϕθλε TBTL  
(3) 

 
Since the emissivity generally depends on wavelength and direction and since it may also 

depend on the surface temperature, we will write it as ( )ϕθλεε ,,,T= . However, if the 

temperature of interest is quite narrow, we may drop the T  dependency for convenience and 

consider only ( )ϕθλεε ,,= . 

 
From the analysis of the radiation in an enclosure we can state the following relation between 
the emissivity and the hemispherical directional reflectance (assuming isotropic incoming 
radiance) [1]: 

( ) ( ) 1,,,, ' =+ ∩ ϕθλρϕθλε  (4) 

Also, the energy conservation law for an opaque material tells that the energy that is not 
absorbed by the surface is reflected in all directions. It leads to the following relation between 
the absorptivity and the directional hemispherical reflectance: 

( ) ( ) 1,,,, ' =+ ∩ ϕθλρϕθλα  (5) 
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On the other side the Helmholtz reciprocity principle leads to (for isotropic incoming 
radiance): 

( ) ( )ϕθλρϕθλρ ,,,, '' ∩∩ =  (6) 

which, from eq. (4) and (5), leads itself to the second Kirchhoff’s law which states that the 
spectral emissivity in a given direction ( )ϕθ ,  is equal to the spectral absorptivity in the same 

direction:  
 

( ) ( )ϕθλαϕθλε ,,,, =  
(7) 

 

2.3. Expression of the measured radiance 
 
Assume now that an optical sensor is in the direction ( )ϕθ ,  to perform a measurement of the 

surface temperature. The radiance of the radiation leaving the surface in this direction, 
namely ( )ϕθλ ,,,TL , is the sum of the radiance emitted by the surface and the contribution of 

the radiation of radiance ( )iiL ϕθλ ,,↓
 coming from the environment in all incident directions 

( )
ii

ϕθ ,  of the upper hemisphere and then reflected by the surface (in this course, without 

loss of generality, we will generally consider that the surface is facing up): 
 

( ) ( ) ( ) ( ) ( ) iiiiii dLTBTL Ω+= ↓
 θϕθλϕθϕθλρλϕθλεϕθλ
π

cos,,,,,,,,,,,,

2

''  
(8) 

 

where ( )ii ϕθϕθλρ ,,,,''
 is the bidirectional reflectance. 

The radiance received by the optical detector, which will be called ( )ϕθλ ,,,TLs , 

encompasses both the radiance leaving the aimed surface and attenuated along the optical 

path, namely ( ) ( )ϕθλϕθλτ ,,,,, TL , where ( )ϕθλτ ,,  is the transmission coefficient through the 

air, and the radiance ( )ϕθλ ,,
↑

L  which is self-emitted by the atmosphere along this path: 

( ) ( ) ( ) ( )ϕθλϕθλϕθλτϕθλ ,,,,,,,,,, ↑+= LTLTLs  (9) 

 
The general radiation thermometry equation is finally: 
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The optical sensor integrates the radiance over a narrow spectral band of width λ∆  centred 

at the wavelength λ . It delivers an electrical signal and, thanks to a calibration performed 

with a blackbody brought close to the sensor, a relationship can be established between this 

signal and the radiance ( )ϕθλ ,,,TLs  integrated over the spectral band of width λ∆ . Since the 
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bandwidth λ∆  is small, the relationship is directly with the radiance at the wavelength λ , 

namely ( )ϕθλ ,,,TLs . After proper scaling of the signal λS  we can consider that it is a clear 

representation of the incoming radiance ( )ϕθλ ,,,TLs , except it is affected by an experimental 

noise λe  that for now we will consider simply to be additive: 

 

( ) λλ ϕθλ eTLS s += ,,,  
(11) 

 
Notice that the calibration and the scaling should incorporate the contributions of the sensor 
optics (transmission and self-emission). Care should thus be taken that these contributions 
don’t change between the time interval separating the calibration process and the 
temperature measurements themselves. 
 

2.4. Simplification of the radiative equation 
 
The objective is to evaluate the surface temperature from the measurement of the radiance 

( )ϕθλ ,,,TLs  through the recording of the signal λS  (see eq. (11)). At this point we have to 

deal with several unknowns: the transmission coefficient ( )ϕθλτ ,,  and the self-emission of 

the atmosphere ( )ϕθλ ,,↑
L  along the line of sight, the hemispherical environmental radiance 

( )iiL ϕθλ ,,↓ , the bidirectional reflectance ( )ii ϕθϕθλρ ,,,,''
 for all incident directions ( )ii ϕθ ,  

and the directional emissivity ( )ϕθλε ,, . Only when all these parameters are determined can 

we expect evaluating the blackbody radiance ( )TB ,λ  and then inferring the temperature. 

A common approximation is to consider that the surface is Lambertian, i.e. its optical 
properties are direction-independent. Equation (10) is then simplified as follows: 
 

( ) ( ) ( ) ( )( ) ( )λλελλελ ↓−+= LTBTL 1,,  (12) 

 

where ( )TL ,λ↓  is the mean environmental radiance (i.e. equivalent isotropic radiance) 

defined according to: 

( ) ( ) Ω= ↓↓

π

θϕθλ
π

λ
2

cos,,
1

, iiii dLTL  
(13) 

 
We then have access to the at-sensor spectral radiance: 
 

( ) ( ) ( ) ( ) ( )( ) ( )[ ] ( )ϕθλλλελλεϕθλτϕθλ ,,1,,,,,, ↑↓ +−+= LLTBTLs  (14) 
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Generally speaking, when dealing with temperature measurement based on thermal 
radiation, we face two problems: 

- first we have to correct the influence of the environment (reflections from nearby 
surfaces and from the atmosphere, along-the-path self-emission of the atmosphere 
and along-the-path attenuation); 

- then we have to separate emissivity and temperature. 
 
The atmosphere contribution through attenuation and self-emission is particularly relevant 
when the measurement is performed from large distances, as for example in airborne and 
satellite remote sensing. Specific methods for atmosphere correction have been developed 
for these applications. Emissivity and temperature separation methods that take advantage 
of the presence of the atmosphere where devised and we refer the reader to [3] for a review. 
For the remaining of this presentation we will assume that an atmosphere correction has 
already been applied. This means, in the case of remote sensing applications, that the 

upwelling radiance ( )ϕθλ ,,↑
L , the transmission coefficient ( )ϕθλτ ,,  and the downwelling 

mean radiance ( )λ↓
L  have been evaluated through simulations with a computer program 

designed to model atmospheric propagation of electromagnetic radiation like MODTRAN [4] 
or MATISSE [5]. 
 

Upon subtracting ( )ϕθλ ,,↑
L  from the signal and then dividing by ( )ϕθλτ ,,  we obtain a 

transformed signal that is a representation of the surface-leaving radiance ( )ϕθλ ,,,TL  as 

expressed in eq. (8): 
 

( )
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π

λλ
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edLTB
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iiiiii +Ω+=
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↓

2

'' cos,,,,,,,,,

,,,

 
(15) 

where, although having been transformed, the same notations have been kept for the new 
signal λS  and the corresponding noise λe . 

In the case of Lambertian surfaces the new signal access to the surface-leaving radiance 

( )TL ,λ  as expressed in eq. (12): 

 
( )
( ) ( ) ( )( ) ( ) λ

λλ

λλελλε

λ
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eTLS

+−+=

+=
↓

1,

,
 

(16) 

Notice that eq. (16) can be modified into: 
 

( )
( ) ( ) ( )( ) ( ) λ
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λλλλε

λ
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(17) 
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2.5. Reflection component 
 
There are different approaches for dealing with the reflection contribution, namely 

( ) ( ) iiiiii dL Ω↓
 θϕθλϕθϕθλρ
π

cos,,,,,,

2

''  in the general case or ( )( ) ( )λλε ↓− L1  for lambertian 

surfaces.  
In the case of small-scale laboratory experiments, active pyrometry with an additional heat 
source provides an efficient means for getting rid of the reflection term. Photothermal 
pyrometry is an example where an additional radiative heat source is provided for the 
purpose of slightly heating the test material dynamically [4]-[9]. The source is either pulsed or 
modulated. Usually, the heat source is a laser beam aimed at the region of interest. A 
pyrometer is then used to measure the slight variations of the radiance (in a spectral band 
not including the wavelength of the radiative heat source). By considering only the variations 
of radiance, not the initial or DC level (as easily obtained in the modulated regime by 
applying lock-in detection), the contribution of the spurious reflections is eliminated since 

those are constant in time. Only remains a signal proportional to ( ) ( )TTB ,λλε ∂∂ . 

Furthermore, by implementing two-color pyrometry at two wavelengths 1λ  and 2λ , we can 

get rid of the emissivity influence (in the same way as in the static regime, as described later 

in § 4), and obtain a signal that depends on both ( )TTB ,1λ∂∂  and ( )TTB ,2λ∂∂  from which 

temperature is then easily inferred. 
 

In remote sensing, since the downwelling mean radiance ( )λ↓
L  have already been computed 

with an atmospheric propagation model (in the same time as the upwelling radiance 

( )ϕθλ ,,↑
L  and the transmission coefficient ( )ϕθλτ ,, ), the obtained value will be substituted in 

eq. (17). The remaining unknown parameters are then the emissivity ( )λε  and the 

temperature T  appearing in the blackbody radiance ( )TB ,λ . 

 
 
 
 

2.6. Introduction to the problem of temperature-emissivity separation 
 
Whatever the configuration: active (see §2.5) or passive (see eq. (15), (16) or (17)), radiative 
thermometry faces an ambiguity problem knowing that a decrease or an increase of the 
emissivity can be fully compensated by an increase, resp. a decrease in temperature. 
Whatever the measurement wavelength, the observed signal may be explained by an infinite 
number of couples of emissivity values and temperature values. 
 
It is then clear that an evaluation of the emissivity is necessary to infer the temperature from 
the measurement of the emitted radiance. An indirect approach consists in measuring the 
directional hemispherical reflectance and using equation (4), (5) and (6) to infer the 
directional emissivity. This requires using an additional radiation source and bringing close to 
the characterized surface an integrating hemisphere to collect all the reflected radiation. This 
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approach was used to build several databases which give some hints on the emissivity range 
and spectral variations for specific materials (see for example [10], [11], [12]). 
The indirect reflectance approach will not be dealt in this presentation. We will rather review 
the approaches that consist in simultaneously evaluating the temperature and the emissivity, 
or that manage to get rid of the emissivity in the procedure of measurement of the 
temperature. 
Even though some of the methods that will be presented later can also apply to the case 

described by eq. (16) or (17) in which the downwelling radiance ( )λ↓
L  is known from 

independent measurements or from independent simulations, we will focus in the sequel on 
the cases where the most important contribution to the sensed signal is the surface self-
emitted radiation, whereas the reflection contribution can be neglected. Pyrometry of high 
temperature surfaces with (relatively) cold surrounding surfaces is a typical example. 
After a calibration of the optic instrument operating in a narrow spectral band around 

wavelength λ , we have access to the emitted radiance ( )TL ,λ  through the signal λS  (albeit 

corrupted by a random noise λe ): 

( )
( ) ( ) λ

λλ

λλε
λ

eTB

eTLS

+=
+=
,

,
 

(18) 

 
In the field of pyrometry, different methods were devised depending on the number of 
wavelengths (i.e. spectral bands) used for the measurement: monochromatic pyrometry (§ 
3), bispectral pyrometry (§ 4), and multiwavelength pyrometry (§ 5). 
 

3. Single-color or monochromatic pyrometry 
 
Let us first consider that the monochromatic measurement described in eq. (18) is errorless: 

( )
( ) ( )TB

TLS

,

,

λλε
λλ

=
=

 (19) 

 
An estimation of the surface emissivity then allows inferring the surface temperature. This 
estimation can be based on prior reflectance measurements or it can be extracted from 
databases. The question is then: what is the consequence of an emissivity error on the 
temperature evaluation? 
By differentiating eq. (20) we can evaluate the sensitivity of the temperature estimation to an 
error on the emissivity: 
 

ε
εd

dT

dB

B

T

T

dT
1−








−=  (20) 

 

The amplification factor 

1−










dT

dB

B

T
can be easily deduced from the relative sensitivity 

dT

dB

B

1
 

drawn in figure 2. 
Also, with the Wien’s approximation, equation (20) reduces to : 
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ε
ελ d

C

T

T

dT

2

−=  
(21) 

 
The amplification factor is about 0.08 for a temperature of 1100K and at 1µm. It reaches 
about 0.2 for a temperature of 300K and at 10µm. A 10% underestimation of emissivity will 
thus lead to a 0.8% overestimation of temperature in the first case (i.e. 8K) and a 2% 
overestimation in the second case (i.e. 6K). As seen in eq. (21) the error amplification is 
proportional to λ . The advantage of working at short wavelength is thus evident. For this 

reason, some authors recommended to apply pyrometry in the visible spectrum or even in 
the UV spectrum (see for example [13], [14], [15]). However, although a given relative error 
on emissivity has a lower impact on the temperature estimation when applied at short 
wavelength, it should not occult the fact that a reasonable estimation of emissivity is anyway 
needed. The retrieved temperature is unavoidably affected by this (possibly rough) 
estimation of emissivity [16]. In addition, at short wavelength, both the signal and its absolute 
sensitivity to temperature decrease. The choice of the spectral range for pyrometry is thus 
always a compromise. 
 

4. Two-Color pyrometry 
 
By performing a measurement at another wavelength, we obtain new information, but 
unfortunately, we also introduce a new unknown, namely the spectral emissivity at this 

supplementary wavelength. We thus have at hand two signal values, 1S  and 1S , but three 

unknowns: temperature T  and the two emissivity values ( )1λε  and ( )2λε . Assuming 

errorless signals, we have: 
 

( ) ( ) ( )
( ) ( ) ( )




==
==

TBTLS

TBTLS

,,

,,

2222

1111

λλελ
λλελ

 
(22) 

 
The most popular method consists in calculating the ratio of the two spectral signals (Ratio 
two-color pyrometry): 
 

( )
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(23) 

 
which gives, with the Wien’s approximation : 
 

( )
( ) ( ) ( )

( ) ( )TB
C

TCR W ,
1

exp 12

1
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2
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



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
=−








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where the equivalent wavelength 12λ  of the two-color sensor is defined by : 
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12

21
12

1

2

1

1

1

12 λλ
λλλλλλ
−

=−= −−−  
(25) 

 
Ratio two-color pyrometry thus requires knowing the emissivity ratio ( ) ( )21 λελε  in order to 

infer temperature from the radiance ratio 
12

R  according to equation (23) or according to its 

approximation, equation (24). A common assumption is that emissivity is equal at both 
wavelengths: ( ) ( )21 λελε =  (it is abusively called the greybody assumption even though only 

the two emissivity values at 1λ  and at 2λ  are required to be equal). 

Like for one-color pyrometry, it is easy to relate the temperature estimation error to the 
emissivity error made at each wavelength: 
 









−−=

2

2

1

1

2

12

ε
ε

ε
ελ dd

C

T

T

dT
 

(26) 

 
Let us consider these two examples defined by the triplets: [T =1100K, =

1
λ 1µm, 

=
2

λ 1.5µm] and [T =300K, =
1

λ 10µm, =
2

λ 12µm]. The amplification factor reaches 

respectively 0.22 and 1.2. These values are 3 and 6 times higher as compared to the 
examples related to single-color pyrometry in the previous paragraph. The sensitivity of 
temperature on an error on emissivity is thus far higher with two-color pyrometry than with 
single color pyrometry. 
The error on temperature can be lowered by reducing the equivalent wavelength 12λ , i.e. by 

increasing the difference between 
1

2

−λ  and 
1

1

−λ , as for example by increasing the higher 

wavelength 
2

λ  or decreasing the shorter one 
1

λ . In any case, the amplification factor will 

always be larger than the one obtained with single-color pyrometry performed at the shortest 
wavelength. 
A common idea is that by choosing very close wavelengths, the assumption that ( ) ( )21 λελε =  

is better justified. However, in doing so, the equivalent wavelength 12λ  increases and the 

sensitivity of the radiance ratio to temperature drops dramatically. These conflicting 
consequences can be solved in the following way. An alternative strategy is to broaden the 

spectral width, more precisely to increase the 
1

1

−λ -
1

2

−λ  difference, (i.e. to decrease 12λ ). 

Accordingly, the emissivity ratio ( ) ( )21 λελε  is then likely to be far from one. A prior 

knowledge of the ratio ( ) ( )
21

λελε  is thus required for evaluating T  from eq. (23) or eq. (24). 

If this prior estimation of the ratio ( ) ( )
21

λελε  is reliable, the overall benefit of this procedure 

is that the sensitivity of the radiance ratio to temperature will be higher than before (since the 
equivalent wavelength 12λ  will be lower). 

With single-color pyrometry performed at 1λ , the required prior knowledge is about ( )1λε . 

With (ratio) two-color pyrometry performed at 1λ  and 2λ , the required prior knowledge is 

about the ratio ( ) ( )
21

λελε . Obviously we cannot escape the introduction of some knowledge 

about emissivity. However, the advantage as compared to one-color pyrometry is that thanks 
to the signal ratioing, the method is insensitive to problems like a partial occultation of the 
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line of sight, or an optical path transmission variation (provided that this transmission 
variation is the same in both spectral bands). 
 

To evaluate the emissivity ratio ( ) ( )21 λελε  we could resort to pyroreflectometry [17]-[19]. 

Each emissivity is equal to ( ) ( ) ( )ϕθϕθλπηρϕθλρϕθλε ,,,,1,,1,, '''

ii−=−= ∩  where 

( )ϕθϕθλρ ,,,,''

ii  is the spectral bidirectional reflectance for incident direction ( )ii ϕθ ,  and 

output direction ( )ϕθ , , and η  is a diffusion factor related to both directions. The bidirectional 

reflectance ( )ϕθϕθλρ ,,,,''

ii  is measured at both wavelengths with the use of an additional 

radiation source (as for example two laser beams at wavelengths 1λ  and 2λ ). It is then 

assumed that the diffusion factor η  is wavelength independent. This remaining unknown 

parameter is finally adjusted until the color temperatures at both wavelengths (together 
eventually with the ratio temperature) are made coincident. This common temperature is the 
true one. 
 
In some circumstances, it may be possible to bring close to the object under study a highly 
reflecting surface (cold mirror). By properly choosing its shape, we obtain two benefits: first 
the spurious reflections from the environment are diminished, and then the apparent 
emissivity of the sensed surface is increased thanks to the multiple reflections of the emitted 
radiation between the surface and the mirror [19]. As a consequence, the temperature 
estimation error due to errors on emissivity now involves the ratio ( ) ( )21 λελε ⌢⌢

 where ε⌢  is the 

apparent, actually amplified, emissivity (see eq. (24)). Since the ratio ( ) ( )21 λελε ⌢⌢

 is closer to 

1 the sensitivity of the temperature evaluation to the errors in emissivity estimation is 
therefore diminished. 
Instead of evaluating the temperature from the radiance ratio in eq. (23) or eq. (24), we could 
get it from a least-squares minimization between the measured radiances on one side, 
namely 1S  at 1λ  and 2S  at 2λ  as described in eq. (18), and their theoretical counterparts on 

the other side. The cost function then expresses as: 
 

( ) ( )( ) ( ) ( )[ ] ( ) ( )[ ]2

222

2

11121 ,,,, TBSTBSTJ λλελλελελε −+−=  (27) 

 
and we are looking for the temperature and emissivity values that minimize this cost function, 
i.e.: 

( ) ( )( )
( ) ( )

( ) ( )( )21
,,

21 ,,minarg,,
21

λελελελε
λελε

TJT
T

=  
(28) 

This corresponds to the OLS (ordinary least-squares) method, however here, the problem is 
underdetermined since, as said before, there are three unknown parameters: T , ( )1λε  and 

( )2λε  and only two observations: 1S  and 2S . One way to solve it is to introduce a functional 

relationship between the two emissivity values. With this new constraint, the number of 
unknowns is reduced by one. An example of such a relationship is obtained by specifying a 
value β  for their ratio: 

 

( ) ( ) βλελε =21  
(29) 
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This statement of constant emissivity-ratio is shared with the ratio method for pyrometry 
already invoked (see eq. (23)). We then have two methods for evaluating the temperature 
from the two spectral signals 1S  and 2S : either from their ratio in eq. (23) of from the least 

squares equation in eq. (27)-(28). The signals are actually corrupted by an additive random 
experimental noise and it is known that the expected value of the ratio is a biased estimator 
of the ratio of the expected values. It is thus better to use eq. (27)-(28) for the temperature 
identification. 
Many other functional relationships could be used. Here are a few examples: 
 

( ) ( ) βλελε =− 21  
(30) 

 

( ) ( ) βλελε =− 21 11  
(31) 

 
where β  is a material-dependent constant whose value should be provided. 

The emissivity compensation methods of Foley [21], Watari [22] and Anderson [23] described 
in [24] can all be connected to the following general relationship: 

( ) ( )βλελε 21 =  (32) 

where again β  is a material-dependent constant (in [22] it was actually fixed to 21 λλ ). 

The crucial point with two-color pyrometry is to find out a functional relationship like those in 
eq. (29) to eq. (32) together with the value of the associated parameter β . It often happens 

that a good choice for a given material may lead to poor results for another material or for the 
same material in a different state (oxidation, ageing). The great difficulty, when dealing with 
different materials or materials of different states, consists in finding a general functional 
relation capable of representing all the observed spectral variations of the emissivity. 
 

5. Multiwavelength pyrometry  
 
We can proceed further by adding measurements performed at additional wavelengths. In 

the end, we come with m  values of spectral signal iS , mi ,...,1=  which correspond to 

experimental measurements of m  values of the spectral radiance ( )TL i ,λ , mi ,...,1= . Each of 

these measurements is contaminated by a random error ie , mi ,...,1= : 

( )
( ) iii

iii

eTB

eTLS

+=
+=

,

,

λε
λ

      mi ,...,1=  
(33) 

The problem still remains underdetermined since we have at hand m  equations (i.e. m  

radiance measurements), but at the same time, we face 1+= mn  unknowns, namely the 

temperature T  and m  values of spectral emissivity ( )ii λεε = , mi ,...,1= . The vector of 

parameters will be called ( )T

m Tεε ...1=β . 

Multiwavelength pyrometry has been a subject of controversy for several decades [16], [25]-
[52]. The experimental results showed various successes, sometimes with small temperature 
errors, other times with unacceptably high errors, depending on the material, on its surface 
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state, and on the function chosen to approximate the emissivity spectrum. Even from the 
numerous theoretical works on this subject, it is hard to find a consensus about the 
advantage or not of using many (or possibly a large number of) wavelengths [25], [26], [31], 
[33], [35], [36], [37], [44], [45], [48]-[53]. 
In the following we will present a few results which highlight the difficulty to obtain good and 
repeatable results with some multiwavelength approaches. A series of error mitigation 
processes will also be described. 
In many cases, the problem is addressed by ignoring the presence of experimental errors. As 
such, the system of equations to solve is: 
 

( ) miTBS iii ,...,1,, == λε  
(34) 

Of course, the temperature T̂  and emissivity values iε̂ , mi ,...,1=  obtained therefrom are 

different from the real values T  and iε , mi ,...,1=  that yielded the observed signals iS , 

mi ,...,1=  (actually affected by experimental errors, see eq. (34)). This will be discussed next. 

We see from eq. (33) that the problem is non-linear with respect to the parameters. However, 
when taking the logarithm to the signal and introducing the Wien’s approximation to the 
blackbody radiance, the problem becomes linear with respect to the following transformed 

parameters ( ) ( )( )Trefm TTεε ln...ln 1=β , where refT  is an arbitrary reference temperature 

used for scaling the temperature. The new vector of observables will be called ( )T

mYY ...1=Y  

and as a first approximation, we will assume that the experimental error affecting the 

observables iY  is additive as well (it will be called ie′ ): 

( ) mie
T

T

C
SY i

ref

ii
i

ii ,...,1,lnln
1

5

=′+−=













≡ µελ

 (35) 

where iµ  is a constant coefficient multiplying the unknown parameter TTref  and defined by: 

mi
T

C

refi

i ,...,1,2 =≡
λ

µ  
(36) 

 

5.1. Interpolation-based methods 
 
To solve the underdetermined problem, a potential solution would be to reduce by just one 
the number of degrees of freedom related to the spectral emissivity data. In other words, 

instead of considering m  unknown free parameters iε , mi ,...,1= , the emissivity values iε  

should be described by a parametric function based on 1−m  parameters only. Several such 

emissivity models were proposed in the past. A polynomial of degree 2−m  has often been 

considered: 

mia
j

i

m

j

ji ,...,1,
2

0

==
−

=

λε  
(37) 

The same could be done for the logarithm of emissivity when using the linearized version in 
eq. (35): 
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( ) mia
j

i

m

j

ji ,...,1,ln
2

0

==
−

=

λε  
(38) 

In both cases, the remaining 1−m  free parameters are the 1−m  coefficients of the 

polynomial: ja  2,...,0 −= mj . 

However, it was shown in [26], based on the Wien’s approximation (eq. (35)) and a 
polynomial representation of ( )iεln  (eq. (38)) that this method can rapidly lead to unrealistic 

temperature values as m  increases. 

Let us first assume that there is no measurement error, i.e. 0'=ie , mi ,...,1=  in eq. (35): 

 

( ) mi
T

T
Y

ref

iii ,...,1,ln =−= µε  (39) 

Upon considering the polynomial representation of degree 2−m  for ( )iεln  in eq. (38), the 

system of m  equations is now based on m  unknowns only. However, the introduction of the 

emissivity model has the consequence that the estimated temperature 'T  obtained by solving 
the linear system of equations is different from the real temperature T . The estimated 
temperature 'T  satisfies: 

mi
T

T
aY

ref

i

j

i

m

j

ji ,...,1,
'

2

0

=−=
−

=

µλ  
(40) 

By multiplying eq. (40) by iλ , we obtain: 

mi
T

C
aY

j

i

m

j

jii ,...,1,2
1

1

=
′

−=
−

=

λλ  
(41) 

which shows that TC ′− 2  corresponds to the constant parameter of the polynomial of 

degree 1−m  interpolating the m  values iiYλ . 

We can also notice (by subtracting eq. (41) from eq. (39) multiplied by iλ ) that the 

temperature error expressed through ( )'11
2

TTC −  (it has also been called “temperature 

correction”) corresponds to the constant parameter of the polynomial of degree 1−m  

interpolating the m  values ( )ii ελ ln : 

( ) mi
TT

Ca
j

i

m

j

jii ,...,1
'

11
ln 2

1

1

=






 −+=
−

=

λελ  
(42) 

As a consequence, the temperature correction for single color, bicolor and tricolor pyrometry 
( m =1,2,3) is expressed by [16], [34]: 
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( )

( )( )( ) 




















+







+








−−−
=







 −=










−
=







 −=

=






 −=

2

1
3

1

3
2

3

2
1

231312

321
2

1

2

21

21
2

112

lnlnln
'

11
3

ln
'

11
2

ln
'

11
1

ε
ελ

ε
ελ

ε
ελ

λλλλλλ
λλλ

ε
ε

λλ
λλ

ελ

TT
Cm

TT
Cm

TT
Cm

 
(43) 

 
The temperature correction involves the ratio 21 εε  for m =2. With equidistant wavelengths, 

it involves the ratio 
2

231
εεε  for m =3 and the ratio 4

2

2

2

31
εεεε  for m =4 [34]. These ratios 

are of course to estimate beforehand. Assigning arbitrarily a value of 1 to the emissivity ratio 
for a series of metals had the consequence that the temperature estimation error increased 
very rapidly with the number of wavelengths [34].   
It can be shown that the temperature correction limit for wavelength intervals decreasing to 0 

is equal to ( ) ( ) ( )[ ] 111
ln!11 −−− −− mmmm

ddm λλελ  [31].   

We can also recognize in eq. (42) that the temperature correction corresponds to the 
extrapolation at 0=λ  of the polynomial of degree 1−m  used to interpolate the m  values 

( )ii ελ ln . This finding can now be developed a little more. If, by chance, a polynomial of 

degree 2−m  could be found passing exactly through the m  values ( )iεln , the polynomial of 

degree 1−m  passing through the m  values ( )ii ελ ln  would then correspond to the previous 

polynomial function multiplied by λ . The constant parameter (i.e. the temperature correction 

term) would thus be equal to 0. As a consequence, the estimated temperature would be the 
exact one. However, in reality, that a polynomial of degree 2−m  could be found passing 

exactly through the m  values ( )iεln  is highly improbable. Therefore, in practice, there is an 

unavoidable error regarding temperature. In addition, the error magnitude is tightly 
dependent on the properties of polynomial extrapolation. Unfortunately it is well known that 
using a polynomial interpolation to perform an extrapolation leads to increasingly high errors 
as the polynomial degree rises. Furthermore, things get progressively worse as the 
extrapolation is done far from the interpolation interval. Since the aforementioned 
extrapolation is done at 0=λ , this last point would actually advocate expanding the spectral 

range to the shortest possible wavelength (whose consequence would be to bring the 
extrapolation point closer to the interpolation interval), but this is only a desperate remedy.  
 
The potentially catastrophic errors described just before are actually systematic errors, 
namely method errors. They are obtained even when assuming errorless spectral signals. To 
analyze the influence of the measurement errors, we can state, for ease, that the 
measurement error in channel i has the same impact as a corresponding uncertainty of the 
emissivity in the same channel, namely idε . Then, the interpolation of the transformed 

values [ ]iii dεελ +ln  leads to the same nature of extrapolation errors as described before. 

Finally both extrapolation errors add together. The calculated temperature is thus more and 
more sensitive to measurement errors as the number of spectral bands increases. 
The poor success of the interpolation based method originates from what has been called an 
over-fitting of the experimental data. It was finally recognized that the interpolation based 
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method could be considered but only for the simpler pyrometers, actually with two or three 
wavelengths at most [26]. 
 

5.2. Regularization by using a low-order emissivity model 

5.2.1. Emissivity models 
 
The shortcomings of the over-fitting previously described can be mitigated by reducing the 
number of unknown used to describe the emissivity spectrum. 
Different models were tested in the past: 
 

2;,...,1;
0

−<==
=

mkmia
j

i

k

j

ji λε    (generally k=1 or 2) 
(44) 

( ) 2;,...,1;ln
0

−<==
=

mkmia
j

i

k

j

ji λε    (generally k =1 or 2) 
(45) 

( ) mia ii ,...,1;11
2

0 =+= λε  (46) 

 

Besides that, models of ( )iεln  based on polynomials of the variable 21

iλ  or 21−
iλ  and models 

involving the brightness temperature were considered in [44], [45]. A sinusoidal function of iλ  

in [25], and other more “physical” models like Maxwell, Hagen-Rubens and Edwards models 
were presented in [16], [38], [48].  
Since the aim is merely to parameterize the m  spectral values of emissivity with the help of 

only pm  parameters with pm < 1−m , there is no limit to the fertility of ideas spawned by 

pyrometrists to find new models. Indeed, new “analytical” model are constantly being 
published (see e.g. [41]-[52]), without the results being up to expectations, and for good 
reasons, as shown later.  
On the other side, the grey-band model consists in splitting the spectrum into a small number 

of bands bm , with bm < m , and assigning the same emissivity value to all wavelengths iλ  

belonging to a given band [33]. In this way, the number of unknowns is reduced from 1+m  to 

1+bm . The bands can be narrowed to contain only three or two spectral channels as 

suggested in [76]. We can go even further by squeezing some bands to merely one spectral 
channel. The extreme limit consists in 1−m  single-channel bands plus one dual-channel 

band. In that case we face a problem with m  measurements and m  unknowns which is thus, 

in principle, invertible. We will see that it is actually very badly conditioned.  
The concept of grey-bands can be generalized by allowing that the channels that are chosen 
to share a common emissivity value are not necessarily close together: an iterative process 
was described in [50] where these wavelengths are each time reshuffled according to the 

pseudo-continuous emissivity spectrum, i.e. the one defined over the m  wavelengths iλ  

according to: 
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( ) ( )
( ) mi

TB

TL
T

i

i
i ,...,1

ˆ,

,ˆ,ˆ ==
λ
λλε  

(47) 

 

where T̂  is the most recent temperature estimation. ( )T
i

ˆ,ˆ λε  is sorted from lower to higher 

values and the bm  bands of equal emissivity values are defined by splitting the ( )T
i

ˆ,ˆ λε  

vector into bm  parts. 

The unknown parameters of the emissivity function, together with temperature, are finally 
evaluated by least squares minimization. The simplest way consists in introducing the Wien 
approximation to express the blackbody radiance and considering the observable 

[ ]1

5
ln CSY iii λ= , see eq. (35). The logarithm of the emissivity values and the inverse of 

temperature (or TTref ) act as parameters of the linear model. Then, by introducing a 

polynomial approximation for ( )iεln  (see eq. (38)) but of degree 2−< mk , we come to a 

system of m  equations: 

mie
T

T
aY i

ref

i

j

i

k

j

ji ,...,1,
0

=′+−=
=

µλ  
(48) 

 

and the problem now reduces to an estimation of the linear parameters ja , kj ,...,0=  and 

TTref . This was done by a linear least squares method in ([25], [30], [42], [43]). 

Otherwise, when taking for the observable the spectral signal iS  itself, we face a non-linear 

least squares problem ([27], [29], [32], [33], [35]-[41], [43]-[48], [51], [53]). 
Let us add that by rearranging the m  equations as described in eq. (35) we could get rid of 

one parameter, either a constant parameter or the temperature ([25], [30], [43]). However it is 
believed that no advantage in accuracy is expected by manipulating the data to present the 
same information in a different form [25]. As a matter of fact, in the case of linear fitting, such 
a manipulation even increases the estimation error of the identified parameters. 
We will now consider different aspects of the Least Squares Multiwavelength Pyrometry 
solution (LSMWP). 

5.2.2. Least-squares solution of the linearized Temperature Emissivity Separation 
problem (TES) 

 
We will adopt the Wien’s approximation and consider the vector of observables vector of 

observables ( )T

mYY ...1=Y  described in eq. (35). We will assume here that the experimental 

errors ie′ , mi ,...,1=  are uncorrelated random variables following a Gaussian distribution of 

uniform variance. It is usually assumed that the spectral signal iS , not the compound 

logarithm iY  in eq. (35), is affected by a noise of uniform variance. The present 

approximation is valid if the spectral range is not too wide with respect to the shape of the 
Planck’s law ( )TB ,λ  and if the emissivity values don’t span a too wide interval. Otherwise a 

Maximum Likelihood Estimation (MLE) is better appropriate.  
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According to equation (38) where ( )iεln  is approximated by a polynomial of degree 2−< mk , 

the least squares solution is: 
 

 
= =





















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


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



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=
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i i

j

i

k

j

ji
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T

k
T

C
aYMin

T
aa

j 1

2

2

0,
0 arg

ˆ

1
ˆ...ˆˆ

λ
λβ  (49) 

 
For numerical reasons (the reason is not only to manipulate numbers that are of similar 
range, but to minimize a particular condition number, see later), it is preferable to replace the 

wavelength iλ  in the polynomial expression by its reduced and centered value *iλ  defined 

by: 

12*
minmax

min −
−

−
=

λλ
λλλ i

i  
(50) 

In this way [ ]1,1* −∈iλ . For the same reason, it is better to normalize T  by ref
T  where ref

T  is 

chosen in such a way that the coefficients refii TC λµ 2≡  (see eq. (36)) are of the order of 1. 

The associated unknown parameter is then TTrefT =*β . The parameter vector is: 

 
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2

0*,
0 **arg

ˆ
*ˆ...*ˆ*ˆ µλβ  (51) 

 

where the parameters *
j

a  are the coefficients of the polynomial expressed in terms of *
i

λ . 

The sensitivity matrix of this linear model is the following ( )2+× km  matrix: 

 

2,

2

1
2

11

...**1

...............

...**1

+
















−

−
=

km
mmm µλλ

µλλ
X  

(52) 

 
where the columns correspond to the sensitivity to any of the 2+k  parameters present in 

vector *β  (i.e. the first derivative of the model function relatively to each parameter). 

The sensitivities to the first three parameters *
j

a  ( 2,..0=j ) and to *Tβ  have been plotted 

vs. the reduced wavelength *λ  in figure 3 for the particular case minmax λλ =5/3. The 

absolute values of the wavelength are not important, only the relative width of the total 
spectral band is relevant (the spectral interval [3µm-5µm] satisfies the present criterion on 

relative width, minmax λλ =5/3). 

The sensitivity to the first three coefficients of the model are respectively a constant, a linear 
and a quadratic function of the reduced wavelength *λ . The important question is how the 

sensitivity to the temperature reciprocal does compare to the former sensitivity functions? It 
is actually very smooth, close to linear. We thus expect a strong correlation between the 
parameters (since the sensitivity vectors are nearly collinear). 
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Figure 3.  Sensitivity to the first three 
coefficients of the polynomial model 
(resp. continuous, dashed and dotted 
line) and to the inverse of the 
normalized temperature (dashed-dotted 

line). The reduced wavelength is *λ  

(see eq. (50)). For this illustration, the 
total spectral interval is such that 

minmax λλ =5/3. 

 

 

 

The estimator of the parameter vector *β̂  based on the OLS method is obtained by solving 

the mm ×  linear system (see the lecture devoted to linear estimation): 

 

( ) YXβXX
TT =*ˆ  (53) 

The fact that the sensitivities are nearly dependent leads to a XX
T  matrix that is near-

singular. Indeed, by computing the condition number of the matrix XX
T  (the condition 

number is the ratio between the maximum and minimum eigenvalues), we obtain very high 
values, even when the polynomial model has a low degree (see figure 4). The condition 
number increases exponentially with the polynomial degree (it increases by a factor of about 
100 when the polynomial degree is increased by just one). Furthermore, this figure shows 
that increasing the number of spectral measurements in a given spectral interval brings no 
improvement regarding the condition number. Notice also that if the normalizations described 
in eq. (49) and (50) were not applied, the condition number would reach even higher values. 
The condition number describes somehow the rate at which the identified parameters will 
change with respect to a change in the observable; indeed it measures the sensitivity of the 
solution of a system of linear equations to errors in the data. Hence, if the condition number 
is large, even a small error in the observables may cause a large error in the identified 
parameters (the condition number however only provides an upper bound). The condition 

number also reflects how a small change in the matrix XX
T  itself will affect the identified 

parameters. Such a change may be due to the measurement error of the equivalent 
wavelength corresponding to each spectral channel. From figure 4, a first statement is that 
the regularization with a polynomial model of degree 2 or higher will not be efficient. But even 
a polynomial model of degree 1 is expected to show unstable results (the condition number 
is in this case of about 104. 
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Figure 4.  Condition number of the 

matrix XX
T  versus the polynomial 

degree k  of the emissivity model and for 

a number of spectral measurements 
equal to 2+= km  (○), m =7 (□), m =30 

(◊), m =100 (x). For this illustration, the 

total spectral interval is such that 

minmax λλ =5/3. 

The case 2+= km  is the limiting case 

avoiding under-determination (§5.1).  

 
The condition number has been computed in [3] for a larger spectral interval, namely for the 

case minmax λλ =1.75 (the interval [8µm-14µm] satisfies this criterion regarding the relative 

width). It was found slightly lower as compared to the present values. Increasing the relative 
width of the total spectral band is thus beneficial from this point of view. 
 
However, the condition number is not all. Sometimes it could even be misleading because it 
only gives an upper bound of the error propagation. It is indeed better to analyze the 

diagonal values of the covariance matrix ( ) 1−
XX

T . They actually provide the variance 

amplification factor for each identified parameter *P : 
 

[ ] ( ) 212 σσ 




=

−
XX

*β
T

diag  
(54) 

where 2σ  is the variance of the observable iY , i.e. ( )2iS S
i

σ  which is here assumed 

independent of the spectral channel i  (if instead one assumes that the radiance variance 

( )2
iSσ  is uniform, the result would be [ ] ( ) 





=

−− 112
XΨX

*β
T

diagσ  where Ψ  is the covariance 

matrix of the observable iY ).  

One should be aware that 
2

*βσ  merely describes the error around the mean estimator value 

due to the radiance error propagation to the parameters. If the mean estimator is biased, as it 
is the case when the true emissivity profile is not well represented by the chosen model, we 
should add the square systematic error to obtain the RMS error. The latter better represents 
the misfit to the true parameter value, either the temperature or a spectral emissivity value 
(this will be described later through a Monte-Carlo analysis of the inversion process). 
With the polynomial model, the mean standard relative error for emissivity, which is defined 
by: 
 


=

≡
m

i i

i

m 1
2

2
1

ε

σ
ε

σ εε  (55) 
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is related to the standard error of the retrieved polynomial coefficients through: 
 

[ ] [ ]
=

=
=

m

i
kj

a

T

ij j
X

m 1
,1

2

*

21 σ
ε

σ ε  (56) 

As such, it can be related to the uncertainty of the observable Yσ  (which corresponds to 

SSσ ) through an error-amplification factor εK : 

 

S
K Sσ

ε
σ

ε
ε =  (57) 

With the grey-bands model, the mean standard error and the amplification factor εK  are 

defined according to: 
 

S
K

m

S

m

i i

b

i
σ

ε
σ

ε
σ

ε
εε =









≡ 

=1

2

1
 (58) 

From the Wien’s expression of the blackbody radiance, it is clear that the standard relative 
error for temperature is proportional to the temperature, to SSσ , and to a wavelength scale 

λ~  representative of the spectral window (we can choose the geometric mean of the window 

limits: maxmin

~ λλλ ≡ ). The error amplification factor for the temperature, 
T

K , is thus defined 

through:  
 

S
TK

T

S
T

T σλσ ~=  (59) 

 
The error amplification factors 

T
K  and εK  have been plotted in figure 5 versus the degree of 

the polynomial model of emissivity, assuming again a relative bandwidth 
minmax

λλ  of 5/3. 

A first comment is that the standard errors increase exponentially with the polynomial degree 
k . The rise is roughly like ( )k2exp . The amplification factors can be reduced somewhat by 

widening the spectral window; in addition, the increasing rate with the polynomial degree is 
lower (compare with the results in [3] obtained for 

minmax
λλ =1.75). 

With the grey-bands model, the standard errors increase nearly in proportion to the number 
of bands (see [3]). 
In both cases, the standard errors decrease with the total number of spectral measurements, 

roughly like 21−
m . 
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Figure 5:  Left : Error amplification factor on emissivity versus the polynomial degree m 
chosen to model ( )[ ]λεln . The symbols correspond to different numbers of spectral 

measurements: 2+= km  (○), m =7 (□), m =30 (◊), m =100 (x). Right : Same for the error 

amplification factor on temperature. The case 2+= km  is the limiting case avoiding under-

determination.  
 
 
Regarding the bandwidth influence, let us notice that the relative error on temperature 
depends both on 

min
λ  and 

max
λ  whereas the mean relative error on emissivity only depends 

on the ratio 
minmax

λλ  (for a given value of SSσ  in eq. (57) and (59)). 

Assuming a target at 600K, a pyrometer with seven wavelengths between 3µm and 5µm and 
1% radiance noise in each spectral channel, will provide temperature and emissivity values 
with standard errors as reported in Table 1, depending on the degree of the polynomial 

chosen to model the logarithm of emissivity ( )iεln . 

 
Table 1. Polynomial model for (the logarithm of) emissivity. Root-mean 
square error for the estimated temperature and the emissivity depending on 
the degree of the polynomial model. Target temperature is 600K. Pyrometry 
performed at seven wavelengths between 3µm and 5µm with 1% radiance 
noise 

 
Polynomial degree 

Tσ  (K) εσ  

0 2.1 0.02 
1 14.5 0.13 
2 107.5 1.1 

 

 
The errors are already high with a linear model and they reach unacceptably high values with 
a polynomial model of degree two. These results seem to preclude using the least squares 
linear regression approach with a polynomial model of degree 2 and more. 
Notice that these results have been obtained with the use of the Wien’s approximation. 
However, the Planck’s law is close to the Wien’s approximation over a large spectrum, 
therefore we expect that the general least squares nonlinear regression based on the 
Planck’s law will also face serious problems when using a polynomial model for emissivity. 
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Let us recall that the temperature and emissivity errors mentioned above only describe how 
the radiance errors propagate to the parameters. It has been assumed here that the 
emissivity spectrum otherwise perfectly matches the considered polynomial model. If this is 
not the case (which actually occurs almost every time) a systematic error appears and is 
added to the previous one. The joint errors will be presented in §5.2.4 through a Monte-Carlo 
analysis. 
 
Applying the grey-bands model to the previous example leads to the standard errors shown 
in Table 2. The number of grey-bands can be increased up to bm = 1−m =6 (which is the 

maximum to avoid underdetermination in the considered case of m =7 spectral 

measurements). 
 

Table 2. Grey-band model for emissivity. Root-mean square error for the 
estimated temperature and the emissivity depending on the number of grey-
bands when assuming m =7 spectral measurements. Target temperature is 

600K. Pyrometry is performed at seven wavelengths between 3µm and 5µm 
with 1% radiance noise. 
 

Number of bands 
Tσ  (K) εσ  

1 2.7 0.02 
2 4.9 0.04 
3 7.0 0.05 
4 10.7 0.08 
5 12.6 0.10 
6 13.7 0.11 

 

 
The errors increase with the number of grey-bands, starting from the values corresponding to 
a degree 0 polynomial and ending at values that are lower than those obtained with a 
polynomial of degree 1. This is interesting in the sense that even with six grey-bands, i.e. six 
degrees of freedom for emissivity, the errors don’t “explode” as it was observed before by 
increasing the polynomial degree. The grey-bands model, although not being smooth, could 
thus capture more easily rapid variations in the emissivity profile like peaks. 
However, as stated before, the standard errors that have been presented here only show 
what happens when noise corrupts the radiance emitted by a surface but assuming that the 
true emissivity otherwise perfectly follows the staircase model. As such, with the 6-bands 
case, the emissivity should be equal in the two channels that were chosen to form the largest 
grey-band. As this is never strictly the case, again, a systematic error will be added to the 
one shown in Table 2. 
 

5.2.3. Another look on the solutions of the TES problem 
 
Another way of presenting the ill-posedness of the TES problem and the difficulties in finding 
an appropriate regularization method consists, like in [26], in exposing first the multiple 
solutions to the underdetermined problem shown in eq. (34). It is clear from this set of 

equations that when selecting a value T̂  for temperature, the emissivity values ( )Ti
ˆε̂  

obtained from: 
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( ) ( ) miTBST iii ,...,1,ˆ,ˆˆ == λε  (60) 

are such that, when combined with T̂  they provide a perfect solution to the problem 
presented in eq. (34), namely a solution that exactly leads to the observed spectral signals. 
The emissivity values obtained in this way depend on the selected temperature, which 

explains the notation ( )Ti
ˆε̂ . Increasing the value of T̂  entails a decrease in all spectral 

emissivity values and vice versa. There is an infinite number of exact sets of solutions 

( ) ( )( )Tm TTT ˆˆˆ...ˆˆ
1 εε=β , the only limitation is that ( ) max

,1

ˆˆmax εε ≤
=

Ti
mi

 and ( )Ti
mi

ˆˆmin
,1

min εε
=

≤ . The 

boundary values minε  and maxε  are chosen in accordance with the type of tested materials. 

Without other information maxε  is usually set to 1 whereas minε  can be set to 0.02 since it is 

unusual to find surfaces with emissivities less than about 0.02, and these are very clean, 
polished metal surfaces [26]. 
 
As an illustration we considered a multiwavelength system operating over seven narrow 
spectral bands in the [3µm-5µm] range, excluding the 4.3µm CO2 absorption band of the 
atmosphere. The central wavelengths are 3, 3.5, 3.7, 4, 4.6, 4.8 and 5 µm. Two hypothetic 
materials have been considered. The first one presents an emissivity profile such that the 
seven emissivity values at the former seven wavelengths are distributed perfectly linearly 
between 0.72 at 3µm and 0.53 at 5µm. The emissivity of the second material has the 
following values: 0.72, 0.75, 0.63, 0.57, 0.56, 0.51, 0.53 at the former seven wavelengths. 
These two emissivity distributions have been represented with circles in figure 6, resp. in 
figure 7. The spectral radiance has then been computed at the central wavelengths 
according to the Planck’s law, assuming a temperature of 600K. At first no measurement 
error was considered, it will be added later. The objective was to retrieve from the seven 
radiance values the true temperature and the true emissivity distribution for both materials. 

To start, we selected different values for the temperature T̂  between 580K and 660K, and 

then plotted the distribution of emissivity ( )Ti
ˆε̂  that perfectly matches with each value of T̂  

(curves with star symbols), namely that yields the same seven values of spectral radiance as 
those observed with the combination of true temperature and true emissivity distribution.  

We notice that temperature values T̂  as low as about 577K could be acceptable; however, 
lower temperature values should be discarded since they make one of the emissivity values 

( )Ti
ˆε̂  larger than one. On the other hand, temperature values T̂  much higher than the real 

temperature of 600K could be well accepted.  
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Figure 6.  Emissivity profiles inferred 
from the spectral radiance (at seven 
wavelengths between 3µm and 5µm) by 
considering several hypothetical 

temperature values T̂  higher or lower 
than the “real” temperature T =600K. The 

temperature values T̂  are indicated on 
the right. The “true” emissivity distribution 
is with circles; it is here assumed linear 
with the wavelength. 
 

 

 

Figure 7.  Same as in figure 6 for a non-
linear emissivity distribution. 
 

 
 
The traditional way consists in looking for a distribution of emissivity in the form of a 
polynomial in wavelength and performing a least-squares regression on the emitted 
radiance. As an example let us consider a polynomial model of degree 1. In this case, the 
problem can be reformulated as follows: among all hypothetic emissivity profiles represented 
in figure 6 (respectively in figure 7 for the second material), which one is closest to a straight 
line ?  
Let us give some indications on this notion of closeness. It is quantified by the sum of the 
square residues between any emissivity distribution in fig. 6 or 7 and the straight line 
obtained by linear regression. We are actually dealing with weighted least squares: each 
term should be weighted by the blackbody radiance expressed at the corresponding 

temperature T̂ . Hence, let us consider the weighted linear regression of a particular 

distribution ( )Ti
ˆε̂ ; the considered weight is ( )TB i

ˆ,λ . The sum of square residues is: 

( ) ( ) ( ) ( )( )[ ]
=

+−=
m

i

iii
aa

aaTTBTR
1

2

10
,

2 ˆˆˆ,minˆ
10

λελ  (61) 
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Let us now consider the temperature optT̂  for which the sum of square residues ( )TR ˆ2  is 

minimum: 

( )( )TRT
T

opt
ˆminargˆ 2

ˆ

=  
(62) 

Remember that ( ) ( ) iii STBT =ˆ,ˆˆ λε , mi ,...,1=  for any value of T̂  (see eq. (60)), in particular for 

optT̂ . Hence we have: 

( ) ( )( ) 








+−= 

=

m

i

iii
aaT

opt TBaaST
1

2

10
,ˆ

ˆ,minminargˆ
10

λλ  (63) 

which shows that optT̂  is also the temperature estimator obtained by the least-squares 

minimization involving a linear emissivity model. 
Notice that the previous demonstration can be extended to a polynomial model of any 
degree. As a consequence, when dealing with a polynomial model of degree 0, the question 

changes to: which distribution ( )Ti
ˆε̂  is closest to a horizontal line ? 

With a polynomial model of degree 2, it changes to: which distribution ( )Ti
ˆε̂  is closest to a 

parabola ? 
The demonstration can actually be extended to any other analytical model for emissivity. In 

the end, the general question becomes: which distribution ( )Ti
ˆε̂  is closest to the selected 

model ? 
We are actually far from the aim implicitly suggested by the regression methods proposed in 
the literature. As a matter of fact, the emissivity models (e.g. polynomial functions of the 
wavelength) used to perform a regression of the radiance signal, give the erroneous 
impression that the emissivity-profile solution we are looking for is a least squares 
approximation of the true emissivity profile (according to the chosen model). This is 
absolutely not the case, as demonstrated above and illustrated next. 
 

In figure 6, the emissivity distribution ( )Ti
ˆε̂  corresponding to T̂ =600K is the only one to be 

linear. The curvature of the profiles changes depending on whether T̂ is higher or lower than 
600K. If there is no error on the measured radiance, the best (actually perfect) match with a 

straight line is thus for T̂ =600K, which is the right answer. Nevertheless, we has to admit 

that the profiles corresponding to an estimated temperature in the range 590K< T̂ <610K are 
very close to a straight line. It is easy to imagine that with some experimental noise added, 
the square residuals obtained after the linear fit would be in the same range for all profiles 

( )Ti
ˆε̂  corresponding to the former temperature range. A quantitative analysis of the noise 

influence will be given later. 
The case in figure 7 is quite dramatic: it is evident that, among all possible solutions, the 
“true” profile is not the closest one to a straight line. Evidently, in this example, the 

distribution ( )Ti
ˆε̂  that is closest to a straight line is obtained for a temperature optT̂  that is 

much higher than the “true” value of 600K (the profiles in the lower part of the figure are 
indeed smoother than those in the higher part). The final solution will thus present a bias. A 
bias would also be obtained for the case drawn in figure 7 if the chosen emissivity model was 
a polynomial of degree 0 instead of a polynomial of degree 1. 
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As often stated, when using LSMWP, it is necessary to choose an emissivity model that 
corresponds exactly to the true profile. The difficulty is that most often, the profile shape is 
unknown. A misleading thought is that LSMWP performs a fit of the true profile with the 
chosen model (polynomial, exponential, and so on). Actually, as seen above, performing 

LSMWP comes to choosing among the hypothetical solutions ( )T̂,ˆ λε , the one which fits at 

best to the model, in the least squares sense by weighting it with the blackbody radiance (the 
fit deals with iε  if the observable is radiance and with ( )iεln  if it is the logarithm of radiance). 

This can lead to an emissivity profile of much higher or much lower mean value than the real 
one, together with an important temperature error. Actually, the problem with the classical 
LSMWP is that it sticks to the emissivity shape rather than to its magnitude. 
 

5.2.4. Least squares solution of the non linear ETS problem 
 
When using the Planck’s law instead of the Wien’s approximation, LSMWP cannot be 
linearized anymore. The nonlinear least squares problem can be tackled with the Levenberg-
Marquardt method as provided for example by the lsqnonlin function from MATLAB library. 
When choosing a linear model for the emissivity and when the "true" emissivity profile is 
indeed linear this naturally leads to the right temperature and the right emissivity profile 
(there is no systematic error when the simulated emissivity spectrum corresponds to the 
chosen model). On the contrary, when the "true" emissivity profile is not linear, the 
identification presents a bias. For a “true” emissivity profile corresponding to the curve with 
circles in figure 7, the result is reported in figures 8 and 9. The circles in figure 8 correspond 
to the theoretical radiance (no noise is added at this stage) and the stars correspond to the 

spectral radiance calculated from ( ) ( ) ( )optiidopti TBTL ˆ,ˆˆ,ˆ
1 λλελ =  where ( )λε

1
ˆ

d
 is the polynomial 

of degree 1 to which the distributions ( )Ti
ˆε̂  come closest (the one which is closest is 

( )KTi 652ˆˆ =ε . A perfect match for the radiance is of course impossible: the low order model 

chosen for emissivity (polynomial of degree 1) cannot explain the observed variations of the 
radiance. 

The least squares procedure reveals that the ( )Ti
ˆε̂  distribution in figure 7 that fits at best to a 

straight line (taking into account the weighting with the blackbody radiance), is the one 

corresponding to the temperature optT̂ =652K. The stars in figure 9 correspond to 

( )KTi 652ˆˆ =ε  and the continuous curve is the unique line to which the distributions ( )Ti
ˆε̂  

come at closest, namely ( )λε
1

ˆ
d

. The systematic error is thus +52K for temperature and 

between -0.16 and -0.35 for emissivity. 
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Figure 8.  Inversion result for the 
emissivity profile represented with circles 
in figure 7 when using a linear model for 
emissivity. Here, the circles represent the 
“true” noiseless radiance (true 
temperature: T =600K), the stars 
correspond to the emitted radiance 
according to the solution (i.e. the 
emissivity distribution that is closest to a 
straight line, which is obtained for 

optT̂ =652K) 

 

 

 

Figure 9. Inversion result for the 
emissivity distribution from figure 7 when 
using a linear model. The “true” emissivity 
distribution is shown with circles 
(T=600K). The solution is represented 
with stars (the associated temperature 

optT̂  is 652K). The linear regression profile 

of the solution is represented with a 
continuous line ( ( )λε

1
ˆ

d
). 

 

 

If the fitting happened be too far from the ( )opti T̂ε̂  profile, the model should be changed. For 

this particular example, however, changing to a quadratic model leads to a complete failure: 
the profile in figure 7 that is closest to a polynomial of degree 2 is the one corresponding to 
500K and the retrieved (hypothetical) emissivity spectrum ranges between 1.4 and 3.7 ! 

Obviously the constraint ( )Ti
ˆε̂ <1 should imposed. The acceptable solution would then be the 

profile associated to T̂ =577K which nevertheless means a 23K underestimation. 
 
Let us now analyze the influence of the measurement noise on the temperature and 
emissivity separation performance. This can be easily performed by simulating experiments 
where the theoretical radiance is corrupted with artificial noise. The radiance is altered by 
adding values that are randomly generated with a predetermined probability density function. 
We assumed a Gaussian distribution with a spectrally uniform standard deviation. We fixed it 
to a value ranging from 0.2% to 6% of the maximum radiance (additive noise). The least 
squares minimization was performed without constraint (i.e. without imposing 

i
ε <1) in order 

to highlight the mathematical (poor) stability of the inversion procedure. A series of 200 
radiance spectra were treated for each noise level and for the two nominal emissivity profiles 
described in figures 6 and 7. We chose again a linear emissivity model for the LSMWP 
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inversion. The results for the maximum root mean square emissivity error among the seven 
channels are plotted in figure 10-left. Those for the root mean square error on temperature 
are plotted in figure 10-right. We can notice that: 

- for the “true” profile of linear type (crosses), the RMS error on temperature and on 
emissivity increases proportionally to the radiance noise level. In particular, the RMS 
errors are 0.1 for emissivity and 12K for temperature when the noise is 1%. 
- for the “true” profile of non-linear type (circles), the RMS errors are first dominated 
by the systematic error, which corresponds to the model implementation error (the 
chosen model –polynomial of degree 1 – is too crude to match the “true” profile); 
statistic errors due to the measurement noise dominate only when the noise is higher 
than 2-3%. The RMS errors are 0.36 for emissivity and 54K for temperature when the 
noise is 1%. 
 

 
 
Figure 10.  Statistic analysis (Monte Carlo sampling with 200 simulated experiments) of the 
measurement noise influence on the identified emissivity when using a linear emissivity 
model. The “true” emissivity was considered linear (crosses – refer to fig. 6) or non-linear 
(circles – refer to fig. 7). Multispectral measurement in seven channels between 3 and 5µm. 
Left : emissivity error, Right : temperature error. 
 

 
Let us also add that the inversion leads to a systematic error as soon as the “true” profile 
departs from a straight line. The previous analysis allows us to evaluate the magnitude of this 
error when the deviation is small. Statistically, by considering several “true” profiles close to 
the nominal straight line in figure 6, the RMS of the systematic errors would be equal to the 
RMS of the statistic errors obtained by adding the same amount of measurement noise. For 
this reason, a “true” profile departing by as little as 1% from a straight line leads to an 
emissivity bias whose RMS value is about 0.1. The temperature quadratic mean error is in 
this case about 12K which is far from negligible. This result highlights the considerable 
importance of choosing the right emissivity model. This impact can be reduced by increasing 

the number of spectral channels (the trend is like 21−
N ), at the condition that the departure 

from the profile model is randomly distributed. 
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As a conclusion we can state that:  
- Even by reducing the number of unknowns, as was done here by modeling the 
spectral emissivity with a polynomial of low degree, the problem remains badly 
conditioned; with a polynomial model (either for ( )λε  or for ( )λεln ), reasonable 

inversion results are expected only when the degree is 1 or 0. 
- Important systematic errors appear as soon as the real emissivity departs from the 
considered model: 1% departure from a straight line already leads to 12K RMS error. 
More complicated spectral shapes lead to unpredictably high systematic errors (54K 
for the considered example). 
- Even if the real emissivity values at the sampled wavelengths perfectly fitted to a 
straight line, the demand on radiance measurement precision is very high: as a 
matter of fact no more than 0.2% noise is allowed to get a RMS error lower than 2.5K 
near 600K for a 7-band pyrometer between 3µm and 5µm. 

 
Finally, LSMWP is not performing well for simultaneous evaluation of temperature and 
emissivity. Reasonable RMS values can be obtained only when the emissivity spectrum 
perfectly matches with the chosen emissivity model. Otherwise, important systematic errors 
are encountered. The problem is that, apart from a few exceptions, it is not known 
beforehand whether the emissivity of a tested material conforms to such a model or another. 
The results are disappointing because the inversion is based on the emitted spectral 
radiance only. Good results can be obtained by taking advantage of the high spectral 
variability of accessory parameters like the atmosphere transmission and self-emission as 
well as the reflection of the environmental flux. 
 
As a conclusion, it appears that there is no valuable reason to apply LSMWP in place of the 
simpler one-color or bispectral pyrometry. All methods need a priori information about the 
emissivity. However the requirements with one-color pyrometry (the knowledge of an 
emissivity level) or with bispectral pyrometry (the knowledge of the ratio of emissivity at two 
wavelengths) are less difficult to satisfy than the requirement with LSMWP which is a 
requirement of a strict conformity of shape of the emissivity profile with a given parametric 
function, which is practically impossible to satisfy. 
Regarding LSMWP, it must finally be admitted that without knowledge of the magnitude of 
emissivity, the temperature measurement cannot be very precise. Some vague intuition 
about the shape of the emissivity spectrum is not sufficient and to add more wavelengths 
does not help much. The blackbody spectrum is extremely regular; therefore, the 
implementation of a polynomial model for the emissivity of degree greater than 1 introduces 
strong correlations and generally leads to poor results. 
 

5.3. Another multiwavelength approach: the “TES” method 
 
The “TES” method is a multiwavelength approach that was developed for land-surface 
temperature evaluation through infrared remote sensing, more specifically for the Advanced 
Space-borne Thermal Emission and Reflection Radiometer (ASTER) on board TERRA 
satellite [50]. It is a five-channel multispectral thermal–IR scanner. 
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TES is based on the observation that the relative spectrum ( ) ( ) ελελβ ˆˆ=  where the apparent 

emissivity ( )λε̂  is obtained from an estimation of temperature T̂  according to: 

( ) ( ) ( )
( ) ( )λλ

λλλε
↓

↓

−
−=

LTB

LTL
T

ˆ,

,ˆ,ˆ  
(64) 

is relatively insensitive to the temperature estimation error. A crude estimation as with the 
Normalized Emissivity Method (NEM) is thus sufficient [50]. The question is then how to 
extract the absolute spectrum ( )λε̂  from the relative spectrum ( )λβ . Gillespie et al. [50] 

found out a correlation between minε  and the minimum-maximum emissivity difference 

defined by minmax ββ −=MMD : 

737.0
min 687.0994.0 MMD−≈ε  (65) 

The regression was based on 86 laboratory reflectance spectra from the ASTER spectral 
library [11] for soils, rocks, vegetation, snow, and water between 10 and 14µm. Ninety five 
percent of the samples fall within 0.02 emissivity units of the regression line. Nevertheless, 
this empirical relation in not universal: data related to artificial materials like metals fall far 
below the regression line. 
After evaluating minε  from the regression law, we obtain a new estimate of the emissivity 

spectrum from:  

( ) ( )
min

minˆ
β
ελβλε =  

(66) 

The temperature T̂ is finally obtained by inverting the Planck’s law at a wavelength λ  at 

which the emissivity profile ( )λε̂  reaches the highest value. One or two iterations are 

sufficient for the procedure to converge. 
To be effective, TES requires at least three or four spectral bands. TES doesn’t work well for 
near-grey materials (as a matter of fact minε  would then stick to the value 0.994). 

TES algorithm is presently used to calculate surface temperature and emissivity standard 
products for ASTER, which are predicted to be within respectively +1.5K and 0.015 of correct 
values. Validations performed on different sites demonstrated that TES generally performs 
within these limits. 
The regression law: 

815.0
min 777.0999.0 MMD−≈ε  (67) 

was obtained using 108 emissivity spectra from the ASTER library, without man-made 
materials. It was compared with spectra of manmade materials used over urban surfaces in 
[57] (see fig. 11). The correlation in eq. (67) is relatively good for most considered manmade 
materials. Metallic surfaces are however badly modeled by this empirical relationship. 
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Figure 11.  Correlation between MMD and minε  in eq. (67) and comparison with 54 man-

made materials spectra. Right figure is a detail from left plot [57]. 
 
The RMSE for emissivity is 0.017 in average (for a series of 9 manmade urban materials 
excluding metallic materials: brick, glass, tile, asphalt, concrete, marble, cement) and it may 
rise to 0.03 for some materials like marble and glass. Simultaneously, the RMSE for 
temperature is 0.9K in average and may rise to 1.5-1.8K for marble and glass (‘true’ 
temperature was set between 295K and 310K) [57]. 
The TES method is performing well for natural materials and man-made materials (excluding 
metallic materials) in the context of remote sensing. This concept could be extended to other 
situations. The decisive point would be to find out an empirical relation of the type shown in 
eq. (65) or (67) from the spectra of the considered materials. 
 

5.4. The Bayesian approach for radiative thermometry 
 
What has been exposed so far underlines the fact that a priori information on emissivity is is 
a prerequisite for the evaluation of temperature. Actually, the Bayesian framework allows 
taking into account any kind of a priori information on the parameters to estimate, hence it 
should be appropriate to solve the temperature-emissivity separation problem. However, 
although the application of Bayesian methods to thermal characterization is relatively 
common today [58], it is rather rare in multispectral pyrometry and 
multispectral/hyperspectral infrared remote sensing [59]-[65]. 
In the Bayesian framework the entire problem is modeled in terms of probability in order to 
allow for inference, that is, instead of attempting to obtain a single solution for the interesting 
unknowns it offers the possibility to explore the posterior distribution to determine the 
uncertainty in the unknowns given the measurements and prior uncertainty in the unknowns. 
The exploration calls for computing different point estimates like the maximum a posteriori 
estimate (MAP) and the conditional mean estimate (CM) as well as marginal distributions of 
individual unknowns or sets of unknowns [58], [66]. 

The parameters β  (vector of size ( ) 11 ×+m ) and the measurements Y  (vector of size 1×m ) 

are considered as random variables. ( )βπ  is the prior distribution and it represents the 

uncertainty of the unknown prior to obtaining the measurement. The conditional distribution 
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of the measurements given the unknown is called the likelihood distribution and is denoted 

by ( )βYπ . What interests us is the posterior distribution ( )Yβπ  which contains all information 

on the uncertainty of the unknowns β  when the information on measurements Y  is utilized 

[58], [66]. It is given by Bayes’ theorem: 
 

( ) ( ) ( )
( )Y

ββY
Yβ

π
ππ

π =  (68) 

where the denominator ( )Yπ  is obtained by marginalizing ( )βYπ  over the parameters β . It 

is merely a scaling constant; since it does not involve β  it is generally discarded for most 

analyses: 

( ) ( ) ( )ββYYβ πππ ∝  
(69) 

Assume that the physical model is described by eq. (18) (negligible reflection effects) and 
that the measurement is corrupted by additive Gaussian noise with zero mean and 

covariance matrix Ω , which will be noted ( ) ( )Ωe ,0N=π  where e  is the vector of the m  

spectral noise terms. The likelihood distribution ( )βYπ = ( )T,εYπ  is then expressed by: 

( ) ( ) ( )( )2exp, 1
BεYΩBεYεY ⊗−⊗−−∝ −T

Tπ  (70) 

where ( )T

mεε ...1=ε , ( ) ( )( )T

m TBTB ,...,1 λλ=B  and ⊗  denotes the elementwise product. 

On the other side, regarding the prior, we will assume that emissivity and temperature are 

independent variables, hence ( ) ( ) ( )Tπππ εβ = . For ease, we will consider that the spectral 

emissivities are independent as well. 
 

5.4.1. A simple example : single-color pyrometry 
 

When there is only one spectral measurement, the posterior distribution ( )Yβπ  reduces to: 

( ) ( )( )( ) ( ) ( )TTBYYT πεπσλεεπ 22
2,exp, −−∝  (71) 

where σ  is the noise RMS. If we are only interested in temperature, emissivity is then 

considered as a nuisance parameter. To obtain the posterior distribution for temperature 

alone, we thus have to marginalize the joint distribution ( )YT,επ  with respect to emissivity. 

Let us consider for ease a uniform a priori distribution for emissivity: ( ) ( )maxmin ,εεεπ U= . 

The marginal posterior distribution related to temperature, ( )YTπ , can thus be expressed 

analytically [59]: 

( ) ( )
( )

( ) ( )















 −
−






 −
∝

σ
λε

σ
λε

λ
ππ

2

,
erf

2

,
erf

,

minmax TBYTBY

TB

T
YT  

(72) 

As an example, let us consider a monochromatic sensor at 4.7µm with 3% RMS noise, and 
assume that emissivity is expected to be in the range [0.5, 0.75]. If the measured radiance 
corresponds the radiance emitted by a surface at 600K with an emissivity of 0.6, the 
posterior distribution for temperature, given that measurement, is described by the black 
curve in fig. 11 (a non-informative prior has been considered for temperature, namely 
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( ) ( )KKUT 700,500=π ). The curve is quite asymmetrical; the maximum a posteriori estimate 

is 582K whereas the conditional mean estimate is 597K, which is closer to the real value 
600K. The distribution is quite large since the a priori distribution of the emissivity is large 
itself and the a priori distribution of temperature is non-informative. To shrink the a posteriori 
distribution we should have better information on the emissivity and possibly on temperature. 
 
Let us now consider a measured radiance that is 8.3% higher than before. Among the infinite 
number of possibilities, it could correspond to the radiance emitted by a surface at 600K with 
an emissivity of 0.65. The posterior distribution for temperature is now given by the blue 
curve in fig. 11. The maximum a posteriori has risen to 592K and the conditional mean 
estimate to 606K. Let us pursue the analysis. If the measured radiance was 16.7% higher 
than the initial value (it could now correspond to the radiance emitted by a surface at 600K 
with an emissivity of 0.7), the posterior distribution for temperature is then given by the red 
curve. The maximum a posteriori has risen further to 600K and the conditional mean 
estimate to 615K.  
Notice that for a progressively higher RMS noise, the curves would be progressively more 
rounded and approach a Gaussian curve. 
 

 

Figure 11. Posterior distribution of 
temperature in the case of uniform prior 
distribution of temperature and emissivity: 

( ) ( )75.0,5.0U=επ .  

The measured radiance corresponds to 
the emitted radiance of a surface at 600K 
with an emissivity of 0.6 (black), 0.65 
(blue) and 0.7 (red). Noise RMS is 3%. 
 

 
As a final remark, let us say that thanks to the availability of a priori information on emissivity 
or temperature, the Bayesian approach allows to “anchor” the solution instead of providing 

an infinite set of equally acceptable solutions ( )T,ε . Nevertheless the “anchoring” is not 

bound to a particular solution set ( )T,ε , but rather loose. The poorer the a priori information, 

the more the “anchoring” is loose. 

5.4.2. Multiwavelength pyrometry (linear approximation) 
 
The implementation of the linear approximation for multiwavelength pyrometry (notably by 

introducing the Wien’s law and considering the logarithm of the spectral signals iS , mi ,...,1=  

as the observables iY , mi ,...,1= , see eq. (35)) has the advantage, considering normal 

distributions for the priors and for the measurement noise, to yield analytical expressions. 
Equation (35) can be rewritten as: 
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e'XβY +=  
(73) 

where ( ) ( )( )T

refm TTεε ln...ln 1=β  is the vector of (linear) parameters whose prior is a 

multivariate normal distribution of covariance matrix W , namely ( ) ( )Wββ ,prior
N=π , whereas 

e'  is the vector of additive errors with ( ) ( )Ωe' ,0N=π  and X  is the sensitivity matrix: 

( ) ( )T

mmmm µµµ ...; 211 =−= μμΙX  (74) 

where the constant coefficients iµ , mi ,...,1=  have been defined in eq. (36).  

The posterior distribution ( )Yβπ  in eq. (69) becomes: 

 

( ) ( ) ( ) ( ) ( ) 












 −−+−−−∝ −− priorTpriorT

ββWββXβYΩXβYYβ
11

2

1
expπ  

(75) 

In the linear Gaussian case, all conditional distributions are Gaussian. It suffices therefore to 
compute the (conditional) means and covariances only (the maximum a posteriori estimator 
is equal to the (conditional) mean estimator) [66]. To obtain the maximum a posteriori 
estimator we differentiate the argument of the exponential in eq. (75) with respect to the 
parameter vector and look for the parameter vector that makes it vanish [66]. In the end we 
have: 

( ) ( ) ( ) 












 −Γ−−∝ −

MAP

T

MAP ββββYβ
Yβ

ˆˆ
2

1
exp

1π
 

(76) 

with the following expression for the maximum a posteriori estimator: 

( )priorT
MAP βWYΩXβ

Yβ

11ˆ −− +Γ=  
(77) 

where 
Yβ

Γ  is the posterior covariance matrix: 

( ) 111 −−− +=Γ WXΩX
Yβ

T  (78) 

Alternative expressions are [66]: 

( ) ( )priorTTprior
MAP XβYΩXWXWXββ −++=

−1ˆ  (79) 

and: 

( ) XWΩXWXWXW
Yβ

1−
+−=Γ TT  (80) 

Notice that since X  is full row rank rectangular matrix, and knowing that Ω  is positive 

definite, XΩX
1−T  is a singular (not invertible) matrix. However, adding the positive definite 

matrix 1−
W  makes the matrix ( )11 −− + WXΩX

T  invertible. Hence, the prior information 

provides the regularization needed since XΩX
1−T  is singular. Beyond the presently 

underdetermined problem, it provides the regularization needed when XΩX
1−T  is ill-

conditioned. 
 
Equations (77) and (78) show that when the prior variance decreases while the 
measurement error variance is kept constant, the a priori solution progressively dominates 
the solution. 
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The following example intends to illustrate that multispectral measurements can lead to 
valuable results when combined to priors of good quality, at least for some of them. 
The simplest case of bicolor pyrometry has been considered. The measurements are 
assumed to be performed at 3.7µm and 4.7µm with a noise RMS of 5%. The emissivity priors 
have mean values of 0.75 and 0.45 resp. at the first and second wavelength. In both cases 
the standard deviation is 0.1. On the other side, the temperature prior has a mean value of 
650K and a quite large standard deviation, namely 150K in order to express that the 
temperature is not well known beforehand. 
Consider now that the two measured spectral signals correspond to the radiances emitted by 
a surface at 600K with spectral emissivities of 0.7 and 0.5 (this will be referred as the set of 
“true” – unknown- values, which, we hope, the estimators will come close to). What are the 
MAP estimators and the uncertainty for temperature and emissivity? The application of the 
equations (77)-(80) provides the answer which is summarized in the following table: 
 

Parameter MAP estimator stand. deviation 

Temperature 598 K 11.7 K 

emissivity at 3.7 µm 0.72 0.09 

emissivity at 4.7 µm 0.51 0.05 

 
The two next plots illustrate the marginal distributions for the three parameters (a priori and a 
posteriori). Notice that normal distributions apply to the transformed parameters 

( ) ( )( )Trefm TTεε ln...ln 1 ; a backward transformation has been performed to plot the 

distributions of ( )T

m Tεε ...1 . 

 

 
Figure 11.  Left: normalized probability density of the emissivity at 3.7µm (in red) and at 
4.7µm (in blue). The prior density is in dashed line, the posterior density is in continuous line. 
The “true” (unknown) values of the two emissivities (resp. 0.7 and 0.5) are indicated by 
vertical bold lines. 
Right: normalized probability density of the temperature. The prior density is in dashed line, 
the posterior density is in continuous line. The “true” value of temperature (600K) is indicated 
by a vertical bold line. 
 



 
 
 
 
 
METTI 7 Advanced School Porquerolles, France 
Thermal Measurements and Inverse Techniques Sept. 29th – Oct. 4th, 2019. 
 
 
 

 Lecture 4 – Part A. Radiative Thermometry, principles and pitfalls – page 39 / 45 

 
 
  

Despite a temperature prior of poor quality, the estimators are quite close to the “true” 
values. Furthermore, if we compare the a priori distributions and the a posteriori distributions, 
we notice that the move was indeed towards the “true” values. In addition, the measurements 
contributed to shrink the distributions (all variances have decreased). 
The simple analysis that has been performed so far can be extended to more than two 
wavelengths without any difficulty. The signals from multispectral or hyperspectral detectors 
can thus be processed and inverted directly (i.e. without iterations) through simple matrix 
algebra. 
 
By the way, the former example clearly showed that a prior information on the magnitude of 
the spectral emissivities is of much higher value than a prior information that the emissivity 
profile belongs to a particular class of profiles (e.g. polynomial functions). 
 

5.4.3. Multiwavelength radiometry (non-linear case) 
 
The linear case developed in §5.4.2 presents a few limitations. One could argue that the 
Wien’s law is a mere approximation of the (exact) Planck’s law, however, as mentioned in 
§2.1, the approximation error is very small as long as the product Tλ  is less than about 3000 

µmK, which is the case when the spectral range is chosen in the rising part of the blackbody-
radiance curve, namely where the sensitivity of the radiance to temperature is highest. The 
limitations come rather from the fact that in reality the emissivity and temperature priors are 
not necessarily Gaussians. As a matter of fact, some of the “theoretical” distributions in Fig. 
11-left go beyond the boundary ε =1, which is unrealistic. For the emissivity, truncated prior 

distributions should thus be implemented. Moreover, we should be able to simulate 
probability distributions of arbitrary shape. 
Beyond linear and Gaussian models, Bayesian inference requires a statistical estimation of 
the posterior probability distributions which involves numerical sampling. Markov chain Monte 
Carlo (MCMC) algorithms are implemented for obtaining a sequence of random samples 
from a probability distribution from which direct sampling is difficult. The Metropolis–Hastings 
algorithm [60] and the Gibbs’ sampler [62], [64], [65] are examples of MCMC algorithms.  
The versatility of the MCMC algorithms makes them capable of handling radiative problems 
more complex than those described by the simple "pyrometric" equation in eq. (18). As such, 
the reflection contribution could be added in the unknown parameters since a good prior is 
generally accessible. 
More details on MCMC algorithms can be found in the lecture devoted to Bayesian inference. 
 

6. Conclusion 
 
Accurate temperature measurement by radiative means is not an easy task. Many 
parameters have to be evaluated beforehand to extract the surface emitted radiance from the 
measured radiance (atmospheric contributions: self-emission and attenuation, reflections 
from the environment). We then face the problem of temperature-emissivity separation. This 
underdetermined problem requires that some knowledge about the emissivity of the tested 
material is introduced. The general feeling is that multiplying the spectral measurements at 
different wavelengths would help identify the temperature. The underdetermined nature of 
the problem is however invariably maintained. Introducing a model of the emissivity spectral 
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profile is often a misleading idea: high systematic errors inevitably occur when the model 
does not correspond perfectly to the real emissivity profile. Having some knowledge about 
the magnitude of emissivity is much more useful (but unfortunately more demanding) than 
imposing a particular class of shapes. The Bayesian framework is definitely well suited to this 
task. 
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