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Abstract. The aim of this lecture is to present a methodology for enhancing the estimation of 
parameters in the case on a Non-Linear Parameter Estimation problem (NLPE). After some definitions 
and vocabulary precisions, useful tools to investigate NLPE problems will be introduced. Different 
techniques will be proposed for tracking for instance the true degree of freedom of a given estimation 
problem (Correlation, Rank of sensitivity matrix, SVD, ..) and enhancing the estimation of particular 
parameters by using either a Reduced model or a Model with some parameters fixed at their nominal 
values. The resulting reduced model can be unbiased or biased. 

List of acronyms: 
 

• NLPE: Non-Linear Parameter Estimation 

• PEP: Parameter Estimation Problem 

• MBM: Model-Based Metrology 

• SVD: Singular Value Decomposition 

• OLS: Ordinary Least Squares 

• SNR: Signal-to-Noise Ratio 
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metrological process 
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1. Introduction 
 
The Non-Linear Parameter Estimation problem (NLPE) has been the subject of numerous 
lectures during the past METTI schools (see [1]). This text aims first at gathering in a 
synthetic way the basic notions and tools that can be used practically to analyse NLPE 
problems in engineering and science. At the same time, it provides new insights about the 
tools available to: 
 
(i) enhance our knowledge about parameter identifiability in a given problem: which 
parameters can be really estimated in a given experiment and which precision can be 
achieved? 
(ii) track the origin of pitfalls in parameter estimation problems (PEP), 
(iii) offer new perspectives for enhancing the quality of model-based metrology (MBM) in a 
general way. 
 

This lecture is composed of three different parts. The first one gives some definitions and 
vocabulary precisions. The second one presents some useful tools to investigate NLPE: ill-
conditioned PEP will be considered and analysed and the use of SVD to track the PEP’s 
degrees of freedom will be introduced next. The last part of this lecture consists in presenting 
some techniques for enhancing the performances of estimation, such as a dimensional 
analysis for identifying the degrees of freedom of a given problem and a reduction of the 
number of parameters involved in a theoretical model to make the PEP well-conditioned. As 
an example, the case of thermal characterization of a deposit on a substrate will be 
considered here. 
 
2. Some definitions and vocabulary precisions 

 
 Performances of contemporary metrology, that is the science of measurement which 
includes material characterization for example, are not the result of the enhancement of the 
technology of measuring instruments only. They are also the consequence of the significant 
progresses accomplished in the field of Inverse Problems solving, especially when it is based 
on a very large amount of data. These are provided by new tools and by the facilities now 
available for numerical acquisition of experimental signals (CCD detectors allowing for 2D/3D 
numerical data acquisition and high frequency time resolution). Understanding the conditions 
for which parameters can be estimated from the model/measurements pair constitutes also a 
key point for reaching a high-quality estimation. 
 

 Measuring a physical quantity jβ  requires a specific experiment allowing for this 

quantity to "express itself as much as possible" (notion of sensitivity). This experiment 
requires a system onto which inputs )(tu  are applied (stimuli) and whose outputs )(ty  are 

collected (observations). t  is the explanatory variable: it corresponds to time for a purely 

dynamical experiment. A model M  is required to mathematically express the dependence of 

the system's response with respect to quantity jβ  and to other additional parameters 

)( jkk ≠β  : ) ,;( uβtηy =mo  where input function )(tu has been parameterized, that is 

decomposed under a finite set of basis functions, the coefficients of this decomposition being 
gathered in a vector u [8, page 26]. Many candidates may exist for function η  - depending 

on the degree of complexity reached for modelling the physical process - which may exhibit 
different mathematical structure – depending for example on the type of method used to 



 
 
 
 
METTI 7 Advanced School Porquerolles, France 
Thermal Measurements and Inverse Techniques Sept. 29th – Oct. 4th, 2019. 
 

 Lecture 5: Non-linear parameter estimation problems – page 4 / 49 

solve the model equations. Once this model is established, the physical quantities in vector 

β  acquire the status of model parameters. This model (called knowledge model if it is 

derived from physical laws and/or conservation principles) is initially established in a direct 

formulation. Knowing inputs )(tu and the value taken by parameter β , the output(s) can be 

predicted. 
 
 The linear or non-linear character of the model has to be determined: 
 

 A Linear model with respect to its Inputs (LI structure) is such as: 
 

 ))(,;())(,;())()(,;( 22112211 tutytutytututy momomo βββ αααα +=+  (1) 

 
 A Linear model with respect to its parameters (LP structure) is such as: 

 

 ))(,;())(,;())(,;( 22112211 tutytutytuty momomo ββββ αααα +=+  (2) 

 
In a metrological problem referred here as MBM (Model-Based Metrology), observations of 
the outputs will be provided by measurements. The inverse problem consists in making the 

direct problem work backwards with the objective of getting (extracting) β  from 

))(,;( tutymo β  for given inputs and observations y . This is an estimation process. The 

difficulty stems here from two points:  
 

(i)  Measurements y  are subjected to random perturbations (intrinsic noise ε ) which 

in turn will generate perturbed estimated values β̂  of β , even if the model is 

perfect: this constitutes an estimation problem. 
(ii) the mathematical model may not correspond exactly to the reality of the 

experiment. Measuring the value of β  in such a context leads to a biased 

estimation, where the bias is defined as trueˆBias ββ −= )(E , E ( β̂ ) being the 

expectation of the (stochastic) estimator β̂ : this gives rise to an identification 

problem (which model structure η  to use ?) associated to an estimation problem 

(how to estimate β  for a given model structure?). 

 
The estimation/identification process basically tends to make the model match the data (or 
the contrary). This is made by using some mathematical "machinery" aiming at reducing 
some gap (distance or norm)  
 

) ,;(- )( uβtyyβr mo=     (3) 

 
 One of the obvious goals of NLPE (Non-Linear Parameter Estimation) studies is to 

assess the performed estimation through the calculation of the variances )(β̂V  of the 

estimators of the different parameters. If the probabilistic distribution law of the noise is 
known, this allows to give the order of magnitude of confidence bounds for the estimates. 
NLPE problems require the use of Non-Linear statistics for studying such properties of the 
estimates. 
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 Because of the two above-mentioned drawbacks of MBM, the estimated or measured 

value of a parameter jβ  will be considered as "good" if it is not biased (or if its relative bias is 

low) and if its variance is minimum. Quantifying the bias and variance is also helpful to 
determine which one of two rival experiments is the most appropriate for measuring the 

searched parameter (Optimal experiment design). In case of multiple parameters (vector β ) 

and NLPE problems, it is also interesting to determine which components of vector β  are 

correctly estimated in a given experiment. 
 
3. Useful tools to investigate NLPE problems 
 
3.1. Sensitivities 

The central role of the sensitivity matrix in PEP has been shown in the preceding lecture 
(Lecture 3). In the case of a single output signal y  with m  sampling points for the 

explanatory variable t  and for a model involving n  parameters, the sensitivity matrix is 

( )m n×  defined as 

  
jk,tj

nom
imo

ji

k

ty
S

≠
∂

∂=
for

);(

β
β
β

 (4) 

As the problem is NL, the sensitivity matrix has only a local meaning. It is calculated for a 

given nominal parameter vector nomβ . 

If the model has a LP structure, this means that the sensitivity matrix is independent from β . 

It can be expressed as (Lecture 3) 

 jj

n

j

mo tSty β)();(
1


=

=β  (5) 

The sensitivity coefficient )(tS j  to the thj  parameter jβ  corresponds to the thj  column of 

matrix S , once m discrete observation times have been chosen.  

 
The primary way of getting information about the identifiability of the different parameters is 
to analyse and compare the sensitivity coefficients through graphical observations. This is 

possible only when considering reduced sensitivity coefficients 
*

jS  (sometimes called 

"scaled" sensitivity coefficients) because the parameters of a model do not have in general 
the same units. 
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Or 
 

 RSS =*  (6b) 

 

with R  the square diagonal matrix whose diagonal is composed of the components jβ  of β . 
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TOOL Nr1: A plot of all the reduced sensitivity coefficients )(tS*
j  gives a first idea 

about the most influential parameter for a given model (largest magnitude) and about 
possible correlations (sensitivity coefficients following the same evolution). 
 
Example: Measurement of thermophysical properties of a coating layer through the Flash 
method using thermal contrast principle (Number of parameters 2=n ). 

 
 

Figure 1 : Basis of the “thermal contrast” method 

The thermal contrast method requires the repetition of two "flash" experiments A and B 
(Figure 1). The first one is operated on the substrate only (index (2)) whose thermophysical 
properties are known. The second experiment is performed on the two-layered sample (index 
(1)/(2)). In both cases, one records the rear face temperature evolutions. The thermograms 
so obtained are normalized with respect to their maximum and the difference of the scaled 

thermograms 
A

T  and 
B

T  is computed to produce the thermal contrast thermogram. This 

latter is a function of the thermophysical properties of the coating (1) and of the substrate (2) 
through two parameters: 

222

111
2

1
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2

1
1 and

c

c
K

a

a

e

e
K

ρλ
ρλ==    (7) 

The observable (contrast curve) and the reduced sensitivity coefficients to 1K  and 2K  are 

plotted in Figure 2. They show (i) that the sensitivities have the same order of magnitude as 
the signal (a good thing) but unfortunately (ii) these sensitivities appear to be totally 
correlated, since their maxima occur at roughly the same time (a bad thing). In this case, this 

simple plot shows that sensitivities to 1K  and 2K  are likely proportional and therefore that 

the identifiability of both parameters is impossible. This example will be more thoroughly 
modelled and studied in section 4 of this lecture.  

 

Experiment       A 

ϕ 0 
(2)
 

a λ ρ  C p T A 

experiment  B 

ϕ 0 
(2
  

 
e1 

e
 2 
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Figure 2 : Reduced sensitivity coefficients for  36110 21 .Kand.K ==  

 

3.2. Variance/Correlation matrix 
To go further and to investigate more deeply the PEP, the statistics of the estimator must be 
analysed. This can be made when (i) an estimator has been chosen (that is, a method to 
derive estimated values for the different parameters from the experimental signal), and (ii) 
the statistical properties of noise ε  are known (according to experimentally founded 

observations). 
 
We assume that the noise on the experimental signal is additive (this is in fact the definition 
of a noise), unbiased (which means that its stochastic average, its expectation is zero, for an 

unbiased model structure η of course) and independent (which means that the noise taken at 

two different times are independent) and has a constant variance 
2σ  : this is sometimes 

called a IID. (Independent and Identically Distributed) noise, which occurs for perfect 
measurement with an ideal sensor. This corresponds to 
 

miimoi tyy Iεεβ 2)( cov;)(E;);( σε ==+= 0    (7) 

 

where mI  is the identity matrix of size m (number of measurement points). 

According to Beck's taxonomy (see [2] p. 134 and chapter VII), these assumptions 
correspond to the set "1111—11" with the following additional precisions: non stochastic 
independent explanatory variable (time), and no prior information for the parameters. 

The OLS (Ordinary Least Squares) estimator OLSβ̂  minimizes the least square sum, which 

gives: 

  ( )
=

−===
m

i

imoi

T

OLS ,tyy,,,J
1

22
);();();();()( uβuβtruβtruβtrβ  (8) 

Where: 

  );();( uβtyyuβtr ,, mo−=  (9) 

are defined as the residuals. 
 
The estimator expression is found through a minimization process, where the jth equation, 
also called “normal equation” is: 
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  n...,,,jˆtJ j
OLS

OLS 21for0),( ==∂∂ ββ  (10a) 

 

verified. If the global minimum of )(βOLSJ  is reached, the OLS estimator is unbiased, which 

means that the statistical mean of repeated estimated values β̂  is equal to the exact 

parameter vector β . 

 
Lecture 3 describes the behaviour of such an estimator for a LP model where the 
calculations can be fully completed to get an explicit linear OLS solution: 
 

( ) ySSSβ TT

OLS
ˆ 1−

=     (11b) 

 
In the case of a NL structure, the minimum is found through an iterative process using local 
linearity (Gauss-Newton algorithm basically, see [3]) of the form: 
 

  ( ))( )()(
1

)()()()1( k
mo

TkkTkkk
OLSOLSOLS

ˆˆˆ βyySSSββ −




+=

−
+  (11) 

The iterative process (12) requires computing the inverse of matrix SST at each iteration k. 

Therefore, this latter must offer a good enough conditioning through repeated iterations. This 
is possible if the sensitivity coefficients are non-zero and linearly independent. Without any 
specialized and dedicated tool, this iterative process can be stopped when the residuals 

norm rrT  is of the same order of magnitude as the measurement noise, that is when: 
 

2)( )( σmˆJ k
OLS ≈β  (12) 

 
At convergence, the standard deviation of the error made for the estimated parameters can 
be evaluated thanks to the (symmetrical) estimated covariance matrix of the estimator. It 
characterizes the precision that can be reached on the estimated parameters (its inverse is 
sometimes named the precision matrix) and depends on the statistical assumptions that can 
be made on the data. In view of an OLS estimator, this matrix is  
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(13) 

 
It depends on the level of the Signal-to-Noise Ratio (SNR) and brings into play the inverse of 

the SST  matrix, already pointed out as a decisive operation for an accurate estimation. 

Matrix SST , which is also called the Fisher's information matrix with assumptions (8), 

depends on the number m  of measurement points and on their distribution along the 
estimation interval, which may also be optimised if necessary [2]. The diagonal coefficients 

are the squares of the estimated standard deviation of each parameter 2

jβ̂σ . They quantify 

the error that one can expect through inverse estimation. This is true if the assumptions 



 
 
 
 
METTI 7 Advanced School Porquerolles, France 
Thermal Measurements and Inverse Techniques Sept. 29th – Oct. 4th, 2019. 
 

 Lecture 5: Non-linear parameter estimation problems – page 9 / 49 

made for the noise are consistent with the experiment. The problem being NLP, retrieving 
these optimum bounds through a statistical analysis may depend on the starting guesses 
made to initialize the estimation algorithm. This matrix can also be an indicator for detecting 
possible correlations between the parameters. An estimation of the correlation matrix is 
calculated according to: 
 

















≈
⋱⋮⋮

⋯

⋯
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1

)( ij
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ˆ ρ
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βcor  all terms being the result of 
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)cov(

ji
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ji
ˆ,ˆ

ββ σσ

ββ
ρ =  

 
 

(14) 

 
The correlation coefficients (off-diagonal terms) correspond to a quantification of the 2 by 2 

correlation existing between the two estimations of parameters iβ  and jβ  and, more 

precisely, between their errors (let us note that other forms of correlations involving more 
than 2 sensitivity coefficients exist, that is the multiple collinearity problem, which is detailed 
in section 3.3.2 further down). They vary between -1 and 1. They are global quantities (in 

some sense, “averaged” over the considered estimation interval, the whole [ ]mt,0  here). 

Gallant [4] suggested that difficulty in computation may be encountered when the common 
logarithm of the ratio of the largest to smallest eigenvalues of cor exceeds one-half the 
number of significant decimal digits used by the computer. 
 
A more practical hybrid matrix representation Vcor can be constructed. It gathers the 
diagonal terms of the covariance matrix (more precisely their square root, normalized by the 
value of the estimated parameter) and the off-diagonal terms of the correlation matrix.  
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(15) 

 
 

TOOL Nr2: Matrix )(β̂Vcor  gives a quantitative point of view about the identifiability of 

the parameters. The main interest of this matrix lies in its diagonal coefficients, the 
relative standard deviation of the estimations of each parameter: these can be 
calculated independently from their physical units. These standard deviations of the 
estimated parameters are the stochastic root mean squares of the errors that are 
caused by the sole stochastic character of the IID noise, for an unbiased model.  
 
The off-diagonal terms (correlation coefficients) are generally of poor interest because of 

their too global character. Values very close to 1±  may explain very large variances (errors) 
on the parameters through a correlation effect. 
 

NB: Another matrix, )(rcov β̂  defined in equation (35) further on, is also very useful for 

assessing the quality of a potential inversion. Its diagonal coefficients are the squares of 

those of  )(Vcor β̂ , but its off-diagonal coefficients are different. 
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Example: Here are two Vcor  matrices taken from [1]. They were obtained for the same 

NLPE problems and for the same given set of nominal values of the 3=n  parameters but 

considering two different observables A and B (two different locations of the temperature 
measurements). 
 

















=
0.029

0.989-0.0066

0.999-0.9940.027

)(Vcor
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β̂A  










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





=
0.0042

0.93-0.0008

0.630.38-0.0002

)(Vcor



β̂B  

Observable A Observable B 
 
In the case of observable A, high relative standard deviations (nearly 3%) is observed for 

parameters 1β  and 3β  : it can be explained by a high degree of correlation between them 

( 999013 .=ρ ). Observable A can clearly not be used for estimating these parameters. On 

the contrary, observable B offers good identifiability for all parameters (small relative 
standard deviations) and does not show any 2 by 2 correlation. 
 

3.3. Ill-conditioned PEP and strategies for tracking true degrees of freedom 

3.3.1. Pathological example of ill-conditioning resulting from correlated parameters. 

 The good identifiability of parameters can be related to the local convexity of the cost 

functional )(βOLSJ  in the hyper-parameter space. One obvious consequence of a correlation 

between parameters is that several local minima may exist and make estimation algorithms 
consequently fail. The discussion that follows here is taken from an example of parameter 
estimation in a case of coupled radiative-conductive heat transfer [5]. The thermal 
characterization of a semi-transparent material implies a model depending on three basic 

parameters at least: the thermal diffusion characteristic time a/etd
2= , the dimensionless 

optical thickness 0τ  and the dimensionless Planck number N  (explanations to follow in 

section 4.1) and so [ ]T

d N,t 0, τ=β . The estimation of the three parameters in this NLP 

problem may be difficult for some range of values of parameters 0τ  and N  where matrix 

)(Vcor β̂  shows that a high degree of correlation between these two parameters exists, 

whereas the value of parameter dt  remains unconcerned. 

 

A plot of the OLS criterium )(βOLSJ  in the 2D space ( )N,0τ  for a given dt  value and a given 

noise σ  (Figure 3) makes the consequence of such bad conditioning quite clear. 

 
All level sets draw a very narrow valley oriented along a line which graphically corresponds 

to the relation 02 τ≈N . A 3D plot would show that the central line of this valley does really 

correspond to a descending slope and hence that no real minima can be found. The level set 

indicated in the figure corresponds to exactly 2070)( σm.JOLS ==β . Trying to make the 

iterative optimization algorithm works below this limit for the stopping criterion is useless. In 
other words, the larger the noise, the higher the stopping level-set should be.  
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Figure 3 : Level sets for )(βOLSJ  in the ( )N,0τ  parameter space 

 
In the present case, this will not change the identifiability criterion. Depending on the initial 
guesses for the parameters, the deterministic algorithm will find different minima and different 
parameter estimates.  
 

The four local minima are presented as big dots in Figure 3 and correspond to the 3 
parameters whose values are given in Table 1. Let us note that the local minimum Nr 4 Table 
4) has been obtained with a stochastic algorithm (Simulated Annealing) different from a 
deterministic gradient based minimization algorithm used for finding the first 3 local minima.  
This shows that when the problem is ill-conditioned, stochastic algorithms are of little help for 
a correct estimation process (contrary to what is usually believed).  
 

Such a behavior is more likely the result of a model which is not adapted to the physics 
involved. In the present case, it is interesting to note in Table 1 that all local minima that were 

found follows the relation Constant1)( 00 =+ ττN . 

 

Parameter 
vector 

components 

Local Minima 

 
(found using either 

deterministic or stochastic 
algorithms) 

 N°1 N°2 N°3 N°4 

a  (107 m²/s) 5.2 4.9 5.85 4.8 

N  0.6 0.74 0.16 0.82 

0τ  0.38 0.5 0.076 0.56 

Rr = ( )1
N

0
0

Pl +τ
τ

 2.18 2.22 2.26 2.28 

 

Table 1 : Example of local minima found β̂  
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In fact, an approximate modeling for conductive-radiative transfer in optically thin media can 
be shown to be more pertinent and more parsimonious. It makes naturally arise the notion of 

radiative resistance rR  which can be expressed as 00 1)( ττ += NRr . This resistance is the 

appropriate parameter in this limiting behavior and prove that there is no way to identify 

independently 0τ  and N  (Many different pairs are able to produce the same value for rR ). 

 
 
TOOL Nr3: For an independent noise with known standard deviation and for a given 
model, it may be interesting to look at the level-set representation of the optimisation 
criterion in appropriate cut planes (for a given pair of parameters if n > 3) and compare 

it with the minimum achievable criterion given by 
2

J mσ= , where m is the number of 
measurements.  

3.3.2. Rank of the sensitivity matrix.  

We focus here on the scaled (or reduced) sensitivity matrix (see definition in equations (6a) 
and (6b)). This (m, n) matrix is composed of n  column vectors, the reduced sensitivity 

coefficients *
jS : 

[ ]
jk,j

nom

j
*
j

*
n

***

k ≠
∂

∂==
for

21

);(
with

β
β

β
t

βtη
SSSSS ⋯  (16) 

where t is a column vector composed by all the m times of measurement: 

[ ]T

mttt ⋯21=t     (17) 

These n column vectors *
jS  are in fact just the components of a set of n vectors *

jS
�

in a m-

dimension vector space. One can recall here that this set of vector Σ = { *
1S
�

, *
2S
�

,…, *
nS
�

} is 

linearly independent only if m coefficients jα  exist such as: 

njjj

n

j

*

jj ≤≤==
=

1withanyfor0
1

αα 0S   (18) 

 
This means that a linear combination of all these m vectors is equal to zero only if all its 

coefficients (the jα 's here) are equal to zero. If it is not the case, system Σ is linearly 

dependent. Let us note that the presence of a null vector in the  set of vectors Σ  makes it 

linearly dependent: such a null vector *
jS
�

 would correspond here to a parameter that has no 

influence on the variation of the model output, (the very specific case of a parameter jβ  

rigorously equal to zero is discarded here).  
 

So, if the set is dependent, one has to remove one vector *
jS
�

 from the original set Σ and try 

again to test the independence condition (19) with the n-1 remaining vectors. This can be 
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made with the n possible choices for the vector *
jS
�

that is removed from set Σ. If one finds 

one such independent set of n-1 vectors, the rank of the set is n-1. In the opposite case, one 

has to test the independence with n-2 vectors and so on... The rank r of Σ is the larger 

number of vectors for an independent subset of Σ that can be formed with the n original 
vectors. 

 In order to illustrate this, we will assume that m = n =2 and that the model is linear. This 

corresponds to two observations of a model with two parameters β1 and β2. This leads to the 

set of two sensitivity vectors Σ = { *
1S
�

, *
2S
�

} from which the situations shown in Figure 4 can be 

considered: 

 

 
 

Figure 4 :  Reduced sensitivity vectors: 

a - independent sensitivities (r = n = 2) b - dependent sensitivities c- nearly dependent sensitivities 

Case a corresponds to linearly independent sensitivity coefficients: the rank of Σ is equal to 

2. It is also the rank of the reduced sensitivity matrix *S  and hence the rank of the sensitivity 

matrix, since RSS =*  (where R is the square diagonal matrix with two  diagonal 

coefficients  1β  and 2β according to equation 7). One can say that the observations of the 

model output provide two degrees of freedom since two parameters can be estimated.  

Case b demonstrates a pathological nature of the sensitivity coefficients: they are 

proportional, with *
2S
�

= 2 *
1S
�

(one sees that the choice α1 = 2 and α2 = -1 in (19), which allows 

to show that the set of vectors Σ is not independent) and estimation of both coefficients is not 

possible anymore. In this case, the rank of *S and hence the rank of S is r = 1 and the 

determinant of the information matrix SS T is equal to zero. This means that the explicit value 

of OLSβ̂ , in the linear case (see equation 11b) and with a noise of spherical covariance 

matrix, which requires an inversion of the information matrix, is not possible. The same is 

true for the calculation of the variance-covariance matrix of OLSβ̂ : the observations of the 

model output provide only one degree of freedom and only one parameter can be estimated, 
if the value of the other one is known. 
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Case c lies in between: the two reduced sensitivity vectors are nearly proportional *
2S
�
≈ 2 *

1S
�

. 

Even if the mathematical rank is still equal to 2 (the previous equality is not an exact one), 
one guesses that the number of degrees of freedom is somewhere between one and two and 
a more refined statistical analysis, taking into account the noise level in the measurements, 
has to be implemented.  
 

Let us note that it is possible to test the presence of two nearly proportional vectors in set Σ, 
in the very general case, with of course a number of parameters less or equal to the number 

of observations ( mn ≤ ), by testing the assumption 0or
���

≈=− *
jjk

*
k c SS , where jkc  is a 

proportionality constant: a plot of )( i
*
k tS as a function of )( i

*
j tS , for the m common values 

it of the independent variable where observations are available (parametric representation of 

a curve) shows whether the plots gather on the )()( tSctS *
kjk

*
k = line or not.  

 
As an example of this type of representation, Figure 5 illustrates the case taken from [1] of a 

1D rear face transient response of a low insulating sample (conductivity λ) sandwiched 
between two very thin copper layers. The knowledge model (RDM1 in [1]) assumes pure 
thermal resistance for the insulating layer and pure known capacities for the copper layers. 
The front face is stimulated by a Dirac pulse of energy Q (J.m-2),  with a heat loss coefficient 

h (W.m-2 K-1) equal over its two faces: the sensitivities to the three parameters Q, λ and h 
seem to be qualitatively independent, but only in terms of  two by two linear dependencies: 
this does not mean that the rank of the reduced sensitivity matrix (if only these three 
parameters are looked for) is equal to three, because three by three linear dependencies 
may be possible.  
 
This aspect, a possible dependency between the three sensitivity coefficients, is shown in 
Figure 6, for the same experimental design: a linear combination of the form 

0or22113

����
≈=−− *** cc SSS  is looked for between the three sensitivity coefficients (for β1 = Q, 

β2= h and β3 = λ) and a linear OLS estimation of 1c  and 2c  is made using the )(1 i
* tS 's and the 

)(2 i
* tS 's as the new independent variables and the )(3 i

* tS 's as new observations. The 

corresponding )(3 i
* tS values are plotted as a function of the recalculated values (optimal 

linear combination) of the corresponding model, )()( 2211 tSĉtSĉ ** + : since the corresponding 

curve is very close to the first bisecting line, a qualitative 3 by 3 possible linear dependency 
is detected.  
 
However, one can wonder how this dependency would impede the estimation of the three 
parameters: this has to be confirmed by a calculation of the covariance or Vcor  matrix of the 

corresponding estimations, as explained in 3.2.  
 
So, we will focus here on nonlinear parameter estimation problems where local linearization 
concepts as well as a Singular Value Decomposition of matrix deserve to be introduced.  
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Figure 5 :  Sensitivities plotted by pairs 
Figure 6 :  Evidence of Linear Combination 

between all three parameters 

3.3.3.  Generalization: Use of SVD to track PEP degrees of freedom 
 
It has been shown previously (see Lecture 3) that the question of identifiability of the 

parameters of a model relies on the condition number of the information matrix SST  if the 

physical units of the parameters are the same and of its scaled form *T* SS  if it is not the 

case. However, a systematic tool for tracking down hidden correlations is lacking. Such a tool 
will be presented now to circumvent this problem. Ultimately it will allow determining which 
parameters it is wise to exclude from the estimation (metrological) process, in order to get 
better estimates of the remaining ones.  

 
In the next section two sequential steps will be presented.  
 
First, in order to use all the tools available for linear estimation (see Lecture 3) on which  the 

iterative OLS estimation (12) is based, the differential moyd  of the model will be calculated 

around a reference point nomβ , that is a nominal value of the parameter vector for which a 

sensitivity analysis has been carried out (see previous sections) and the original parameter 

vector β  will be made dimensionless using the components of nomβ : a reduced parameter 

vector x with a well-defined norm will be constructed. 
 
Second, Singular Value Decomposition (SVD) will be applied to the reduced sensitivity matrix 

of the "tangent" local linearized model around nomβ , the ultimate goal being the 

determination the r parameters that can be estimated in a problem with n original parameters 
(with rn ≥ ), when the levels of the measurement noise and measurement magnitude are 

known (SNR).  
 

The non-linear model );( βtmoy is still considered here with m  available measurements. 
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3.3.3.1. Parameterizing a non-linear parameter estimation problem around the nominal 
values of its parameters  

 
The following single-output non-linear model is considered here: 
 

);( βtymo η=       (19) 

 

where β  is the column vector of the n parameters, of size (n, 1), moy  its (scalar) output at 

time t and η  is a scalar function of t . If m observations of moy  are available for times ti, one 

can use a column vector notation: 
 

);( βtηy =mo       (20) 

 

where moy is the output vector of the model, of dimensions (m, 1) and t the column vector of 

the m times of observation. In the relation, )(.η is a vector function whose values belong to 

Rm. 
 
Since the model is non-linear, it will be written under a differential form, in the neighbourhood 

of a reference point nomβ , which corresponds to a nominal value, where a sensitivity study 

has been already implemented. This allows to use a local linearity: 
 

ββtSy d) ;(d nom
mo =       

jkfor,j

nom
i

ji

k

t
S

≠
∂

∂=
β

β
η

t

β ) ;(
with  (21) 

 

Let us note that in the notation moyd , the column vector t of the measurement times has 

been "frozen". S is the sensitivity matrix. 
 

[ ]
  for

21

);(
with

jk,j

nom

jn

k ≠
∂

∂==
β

β
t

βtη
SSSSS ⋯   (22) 

 

In (22), the column vector moyd  has a norm, because all its m components have the same 

physical units. However, such is not the case for column vector βd , which is only a column 

matrix composed of n parameters whose physical dimensions are not necessarily the same: 

1dβ  is a very small variation in the neighbourhood of nom
1β , which can be a thermal 

conductivity λ . 2dβ  a very small variation around nom
2β , which can be a volumetric heat 

capacity ρc and so on … 
 

So βd  is not really a vector belonging to any vector space of dimension n, but a simple 

collection of n parameters. 
 
In order to transform it into a real vector, a normalization of all its elements is necessary. The 

components of nomβ will be used for that purpose. A new dimensionless parameter x is 

introduced.  
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Its components are defined by: 
 

( )nom
jjj /x ββln=     (23) 

 
And its nominal value is equal to zero:  
 

[ ]Tnom 000 ⋯== 0x    (24) 

 

In the neighbourhood of nomβ , each component of x is equal to the relative variation of the 

corresponding component of β  around its nominal value (first order series expansion): 

 

( )
nom
j

nom
jj

nom
j

nom
jjnom

jjj /x
β

ββ
β

ββ
ββ

−
≈













 −
+== 1lnln    (25) 

 
The new parameter vector x is written the following way: 
 

( ) ( )nom
nomnom ββRβRx −≈= −− 11ln      (26) 

 
with : 
 

 












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


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nom

nom

nom

β

β
β

⋯

⋮⋱⋱⋮

⋱

⋯

00

00

00

2

1

R      (27) 

 

With this definition, the differential dx of x is the logarithmic differential of β : 

 

[ ] )(lnd
dd

dwithdddd 21 j

j

j

nom
j

j
j

T
n xxxx β

β
β

β
β

=≈== ⋯x   (28) 

 

Let us note that the very last equality is only valid in the neighbourhood of nomβ . It can also 

be written with a column vector notation: 
 

βRβRx ddd 11 −− ≈= nom     (29) 

 

where R is the square diagonal matrix whose diagonal is composed of the components of β , 

in the same way as (28) for the definition of nomR  starting from nomβ . 

 
Equation (22) is rewritten in order to make xd appear: 

 

nommo ** RSSxSy == withdd     (30 a-b) 
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*S  is the reduced sensitivity matrix calculated for nomβ , see (17, 23).    

 

So, moyd is a column vector belonging to mR  (it can be made truly dimensionless by a 

division by );( nomβtη  but it is not necessary here) and xd  is a true column vector 

belonging to mR  because its norm can be defined. 
 
Using this change of variable as well as the SVD decomposition (see Appendix 1) of the 

scaled (also called reduced) sensitivity matrix *S , one can show that equation (31a) can be 

used to get a first order development in the neighbourhood of nomβ (see Appendix 2 for the 

demonstration): 
 

( )[ ] ( ))(-)(- 11 nom
momo

T
nom

nomnom
momo

T
nom βyyUWVRββyyUWVRβ −− +=+≈ 1

 (31a) 
 

with the following SVD decomposition:  Tnom* VWUβS =)(    (32b) 

 
Equation (12), that gives the Gauss-Newton algorithm can also be recast in terms of the 
scaled parameter x: 
 

( ) ( ))()()()(
1 nom

mo
nomT*nom*nomT*ˆ βyyβSβSβSx −=

−
   (33) 

 

This expression is equivalent to equation (12) where one has replaced the left-hand side β  

by its estimated value β̂  for a single iteration number k for 1)-(k(k) and ββββ ˆˆˆ nom == . The 

complete demonstration is given in Appendix 3. 
 

In a similar way, the variance-covariance matrix of scaled vector x̂ can be derived from (33) 
and (32b), see Appendix 4: 
 

( ) TT

nomnom
ˆˆ VWVRβRx 2211 )(cov)(cov −−− == σ    (34) 

 

One can note that, by definition, matrix  )(cov x̂ is the reduced (or scaled) covariance matrix 

of β̂ , which can be called rcov( β̂ ): 
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One also shows, in Appendix 4, that the trace of )(cov x̂ , that is the sum of the square of the 

relative standard deviations of all the estimations jβ̂ , at convergence, is equal to the sum of 

the square of the inverses of the singular values of *S , with a multiplicative factor equal to 

the variance 2σ of the IID noise: 

 

( ) ( ) 
==

=≡
n

k k

n

j

nom
jj

w
/ˆ

1

2

2

1

2 1
)(covTr σβσ βx   (36) 

 

This allows to define a criterion qm  that assesses the global precision of the estimation: 
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σβσ β x (37) 

 

qm  is the root mean square relative standard deviation of the different parameters. So, it 

can be expressed in percent. If a specific parameter is estimated with a high relative 

variation, this will have an effect of qm  that will get large. The advantage of this criterion is 

that it takes into account the level of the measurement noise, contrary to the condition 

number of the relative sensitivity matrix n
* ww /)(cond 1≡S  (see Lecture 3). It is quite easy 

to find an upper and a lower bound for it: 
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=

21

1
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  (38) 

 
Other points about this criterion that allows to study the well-posedness of a non-linear 
parameter estimation problem are given in Appendix 4. 
 
 
 
TOOL Nr4: The SVD of the normalized sensitivity matrix calculated for nominal values 
of parameter vector β  can bring valuable information to quantify the real identifiability 

of the parameters, once the level of noise known.  
 

3.3.4 Residuals analysis and signature of the presence of a bias in the metrological 
process 

One way to analyse the results of an estimation process is to calculate the residuals 
(equation 10) at convergence, when the assumptions (8) are fulfilled (an IID noise). When 
the model used for the estimation is not biased, the calculation of the residual column vector 

)(βr ˆ whose kth coefficients is the residual );( β̂tr k  at time kt  is: 
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)()()()()( exact
mo

exact
momo

ˆˆˆˆ ββSεβyεβyβyyβr −−≈−+=−≡  with )(βSS ˆ=    (39) 

One shows in Appendix 5 that, strictly speaking, the residuals, when the model is unbiased, 
are correlated but, in practice, adding more measurements times for a given estimation 
interval tends to make them nearly uncorrelated. This is especially true for thermal 
characterization of materials or systems, where the number of parameters is low (2, 3, 4, ...) 
and the time sampling rate high enough with respect of the length of measurement (several 
hundredth of measurements at least for modern data acquisition systems). 

So, when these previous conditions are fulfilled, "signed" residuals can be considered as the 
signature of some estimation based on a biased model. 

This bias can stem from different causes such as: 

(i)  the a priori decision that some parameters of the model are known and therefore 
fixed at some given value (maybe measured by another experiment). As active 
parameters in the PEP, they can alter the estimates of the remaining unknown 
parameters.  

(ii) Experimental imperfections which make the model idealized with respect to the 
reality of the phenomena.  

 
The existence of a bias means that a systematic and generally unknown inconsistency exists 
between the model and the experimental data. 

We give here an example taken from [1] and already studied in section 3.3.2 above. It 
concerns the simulation of a flash experiment applied to a three-layer medium: two highly 
capacitive and conductive coatings and a central layer made of a material with very poor 
conductivity (highly insulating material) and heat capacity (aerogel material). This system can 

be modelled through some function ),( βtyT mo
rear = . An artificial bias )(td  is introduced 

under the form of a linear drift superimposed to the output simulated observations. It 
corresponds practically to a linear deviation of the signal from the equilibrium situation before 
the experiment starts. So, the correct model that should be used to mimic the observed rear 
face measurement should be: 

)();(),( k
exact

kmo
exact

k
drift
mo tdtyty += ββ    (40) 

A noise respecting equation (8) is also added to the simulation of the measurements so that 

we have at each time kt :  

k
exact

k
drift
mok tyy ε+= ),( β     (41) 

 

Of course, model ),( βtymo  is exact if no drift is present in the experiment. However, in the 

opposite case, it becomes biased, since it does not account for the presence of this drift.  
 

Let us note that in this definition, the drift model is the reference one ( drift
mo

exact
mo yy = ) and the 

preceding thermal model is the biased one ( mo
biased
mo yy = ). 
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If this biased model is used for estimation, the minimization will be done by a minimization of 
the following criterion based on a biased residual vector: 
 

dβyyβyyβrβrβrβ +−=−≡= )()()(with)()()( drift
momobiasedbiased

T
biasedbiasedJ  (42) 

 
As a consequence, at convergence, the error on the estimated parameters vector will have a 
deterministic part and a stochastic part: 
 

00 ==+≈−≡ dbεAbββe ifwith βββ
exactbiasedˆ   (43) 

 
where A is a matrix that corresponds to the linearization of the inverse problem with respect 

to the noise in the neighbourhood of the exact value of exactβ and βb  a bias of non-zero 

average, that stems from the presence of the drift d.  
 
As a consequence, the residual defined in (42) can be calculated, at convergence, using 
(43): 

)()()()( biased
mo

exactdrift
momo

biased
biased

ˆˆ βyεβyβyyβr −+=−≡  (44) 

 

or 
 

)()( εAbβyεdβyr ++−++= β
exact

mo
exact

mobiased    (45) 

 

A first order development of the last term around the exact value exactβ yields: 

 

[ ]εAbβSβyεdβyβr +−−++= β)()()()( exactexact
mo

exact
mo

biased
biased

ˆ  (46) 

 
or 
 

[ ] εAβSIbβSdβr )(-)()( exactexactbiased
biased

ˆ ++= β  (47) 

 
This means that the residuals are biased, because of their first deterministic component, 
even if its second stochastic one may be diagonal. 

 
We return here to the estimation problem described in section 3.3.2 (flash experiment on a 
three layer sample for the inner insulating layer characterization): we have seen that the  
model used for parameter estimation was ill-conditioned: some correlation exists between 
the parameters (Case 3=n  corresponding to the correlation existing between parameters 

shown in Figure 5 and Figure 6). Figure 7 below shows that  
 

•  the simulated rear face noisy output of the system, with the drift and some added 
noise (dotted curve), 

•  the corresponding rear face recalculated output using the biased estimate 

β̂ (obtained through minimization of criterion (42)) - (blue solid line), 
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•  the drift of the model output (function )(tby ) introduced (brown solid line) . At the 

final time of the experiment ( s1000=ft ), the magnitude of the drift represents less 

than 4% of the maximum level of the signal, 

•  the residuals curve, with the noised signal (minimization of criterion (42), grey 
stochastic line), and after removing the noise, that is with the same estimation 
process starting from a noiseless signal, that is with 0=ε , blue solid line). 

 

  
 

Figure 7 :  Signed character of "post-estimation" residuals in the presence of a bias and 
using a badly conditioned PEP  

 
The "signed" character of the residuals is obvious (oscillation around zero with a much 

smaller frequency than the noise). The three parameters estimated ( λandh,Q ) using these 

biased "measurements" have averaged values (obtained by repeated Monte Carlo simulated 

measurements) that differ respectively by % 18- , % 7.5- , % 91+  from the exact  input 

values. These differences are not of stochastic origin (caused by noise only) but result from 
the introduction of the bias.  
 
One possibility for the experimenter who wants to check whether his estimations are biased 
or not, is to observe the output of the inversion process for varying identification ranges of 
the independent variable. For example, we can vary the identification time interval. If a bias 
affects the data when compared to the modeling, then the estimations will vary, depending 
on the selected identification interval. This is what can be observed in Table 2 where three 
identifications have been performed for three different time intervals [0-70s], [0-150s], [0-
300s]. In this case we have used a more refined model than the one used for Figure 7  and 
thus a more badly conditioned PEP. In this table both thermal properties of the insulating 
material (thermal conductivity and thermal diffusivity) were estimated from the biased data.  
 
Obviously with such a material, the small heat capacity makes a good estimation of this 
parameter difficult, but sadly (because of a lack of sensitivity) this also affects the estimation 
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of the second parameter. The thermal diffusivity and conductivity estimated from the data of 
Figure 7 depend strongly on the identification intervals. The values can change within a 
factor of 60% or 170% in that case. 

 

Time Interval 70 s 150 s 300 s 

a (m²/s) 3.76.10-6 3.22.10-6 2.21.10-6 

λ (W/m/°C) 0.031 0.064 0.084 

 

Table 2 : Influence of the existence of some bias on the parameter estimates for a 
badly conditioned problem 

 
TOOL Nr5: The "post-estimation" residuals have to be analysed carefully to check the 
potential existence of a bias of systematic origin. Its magnitude can be compared to 
the standard deviation of the white noise of the sensor in order to check whether this 
bias may introduce too large confidence intervals for the estimates (with respect to 
the pure stochastic estimation of the variances of parameter estimates in the absence 
of any bias). Invariant estimates for different identification intervals suggest that the 
bias is acceptable. In the opposite case, strategies must be implemented, either to 
change the nature of the estimation problems (reduction of the initial goals) or to use 
residuals to give a fair quantitative evaluation of the confidence bounds of the 
estimates. Some hints on that topic will be given in the next section. 
 
4. Enhancing the performances of estimation 

 
Some tools have been given above: they can help the experimenter to gain insight into its 
metrological problem. They can lead to a conclusion of failure: the problem is ill-conditioned 
regarding the estimation of the interesting parameters. This means that the parameters we 
initially wish to measure will actually never be estimated accurately. Two strategies are 
possible: recognizing that the initial goal is in vain or modifying the problem through physical 
thinking to make it well-posed or adequately conditioned even by changing the goals 
themselves (number of parameters to estimate). Quoting J.V.Beck [2]: "the problem of non-
identifiability can be avoided, through either the use of a different experiment or a smaller set 
of parameters that are identifiable".  
 
This position emerges from the well-known parsimony “principle” (see 
http://en.wikipedia.org/wiki/Parsimony) which in the field of science could be summarized by 
this sentence : “trying to perfectly recover reality is indeed very easy, when one adds 
parameters to each other so that it connects-the-dots”. There is much more to learn and to 
retrieve from the distance maintained between a model and the observations it is supposed 
to match. The resulting consequence is that any minimization algorithm is a good one 
because the problem is well defined. This section will now proceed to give additional tools to 
work out badly conditioned problems with special analysis regarding the role of known versus 
unknown parameters. 
 
4.1 Dimensional analysis or natural parameters: case of coupled conduction/radiation flash 

experiment 
 
 Through the preceding sections, the reader should have been convinced of the 
importance of notions like the pertinence of a model (good representation of reality, 
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controlled origins of bias), the application of the parsimony principle that is to adapt one's 
metrological objective by making the "quality" of the available information match the degree 
of complexity of the model.  
 
A reduced model, seen as a model with a reduced number of parameters, has to be 
considered first in the light of Dimensional Analysis. The principles of Dimensional Analysis 
in Engineering precisely rely on the construction of "appropriate" natural parameters (the Pi-
groups) emerging from the rank determination of the dimensional matrix of all physical 
quantities involved in the problem with respect to a basis of "base" quantities [6].  
 
If we consider the heat transfer problem in a semi-transparent material like glass, coupled 
conduction and radiation transfers must be considered. Material parameters involve classical 
thermophysical properties of the opaque material (thermal conductivity λ , specific heat cρ ) 

with the additional parameters accounting for radiative transfer : the absorption (extinction 

coefficient) )(m-1β , the level of temperature of the material 0T  (in Kelvin) which rules the 

magnitude of radiation emission, the Stefan-Boltzmann constant SBσ , the refractive index n , 

and the inner emissivity iε  of the boundaries (no units - opaque coatings of the glass slab 

are considered here). 
 

Let us assume that a flash experiment is planned, with an absorbed heat density )(J.m-2Q .  

In order to study the possibilities for a transient thermal characterization technique of such 
materials (which parameters can be measured with this experiment?), the model will give the 
rear face temperature response of the slab (thickness e ) as  the following function: 

 

 )( 0 n,,T,,,,c,Q,e,tTy iSB
flash

rearmo εσβλρ=      (48) 

 
Practicing a "blind" Dimensional Analysis leads to the construction of a new function 
depending on a new set of parameters: 
 

 
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



=====−≡ i

*

SB

**flash
rear*

flash
rear
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βλβτ 03

0
202

0

0   (49) 

 
which naturally produces 4 pi-groups governing heat transfer inside the sample, with a 
reduction of the number of initial parameters of the model from 10 to 5. 
 
Another classical example deals with conductive and convective mechanisms of transfer 
which appear jointly in problems of heat transfer within boundary layers. Solving the Inverse 
Heat Conduction Problem in order to get a heat exchange coefficient estimation will require 
the introduction of the classical Reynolds, Nusselt and Prandtl numbers. 
 

4.2  Reducing the PEP to make it well-conditioned: case of thermal characterization of a 
deposit 

 

 Model: Case of the contrast method 
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The method of the thermal contrast already presented in Section 3.1 consists in making two 
"flash" experiments in order to estimate the thermal properties of the coating layer, denoted 
(1) in Figure 8 below (the same as Figure 1). We will now on detail the modelling already 
presented briefly in section 3.1, in order to be able to find out which parameters of the model 
can be really estimated, in this non-linear parameter estimation problem. 
 
Let us remind that the first flash experiment is carried out on the substrate denoted (2), which 
allows characterization of the substrate in terms of diffusivity (the thermal capacity of the 
substrate is measured by another facility). The second flash experiment is performed on the 
two-layer material denoted (1)/(2). 
  
In both cases, the variation of the rear-face temperature T with time, called thermogram, is 

measured. By taking the difference of theses thermograms 
*

AT  and 
*

BT  normalized by their 

respective maximum, we obtain a curve called a thermal contrast curve, which is a function 
of the thermophysical parameters of the film (1) and of the substrate (2). 

 

experiment  A 

ϕ 0 

(2) 

a 

λ 

ρ C p T A 

experiment  B 

ϕ 0 (2) 

e 1 e 2 

(1) T B 

 
 

Figure 8 :  Principle of the Method 
 
The thermal quadrupoles method [7] is very appropriate to find the rear-face temperatures. 
Taking the Laplace transform of the heat equation yields a linear relationship between the 
different quantities of the "in" and "out" faces of each layer of the material.  
 

Let ( )pz,θ  and ( )pz,φ  being the Laplace transforms of the temperature ( )tzT ,  and heat 

density ( )tz,ϕ  respectively, with z the axis normal to both faces: 

 

 ( ) ( )[ ] ( ) ( )
∞

−==
0

dexp tptt,zTt,zTp,z Lθ      (50) 

and  

 ( ) ( )[ ] ( ) ( ) ( )
z

T
t,ztptt,zt,zp,z

∂
∂−=−== 

∞

λϕϕϕφ withdexp
0

L   (51) 

 
The thermal quadrupoles method allows to linearly link the temperatures and the heat flux 
densities of a homogeneous layer (numbered i here) without any source term and with zero 

initial temperature, through a transfer matrix iM , defined in the following way: 



 
 
 
 
METTI 7 Advanced School Porquerolles, France 
Thermal Measurements and Inverse Techniques Sept. 29th – Oct. 4th, 2019. 
 

 Lecture 5: Non-linear parameter estimation problems – page 26 / 49 
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with the coefficients of the matrix being calculated as:  

( ) ( ) ( )iiiiiii

ii

iiiii a/pea/pCa/pe
a/p

Ba/peDA sinh;sinh
1

;cosh λ
λ

====

The subscript ( )i  is related to the layer ( )i  : film (1) and substrate (2). 

 

ie  : thickness of the material 

ia   : thermal diffusivity 

iλ   : thermal conductivity 

ipCρ  : specific heat 

It is convenient in this 1D transient problem, to notice that time can be made dimensionless 
with the thermal diffusivity a2 of the substrate and with its thickness e2, to make a Fourier 
number t* appear, which will be associated to a reduced Laplace parameter p* defined as: 
 

 
2

2

2 = 
e

ta
t*  , 

2

2
2  = 

a

e
pp* and  *ps =      (53) 

We can then define a reduced Laplace transform θ~  as: 
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e
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 Flash Experiment on the substrate: 

The expression of the rear face response to a pulsed (Dirac) stimulation ( ) ( )tQt δ2=ϕ  , 

where Q2 is the energy density (in J.m-2) absorbed by the front face, is given by the following 
relationship: 
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Hence:   















2

2

2

2
2

2

2

2
2

sinh
a

pe

a

p
 

Q
 = 

C

Q
 = 

out

λ

θ    (56) 

Here subscript 'in' designates the front (stimulated) face while subscript 'out' is associated to 
the rear face, where temperature can be measured. This rear face is supposed to be 

insulated here ( 02 =
out

φ  in (55)). 

Setting *ps = and normalizing the thermogram with respect to its maximum that 

corresponds to the adiabatic temperature: 
222

2
2

ec

Q
T

ρ
=

∞
 reached for long times for this 

adiabatic model, we obtain: 
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Using the reduced Laplace transform (57), we can write:  
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Lθ      (58) 

 Flash Experiment on the two-layer material: 

The expression of the rear face response of the two-layer material can also be obtained 
easily through the quadrupoles method: 
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and where 
21/

Q is the energy density absorbed by the front face in this second flash 

experiment on the two-layer sample. 

In the case of good conductive materials with small thicknesses, the Biot number which 
represents the ratio between the internal resistance and the external resistance is low, which 
justifies neglecting the heat losses in the model output (rear face temperature) above. The 
expression of the temperature takes the following form: 
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2121θ     (61) 

Note:  If we switch the two layers of the material, it means inverting subscripts 1 and 2, and 
the expression of the rear-face temperature can be proved to remain unchanged. 
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If we now scale the thermogram with the adiabatic temperature of the two-layer material, that 

is with 
222111

21
21

ecec

Q
T / ρρ +

= /

∞
, the expression of the Laplace transforms of this reduced 

temperature temperature ∞2121 // T/T  takes a simpler form: 
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As in section 3.1 two reduced parameters are introduced: 

 
1

2

2

1
1    

a

a

e

e
K = :  ratio of the root of characteristic times  

or             21forwith 2
211 ,ia/etctc/tcK iii ===     (64) 
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We can note that 1K  is a function of the thicknesses of the substrate and coating and 2K  is 

an intrinsic parameter of the materials. The reduced Laplace transform of the response of the 
two-layer system can then be written, using (54): 
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The heterogeneous nature of the two-layer material system appears here through the 
expression of the denominator that cannot be simplified: this makes the definition of an 
equivalent material associated to this two-layer sample impossible. 
 

 
 

 Contrast Curve:  

The contrast curve is obtained by taking the difference between the two thermograms, that 
is: 

 ( ) ( )***
/
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/

*
out T  = T T  

~~
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~ ~~
outoutoutout

∆−=−∆ LL 221221 θθθ    (67) 

The expression of the reduced thermal contrast in the Laplace domain is: 
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Theoretically, 1K  and 2K  can be measured from an experimental thermal contrast curve 

through an "inverse" technique. The numerical inversion of the model is implemented by De 
Hoog’s algorithm [10] whose MATLAB version (Invlap) is given in [11]. 

From 1K  and 2K  (or by a parameter substitution), it is also possible to calculate the thermal 

capacity and conductivity of the deposit by the following relations: 
                            

       
222
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KKK
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 or 21forwith213 ,iecCC/CK iiittt === ρ      (69) 

                     and 
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 or 21forwith214 ,i/eRR/RK iii === λ      (70) 

Another parametrization of the same model consists in writing expression (68) as a function 

of 3K  and 4K .  

The expression of the theoretical model with scaled parameters clearly shows that its output 
is in this case only function of two parameters. This means in particular that the 
thermophysical properties of the deposit can theoretically be obtained only if the properties of 
the substrate are known and as well as the thickness of each layer. Thus, the precision of the 
measurement also depends on the precision of these known parameters. 
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In the followings, our attention will be focused on two particular cases. The first one 
corresponds to a conductive deposit on an insulating material. The second one corresponds 
to an insulating film on a conductive substrate. 

In these two cases, the materials we consider have low thicknesses and are good 

conductors. So, the Biot number based on the properties of the substrate 22 λheBi =  is low 

and it is possible, as a first approximation, to neglect its influence on the measured reduced 

rear face contrast *T∆ .  

It can be shown that even in the presence of heat losses, there is some kind of 
compensation through the construction of this contrast, which is a difference, which means 
that the present adiabatic model is a robust one: we will see in a later section that this 
parameter has a low influence in the estimation of the coating properties. The thicknesses 
and thermophysical properties are given in Table 3. 
  

 Thickness (µm) a (m2/s) λ (W/m/°K) pCρ  

(J/m3/°K) 

Case 1 : Aluminium coating on a Cobalt/Nickel substrate 

Film (1) 220 9.46 10-5 230 2.43 106 

Substrate (2) 1 100 2.36 10-5 84.5 3.57 106 

Case 2 : Insulating film on a Alumina substrate 

Film (1) 247 6.84 10-7 2.23 3.26 106 

Substrate (2) 640 7.47 10-6 23 3.08 106 

 
Table 3: Thermophysical properties and thicknesses of the materials 

The reduced thermograms for the substrate and two-layer material as well as the contrast 
curve are plotted for the conductive/insulating and insulating/conductive cases in Figure 9 
and Figure 10 respectively. 
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Figure 9 : Case 1 – Conductive coating 
/ Insulating substrate 

Figure 10 : Case 2 – Insulating film / 
Conductive substrate 

 

 

 Sensitivity Study 

The contrast curves and reduced sensitivities to parameters 1K  and 2K  for the two cases 

considered (conductive and insulating deposits) are plotted in Figure 11 and Figure 12.  

  

Figure 11 : Contrast curve and reduced 

sensitivities to 21 KandK  (Case 1) 

Figure 12 : Contrast curve and reduced 

sensitivities to 21 KandK  (Case 2) 

These two examples are representative of most of the cases that can be met. In the first 
case, both sensibilities are of the same order of magnitude but seem to be strongly 
correlated: they exhibit a nearly constant ratio, which means that they are proportional. In the 
second case, one of the sensitivity is low. 

 Covariance and correlation matrices 

 Table 4 gives the scaled covariance matrix ( ) 12)(rcov
−

= *T*ˆ SSK σ defined in  (35), as well as  

the correlation matrix )(cor K̂ defined in (15), for the two cases considered (the standard-

deviation of noise σ  is taken equal to unity here and 1000 points in time are used for the 

simulation of the thermal contrast curve). 

 
Scaled Variance-Covariance 

 
   28.0302  -35.9846 
  -35.9846   46.6417 

 

Scaled Variance-Covariance 
 

    0.1067    3.1409 
    3.1409   99.1677 

 
Correlation 

 
Correlation 
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    1.0000   -0.9952 
   -0.9952    1.0000 

    1.0000    0.9655 
    0.9655    1.0000 

 
Case 1 Case 2 

 
Table 4 : Reduced covariance and correlation matrices  21 and KK  (for σ = 1) 

The most interesting information is given by the reduced variance-covariance matrix 

)(rcov K̂ :  it takes into account at the same times the reduced sensitivities through the 

inversion of the reduced information matrix *T* SS as well as the noise through its standard 

deviation σ. 

We calculate now the square root of the diagonal terms of matrix )(rcov K̂ , that is the relative 

standard deviations of the estimates of each parameter K1 and K2, for a reduced standard 

deviation of the noise on each of the two *T2  and *
/T 21  scaled thermograms now equal to 

010.* =σ . This corresponds to a signal over noise ratio of 100. So measurement of the 

(experimental) reduced thermal contrast exp*T∆ is affected by a (relative) standard deviation 
*T∆ equal to *σ2 (for two independent experiments, because 

2*exp
1/2

*exp
2 2)(var)(var)(Δvar *TTT exp* σ=+= ), one gets (application of equation (35) with 

*σ2 replacing σ): 

 

- for case 1: 
361 for %590.096646.64172

10 for %7.50.0749 28.03022

22

11
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.K.*K/

.K*K/

K̂

K̂
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  (71) 

 

It is interesting to calculate the singular values of the reduced sensitivity matrix *S .They are 

the square roots of the eigenvalues (equal to the singular values) of the reduced information 

matrix *T* SS and can also be calculated through the inverse of the eigenvalues of ( ) 1−*T* SS : 
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   (72) 

 

This allows to get the condition number of *S (see Lecture L3): 

  

21 )()/w(w)(cond 21 == *** SSS      (73) 

 

We can also calculate the root mean square reduced standard deviation qm  of the estimates 

of both parameters 1K  and 2K  defined in (37): 

 

( ) 08640112
212

2
2
1 .w/w/m

/*
q =+= σ     (74) 
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It is easy to check that this value is simply the root mean square of the relative standards 
deviations given in (71). 

Let us note that this value (73) is close to the lower bound of qm  defined in (38), here: 

08620)2)/(2( 22 .w/w ** == σσ . The smallest singular value is mostly responsible for the 

relative errors on both parameters.  
 
The same calculations can be made for the second case: 

 

- for case 2:   
320 for%11414080 99.16772

281 for %5000460 0.10672

22

11

2

1

.K..*K/

.K..*K/

K̂

K̂

=≈==

=≈==

σσ

σσ
  (75)   

and :    10040)(w785111)(w 21 .. ** == SS    (76) 
 

So, the condition number of *S is: 
 

171 )()/w(w)(cond 21 == *** SSS      (77) 
 

which means that matrix *S is more ill-conditioned in the second case with respect to the first 

one. 
 

One also gets here:        
 

09960:forboundlowerand09960 2 .w/m.m *
qq == σ    (78) 

 

So, returning to case 1, it appears clearly that both the ratios K1 of the characteristic times 
and K2 of the effusivities can be estimated with a relative error nearly equivalent for both 
parameters (in the 7 to 10 % interval): this was already apparent in Figure 11 where the 
reduced sensitivity curves corresponding to both parameters were very close, with a slightly 
higher absolute value for the sensitivity to K1. 
 

For case 2, it is clearly the ratio K1 of the characteristic times that can be reached, with a very 
good precision (0.5 % here): this is quite natural since the reduced sensitivity to K2 in Figure 
12 is close to zero. So, because of the nonlinear character of this PEP problem, the 
accessible parameter depends on the location of the (K1, K2) parameter vector in the R2 
plane. The question that remains is to know if is possible to measure, with higher precisions, 
two parameters derived from (K1, K2) using the experiment corresponding to case 1 for 

example. Let us introduce for instance the ( )43 K,K  pair instead of ( )21 K,K  in the analytical 

model. 
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Variance-Covariance 

2.6921  -18.5189 
-18.5189  145.8475 

Correlation 

1.0000   -0.9346 
-0.9346    1.0000 

Case 1 
 

Figure 13 : Contrast curve and reduced 

sensitivities to  43 KandK   - case 1 

Table 5 : Reduced covariance and 

correlation matrices 43 KandK (for σ = 1) - 

case 1 
The thermal contrast is naturally the same (the materials are identical).  

Table 5 gives the scaled covariance matrix )(rcov K̂ as well as the correlation matrix )(cor K̂  

for the estimator of [ ]T
KK 43=K .  The relative standard deviation of both parameters 

becomes (for 010.* =σ ): 

 

- for case 1:   
07350 for%11717080 145.84752

 1360 for%320.0232 2.69212

44

33

4

3

.K..*K/

.K.*K/

K̂

K̂

=≈==

=≈==

σσ

σσ
  

 (79) 
 
So, when comparing (79) and (71), one clearly sees that instead of having (K1 , K2) with quite 

poor precisions, the ( )43 K,K  allows to retrieve very precise values for the ratio of volumetric 

heat capacities 3K . This was already apparent in Figure 13: the relative sensitivity to K4 was 

quite low when compared to the one of K3, but both minima of the corresponding curves 
occurred at times far apart, with a degree of collinearity much weaker than in figure 11 (see 
also section 3.3.2 of this lecture). 

 
This result obtained for the two cases can be explained from the expression of the contrast 
curve.  
 

( ) ( ) ( ) ( ) ( )






−

+
+=

ssKsssKK

KK

s

~

11

*

sinh

1
  

coshsinh  coshsinh 

  1
 

1
  Δ

2

21θ   (80) 

In the previous case (conductive coating on an insulating substrate), 1K  is close to zero. A 

rough approximation can be obtained by setting: 
( )
( )




−
−

1cosh

sinh

1

11

~sK

sK~sK
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( ) ( ) ( )






−

+
+=

ss  ss K

K

s

~*

sinh

1
  

sinhcosh

  1
 

1
  Δ

3

3θ     (81) 

 

We can see then that within this first order approximation, the model is only a function of 3K = 

21KK . We can check the other criteria already considered for case 1 with the (K1 , K2) 

parameters: 
 

08210)(w72701)(w 21 .. ** == SS     (82) 
 

So, the condition number of *S is: 
  

21 )()/w(w)(cond 21 == *** SSS      (83) 
 

Compared to the preceding parameterization, the reduced sensitivity matrix  *S as well as its 

singular values have changed, but the condition number is the same, see (73). 
 
One also gets here: 
 

 12180:forboundlowerand12190 2 .w/m.m *
qq == σ    (84) 

 

When both qm 's are compared, see (74), one can say that the global precision of the 

estimation of the ( )43 K,K  parameterization is lower than the ( )21 K,K  one. However, we will 

see later on that this superiority of the ( )43 K,K  parameterization is only an apparent one if 

both thermophysical characteristics of the film are looked for. 

 

 

Variance-Covariance 
 

103.5845  -97.1801 
-97.1801   91.1985 

 
Correlation 

 
1.0000   -0.9999 
-0.9999    1.0000 

 
Case 2 

 

Figure 14 : Contrast curve and sensitivities to 

43 KandK  (Case 2) 

Table 6 : Reduced covariance and 

correlation matrices 43 KandK  (for σ = 1) 
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In case 2 (insulating coating on a conductive substrate), parameters 3K  and 4K  are strongly 

correlated and exhibit the same sensitivity curves – see Figure 14. This confirms the result 

we observed previously, that is a thermal contrast mostly sensitive to 1K . 

2
1

2

1

22

11

2

1

2

1
43 K

tc

tc

CR

CR

R

R

C

C
KK ====     (85) 

This can be also explained by the fact that 1K  is close to unity: 

 

( ) ( ) ( ) ( )sKsK~ssK 111 coshsinhcoshsinh −   (86) 

This yield: 

 

( ) ( ) ( )






−=

ssKss

~

1

*
out

sinh

1
  

coshsinh

1
 

1
  Δθ    (87) 

 
 

So, the thermal contrast is mainly a function of 1K . Returning to the same calculation as in 

the other case, using Table 6, one gets: 

 

- for case 2:   
4 for%51313510 91.19852

 40960 for%4140.1439 103.58452

44

33

4

3

=≈==

=≈==

K..*K/

.K.*K/

K̂

K̂

σσ

σσ
  (88) 

 
The singular values of the reduced sensitivity matrix are: 
 

07170)(w36248)(w 21 .. ** == SS    (89) 

 

So, the condition number of *S is: 

  

117 )()/w(w)(cond 21 == *** SSS      (90) 

 
We observe here the same thing as for case 2: the condition number of the reduced 
sensitivity matrix is independent of the parameterization, see (77). 
 
One also gets here: 
 

 13950:forboundlowerand13960 2 .w/m.m *
qq == σ    (91) 

 

When both qm 's are compared, see (78), one can say that the global precision of the 

estimation of the ( )43 K,K  parameterization, which provided an excellent estimation for K3. is 

lower than the ( )21 K,K  one. 

 

4.3  Note on the change of parameters 
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It has been suggested earlier that some change of parameterization would allow to overcome 
parameter estimation difficulties such as in the case of high correlation coefficients inducing 
high variances for the estimated parameters for example. We want here to come back to this 
discussion to give, very briefly, some precisions and our conclusions.  
 
First, and taking experience of what has been shown previously, if a change of 
parameterization is made that results in the production of a new parameter of sensitivity 
close to zero (and thereof excluded from the model), this new parameterization will have a 
positive effect and will allow to properly estimate the remaining ones. Note that it is the object 
of Dimensional Analysis to help making such reparameterization efficient. 
 
Second, if all the parameters of the problem have non negligible sensitivities but appear 
correlated, the question is: is it possible to find a new set of parameters defined from the 
initial one, to enhance the quality of the estimation process? 
 
The answer is no. It can be demonstrated, see Remy [9] that the sensitivities to a new set of 
parameters can be derived from the sensitivities of the current set (using the Jacobian of the 
transformation). The same is true for the variance-covariance matrix and the explanation is 

obvious from the quantified SVD analysis given above (the same condition number of *S is 

obtained whatever set of parameterizations is used) These relationships show that: 
 

• if two parameters appear correlated in a given set of parameters, two parameters of a 
new set, recombined from the previous ones, will also be correlated, 

 

• if the sensitivity of a parameter is changed with a new parameterization (for example, 
it is enhanced), this will not change its variance ultimately. 
 

For instance, if we keep the parameter 1K  and choose another second parameter instead of 

2K , we can show that the sensitivity curve to 1K  can become higher or lower: we have to 

remind that the partial derivative that appears in the definition (4) of a sensitivity coefficient is 
associated to the variation of the output of the model for a variation of a given parameter, 
which  requires that the other ones stay fixed at given values. This means that if the definition 
of these other parameters is changed, such is also the case for the sensitivity coefficients. 
So, talking of a sensitivity coefficient to a given parameter does not mean anything if the 
other parameters in the parameter vector are not specified. 
 

So, one can wonder whether it would be possible to improve the estimation of 1K  by 

combining this parameter with a particular parameter that can increase its sensitivity. In fact, 
this is not true because the standard-deviations of the estimates of the new parameters do 
not only depend on the sensitivities of the old parameters but also on the correlation between 
the estimates of the old parameters.  
 
To show this, we are going to see through an example how the standard-deviations (square 
roots of variances) of the new set of parameters change when one parameter is kept as for 

instance parameter 1K , that is 
βα

21 KKKa =  with α =1; β =0, while 2K  is replaced by 

( )21  K,KFK bb = :  
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( )
( )21

11

  

  =   

K,KFK

KKFK

bb

aa

=
=

     (92) 

We have: 









===








==

b

a
momo

K

K
'''

K

K
KKSKSyKKtηy withdddwith);(

2

1
  (93) 

 

where S is the sensitivity matrix to the old ( )21 K,K  set of parameters and S' the sensitivity 

matrix to the new ( )ba K,K  one. This requires the calculation of the Jacobian matrix J of this 

transformation since; 
 

Tˆ'ˆ'' JKJKJSSKJK )(cov)(covanddd ===    (94) 

 
The last equation in (94) stems from the linearization around the exact value of the K 
parameter vector: 

)(dcov)(cov KK ˆˆ =      (95) 

with:  
( )
( ) 





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
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

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














==
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21 FF

01

,b,bbb
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K

F

K

F
K

F

K

F

K,KD

F,FD

∂
∂

∂
∂

∂
∂

∂
∂

J    (96) 

So, the sensitivity matrix to the new parameter set K' is: 
 

[ ] [ ] [ ]222211
221

21
1 )1()(

1

01
SSSSSJSSSS ,b,b,b

,b,b,b
ba F/F/F

F/F/F
' −=









−
=== −   (97) 

 

Here the old sensitivity column vectors 1S  and 2S  , as well as the new ones aS  and bS  , 

have been explicitly written in terms of the corresponding sensitivity matrices, S  and 'S  

respectively.   
 
Application of (94) allows the calculation of the variances and covariance of the estimators of 

the new set of parameters ( )ba K,K : 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( ) 





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








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





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
=












=

2

1

221

211

21 0

1

varcov

covvar01

varcov

covvar
)'(cov

,b

,b

,b,bbba

baa

F

F

K̂K̂,K̂

K̂,K̂K̂

FFK̂K̂,K̂

K̂,K̂K̂
K̂  (98) 

 
that is:  

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )21211

21212
2

21
2

1

1

covvarcov

cov2varvarvar

varvar

K̂,K̂FK̂FK,K̂

K̂,K̂FFK̂FK̂FK̂

K̂K̂

,b,bba

,b,b,b,bb

a

+=

++=

=

   (99) 
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We can see that even if the change of parameters modifies the sensitivity to parameter aK , 

that replaces parameter 1K  in the new set of parameters, the variance of this parameter 

remains unchanged whatever the choice of the second parameter.  
 
This means that the variance of a given parameter (and consequently the error on this 
parameter) is independent on the choice of the second parameter. Thus, identifying the 

parameter 1K  from the ( )21 K,K  pair is equivalent to estimating 1K  from the ( )31 K,K  or 

( )41 K,K  pairs.  

 

Similarly, we can show that estimating parameters ( )43 K,K  either through the 

parameterization ( )21 K,K  or directly, is strictly the same. 

 
The conclusion is that the interest of a change of parameters is justified only when an 
improved estimation of a particular parameter of interest is looked for. 
 
Whatever the parameterization, if the thicknesses of both layers are known, as well as 
the thermophysical properties of the substrate, we have: 
 

 

2casefor%50

1casefor%32

11

31

11

31

.K/a/

.K/c/

K̂â

K̂ĉ

==

==

σσ

σρσ ρ
    (100) 

 
These relative standard deviation of the estimated thermophysical properties of the front face 
layer are valid for a signal to noise ratio equal to 100 for the experimental thermogram of 
each flash experiment (single substrate layer and two-layer sample). So, this rear face 
thermal constrast technique allows estimation of the capacity of the film for case 1 and of its 
diffusivity in case 2, for high enough signal over noise ratios. 
 
In case of very low sensitivity to a given parameter, it is possible to fix the value of the 
corresponding parameter to its nominal values. So, if the number of parameters that are 
looked for is reduced, then the stochastic errors on the remaining parameters (reduced 
standard deviations) decrease. However, their estimation becomes biased and leads to a 
systematic error on each estimated parameter such as:   
 

( ) ( ) ( )exact
c

nom
cc

T
rr

T
rrrˆ

ˆ
r

ββSSSSββb
β

−−=−=
−1

E   (101) 

 

Here the initial parameter vector has been decomposed into two parts 







=

c

r

β

β
β , where rβ  

gathers the parameters that are looked for and its complementary part cβ is supposed to be 

known, that is its value is blocked to a nominal value  nom
cc ββ = which differs from its exact 

value exact
cβ . Equation (101), which has already been derived in the case of a linear model in 

lecture L3 of this series (see also [1]), corresponds here to a linearization in the 

neighborhood of the exact value of β . 
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This technique, which consists in reducing the number of parameters that are looked for, 
presents an interest only if the bias caused by the reduction of the number of parameters and 
its associated standard deviations are much lower than the initial stochastic error as 
illustrated in Figure 15.  

 
 

Figure 15 : Comparison between the probability density distributions of the jth parameter of 

the parameter vector for two different estimators 1) all the parameters in β  are 

estimated altogether (red) or 2) only the components of one of its part rβ (blue) 

are estimated while its complementary part cβ are blocked to its nominal value. 

NB: here one assumes that index j in  β  and in rβ  are the same ( jjr ββ = ) and 

that the scale of the vertical axis is different for both distributions for practical 
plotting reasons (the area below both distributions should be equal to unity)  

 
 

5. Conclusion 
 
Useful tools have been introduced for the analysis of estimations (variance-covariance 
matrix) and the detection of the ill-conditioned character of the Parameter Estimation 
Problem (PEP). Different techniques have been presented for tracking the true degrees of 
freedom of a given PEP (matrix rank, correlations between parameters, SVD, ...). If we want 
to enhance the estimation of a given parameter, one solution is to use a reduced model. This 
reduced model can be either unbiased or biased. It is of particular interest to know if a 
reduced model is biased or not.  
 
We have proposed, in the last section of the lecture, to work with a variable estimation time 
interval in order to evaluate the systematic error caused in the estimated parameters. We 
hope that the different "realistic" examples of thermal metrology presented in this lecture will 
help the reader to master the corresponding tools to get good estimates in a PEP. 
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Appendix 1 - Reminder of the Singular Value Decomposition of a rectangular matrix 

 
Any rectangular matrix (called K here) with real coefficients and of dimensions (m, n) with 

nm ≥ , can be written under the form : 

 

TVWUK = , that is  
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 (A1a) 

 

 
This expression is sometimes called "lean" singular decomposition or "economical" SVD and 
involves  
 
- U, an orthogonal matrix of dimensions (m, n), its column vectors (the left singular vectors of 

K) have a unit norm and are orthogonal by pairs: n
T IUU = , where nI  is the identity matrix 

of dimension n. Its columns are composed of the first n eigenvectors Uk, ordered according 

to decreasing values of the eigenvalues of matrix  TKK . Let us note that, in the general 

case, m
T IUU ≠ . 

 

- V, a square orthogonal matrix of dimensions (n, n), n
TT IVVVV == . Its column vectors 

(the right singular vectors of K), are the n eigenvectors Vk, ordered according to decreasing 

eigenvalues, of matrix  KKT ; 
 
- W, a square diagonal matrix of dimensions (n, n), that contains the n so-called singular 

values of matrix K , ordered according to decreasing values: nwww ≥≥≥ ⋯21 . The 

singular values of matrix K  are defined as the square roots of the eigenvalues of matrix 

KKT . If matrix K  is square and symmetric, the eigenvalues and the singular values of K are 
the same. 
 
Another SVD form called "Full Singular Value Decomposition" is available for matrix K. In this 
equivalent definition, both matrices U and W are changed: the matrix replacing U is now 
square (size m x m) and the matrix replacing W is now diagonal but non square (size m x n). 
In the case nm ≥ , this can be written: 
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(A1b) 

 
or: 
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Matrix compU is composed of the (m - n) left singular column vectors do not present in U. So, 

the concatenated matrix 0U verifies now: 

 

m
t

compcomp
ttt IUUUUUUUU =+== 0000      (A1d) 

 
This singular value decomposition (A1b) can be implemented for any matrix K ,  with real 
value coefficients, for nm ≥ . 

 

Appendix 2 - Singular Value Decomposition of the scaled sensitivity matrix 
 
This singular value decomposition can be implemented for any matrix K . 
 
A double change of basis, in the measurement domain and in the parameter domain, using 
the matrices of the left U  and right V, in the SVD of S* written for K = S* yields: 

 
T* VWUS =      (A2) 

 
Matrix V is used as a (square) change of matrix basis and it transforms the differential of the 
reduced parameter vector xd , see (29) into a new differential vector pd , where p can be 

called the diagonal parameter vector, of dimensions (n, 1). 
 

Matrix U allows to change the differential observation vector moyd of dimensions (m, 1) into 

a differential vector dzmo of smaller length, where zmo can be called the diagonal observation 
vector, of dimensions (n, 1).  
 

pVxzUy ddanddd == momo    (A3a, b) 

 
Let us note here that the reduction of the length of the observation vector (m observations for 

moyd and only n components in dzmo stems from the fact that the (m-n) singular eigenvectors 

Uk not present in matrix U corresponds to null singular values wk (for k > n). 
 

Use of equations (A1) to (A3), together with the property n
TT IVVUU == , allows to get the 

equivalent of the differential model (31a) in the double transformed space: 
 

pWz dd =mo      (A4) 
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This equation corresponds to a diagonalization of the model in Rn, and one gets then, 
component by component: 
 

n,,,korz
w

p k,mo

k

k ⋯21fd
1

d ==    (A5) 

 
Combining (A3a, b) and (A4) yields: 
 

mo
*

mo
T ySyUWVx ddd 1 +− ==     (A6) 

 

where +*S = TUWV 1− is the pseudo-inverse, or Moore-Penrose inverse, of the scaled 

sensitivity matrix *S . 

 

Combination of the preceding equations leads to a relationship between βd  and moyd : 

 

mo
T

nom yUWVRβ dd 1−=     (A7) 

 
 
and an integration can be implemented to give the relationship between the diagonal and 
original sets of parameters in a column vector form: 
 

( ) ( ) 0x ==−≈== −− nomTnomnom
nom

T
nom

TT VpββRVβRVxVp becauseln 11      (A8) 

 
 
The transformed observation vector can be expressed: 
 

0==== nomnom
mo

nom
momo

T
mo pWzpWβyyUz because))(-(       (A9) 

 
Combining (A8) and (A9) yields: 
 

( ) ( ) ( )( ))(-exp)(-ln 111 nom
momo

T
nom

nom
momo

T
nom

T βyyUWVRββyyUWβRVp −−− ===
 

(A10) 

An approximation of this expression in the neighbourhood of nomβ is available: 

 

( )[ ] ( ))(-)(- 11 nom
momo

T
nom

nomnom
momo

T
nom βyyUWVRββyyUWVRβ −− +=+≈ 1  (A11) 

 
 
where 1 is the column vector of length n whose coefficients are equal to unity. 

 

Appendix 3 – Non-linear Ordinary Least Square estimator and SVD 

 
It is interesting to compare diagonal equation (A5) that shows the interest of an inversion in 

the left and right singular spaces with the OLS estimator (12) of parameter β . So, if the first 
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order approximation in the neighbourhood of nomβ is considered, the difference between 

measurements and model outputs can be expressed with the residual vector  defined in (10), 
and rlin the linearized form of this difference vector: 
 

)() (-)(   )()()( nomnomnom
molinmo βββSβyyβrβyyβr −−=≈−=  (A12) 

 

The least squares sum JOLS can be written as a quadratic form J , using the fact that JOLS = 

JOLS T (scalar): 
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(A13) 
 

When the minimum is reached, one gets:  
 

( ))() ()() () (0
d

d nom

mo

nomTnomnomnomT ˆJ
βyyβSβββSβS

β
−=−=



  (A14) 

 
which leads to an approximation of the OLS estimator: 
 

( ) ( ))() () () (
1 nom

mo
nomTnomnomTnomˆ βyyβSβSβSββ −=−

−
  (A15) 

 
This is exactly the same equation as the iterative algorithm (12), with 

)()1( and k
OLS

nomk
OLS

ˆˆˆ ββββ == + . One shows, using (31b) and (A2): 

 

( ) T
nom

nomTnomnomT UWVRβSβSβS 11
) () () ( −−

=     (A16) 

 
The least square estimator (A15), with the diagonal parameter p and the experimental 
diagonal signal z in their new bases, can be written thanks to (A16): 
 

))(-(with1 nom
mo

Tˆ βyyUzzWp == −    (A17a, b) 

 
Equation (A17a) is diagonal. Use of (A15) and (A16) provides a new expression for the OLS 

estimator of β :  

 

( )))(-(-1 nom
mo

Tnomˆ βyyUWVRβ += 1     (A18) 

 

This expression is the same as relationship (A1) that links β  and )(βymo : these 

corresponding two values are simply replaced by the linearized OLS estimator β̂  and by 

measurements y respectively. 
 
The linearized OLS estimator of the reduced parameter vector stems directly from (A19):  
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( ) ( ))()()()(
1 nom

mo
nomT*nom*nomT*ˆ βyyβSβSβSx −=

−
  (A20) 

 

Appendix 4 – Variance-covariance of the Non-linear Ordinary Least Square estimator 
and SVD 

 
With the noise properties defined in (8), the variance-covariance of the linearized OLS 

estimator β̂  given by equation (A15), can be written thanks to (31b) and (A2): 
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This expression is valid if the difference between β̂  and nomβ is small: it is always the case 

near convergence of algorithm (12) where nomβ  can be redefined as )(k
OLS

nom β̂β =  and with 
)1( += k

OLS
ˆˆ ββ . 

  

The expression of the variance-covariance matrix of βRx ˆˆ
nom

1−=  becomes:  

 

( ) TT

nomnom
ˆˆ VWVRβRx 2211 )(cov)(cov −−− == σ    (A22a) 

 
The first relationship in equation (A22a) allows to calculate the reduced covariance matrix of 

β̂ , )(rcov β̂ , whose diagonal coefficients are the reduced variances of the estimators of each 

parameter, using the nominal values of the parameters as scaling factors: 
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(A22b) 

where 
jβ̂σ is the standard deviation of jβ̂ . The square roots of the diagonal terms of this 

matrix, nom
ˆ / 1
1

βσ β , can be considered as a measure of the relative error made for each 

parameter and caused by presence of noise in the measurements y. 
 
It is very interesting to calculate the trace of this matrix, which is equal to the sum of the 

variances of the different components of x̂ : 
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where σx j is the standard deviation of the estimate of reduced parameter xj  and σβ j the 

corresponding one for βj. Since the right singular vectors have a unit norm 

( 1
1

22 == 
=

n

i

ikk VV ), this last equation becomes: 
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In order to get a good estimation (in percent) of all the parameters of the model, the 

quadratic mean of the relative standard deviations of their estimates qm  should be smaller 

than a given level maxqm (NB: subscript q corresponds here to the quadratic mean of the 

normalized standard deviations): 
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One of the objectives of the "inverter" (the person in charge of the inversion) is to get a 

relative error qm , expressed in term of quadratic mean, lower than an upper threshold maxqm  

equal to a few percent. This means that as soon as the number n of parameters that have to 
be estimated becomes large, the singular values wk of the corresponding reduced sensitivity 
matrix decrease, which increases the error. This increase of the error is proportional to the 
standard deviation of the noise. This standard deviation has the same unit as the output of 
the signal and the same is true for the singular values which do not depend on the structure 

of the model (function η) only, but also on the intensity of the stimulation (in a problem where 
the output is related to a field: temperature, concentration, …) and on the choice of the 
"times" of observation t. 
 
Both a lower and an upper level can also be constructed for the criterion of global relative 

error qm  defined in (A25), using the smaller singular value nw : 
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This clearly shows that a too large value for the ratio nw/σ , between the standard deviation 

of the measurement noise and the smaller singular value of the reduced sensitivity matrix 
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)( nom* βS , can make the estimation of the whole set of parameters « explode ». In that case, 

one of the  jβ  parameters (the parameter "supposed to be known", skβ )  has to be removed 

from the original set of parameters to be estimated. This will lead to a new parameter vector 

'β  to be estimated, of smaller dimensions (n-1, 1), with a better (smaller) associated mq 

criterion (lower average dispersion) but with the apparition of a bias on its n-1 estimates, 

because of the biased value of the removed parameter skβ  that will be fixed to its nominal 

value that is different from its exact value (see Lecture 3).  

 

Appendix 5 – Residual analysis for an unbiased model using the SVD approach 

If the model used for estimation is unbiased, the residual vector, at convergence, is defined 
by: 

)()()()()( exact
mo

exact
momo

ˆˆˆˆ ββSεβyεβyβyyβr −−≈−+=−≡  with )(βSS ˆ=    (A27) 

The last approximation in equation (A27) is based on a first order development of the model 

with respect to parameter β , assuming that β̂  and exactβ  are close. So, 

))()(()())(()()( 1-1- exact
mo
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mo
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mo

TTˆ βyεβySSSSεβyySSSSεβr −+−=−−≈  

(A28) 

The second term in equation (A28) is also a first order development that stems from the 

Gauss-Newton algorithm (12) used for minimizing )(βOLSJ  defined in (9) in an iterative way. 

After simplification, equation (A28) can be rewritten using the scaled sensitivity matrix *S : 

  )(diag)(with))(-())(-()( 1-1- ββSSεSSSSIεSSSSIβr ˆˆˆ *T**T**
m

TT
m ==≈   (A29) 

The lean SVD form (32b) (in the main body of this paper) of the scaled sensitivity matrix (see 
also Appendix 1) can be used then: 

Tˆ* VWUβS =)(     (A30) 

This yield, using the orthogonality property of the right singular matrix V: 

εUUIβr )()( T
m

ˆ −≈     (A31) 

So, under the IID noise assumption, for an unbiased model, one can show that the 
expectation of the residual vector is equal to zero:   

0=−≈ )(E)())((E εUUIβr T
m

ˆ     (A32) 

This means that if the model used for describing the experiment is appropriate, the residuals 
curve is centred on the y = 0 axis.  
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In order to get “unsigned” residuals, the variance-covariance matrix of the residuals should 
be diagonal. If the model is unbiased, this matrix is: 
 

t
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T
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TT
m

ˆ UUUUIUUIεUUIβr 22 )()()(cov)())((cov σσ =−=−−≈  (A33) 

 

Here compU  is the complementary left singular vectors matrix composed of the (m – n) left 

singular vectors, that appear in the full SVD decomposition of )(βS ˆ*  given by equation 

(A1b) in Appendix 1: 
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In case of a square non-linear least square problems, there are as many measurements as 

parameters to be estimated (m = n) and T
m UUI = . So, in this case, the residuals (A27) are 

deterministic and equal to zero ( compU is an ‘empty’ matrix with 0 column in that degenerated 

case). As soon as the number m of measurements gets higher than the number n of 

parameters, matrix t
compcomp UU becomes non-diagonal, especially if the difference (m – n) is 

small and the residuals are correlated. However, when this difference increases, that is when 
the number of measurements is a lot higher than the number of parameters, the ratio m/n  
goes to zero and compU  becomes very close to 0U , which means that  

m
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t
compcomp

ˆ IUUUUβr 2
00

2
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2))((cov σσσ = →≈ →  (A35) 

This means that, strictly speaking, the residuals are correlated, even for an unbiased model 
but, in practice, adding more many measurement times to a given estimation interval tends to 
make them nearly uncorrelated. This is especially true for thermal characterization of 
materials or system, where the number of parameters is low (2, 3, 4, ...) and the time 
sampling rate high enough with respect of the length of measurement (several hundred 
measurements at least for modern data acquisition systems) where the asymptotic level 
given by (A35) is reached.  

 


