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concentration of milk by falling film evaporator
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Building industry’

water out

rainwater,
returning
water

filter
pump
G,

water collector

¢ cooling of building surfaces (latent heat)

"He and Hoyano Energy and Building (2008)
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Waves and heat transfer
enhancement?
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FIG. 9. A comparison between heat transfer results for
smooth film flow and three-dimensional wave flow.

2Frisk and Davis IJHMT (1972)
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Falling film hydrodynamics :
Phenomenology

Position

surface tension o, viscosity u, density p, gravity g
inclination angle f3, inlet flow rate per wetted perimeter gy
streamwise X, spanwise z, cross-stream y directions
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A series of symmetry breakings
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Noise-driven dynamics

Kapitza experiments3 alcohol film on vertical wall Re = 6.07, I = 529,
length L =80 cm, decelerated 8 times

SKapitza & Kapitza Zh. Ekper.Teor. Fiz. 19, 105-120 (1949)
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Heated flim flows?

specified temperature : ST case specified flux : HF case

“4Kalliadasis et al. JFM (2003) ; Ruyer-Quil et al. JFM (2005) ; Scheid et al.

JFM (2005) ; Trevelyan et al. JEM (2007) ; Scheid et al. Europhys. Lett. (2008);
Scheid et al. PRE (2008)
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Evaporation ? : a very crude
modelling

e evaporation is modelled through a constant heat transfer
coefficient a and Newton'’s law of cooling
—AVT -n= a(T— To)

¢ this assumption works well is the atmosphere can be
assumed to be passive (contant pressure, no shear) and the
vapor is dilute (only diffusion)

e a better description is a wevenumber dependency of a®

5H. Machrafi, A. Rednikov, P. Colinet and P.C. Dauby, PRE 91-(2015)
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Reduced parameters
Shkadov notations (Shkadov, 1977)

length scale hy in the y direction

stretched length scale «hy in the x and z directions
tuned such that gsinf and odxxxh are of same order

~ T — 1/3 _ (/0/771\1)2/3

« reduced Reynolds number 6 = h3 /i = 3Re/i with

hy = b/l and k= v*/3/(gsinp)'/% ©
which measures inertia
« viscous dispersion parameter 1 = 1/x2< 1 = (hn/lc)*/3
compares elongational viscosity and capillary damping
e reduced inverse slope ¢ =cotf/
° wpe . _ _ yAT 1
modified Marangoni number M = Ma/x = PR sinp
e Biot number (Newton’s law of cooling)

B = Bihy = % — 2k p

61n fact this definition is 45 times Shkadov’s original definition
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Fhenemencioay— avolution equations for thickness h, flow rate q and temperature at
i free surface 6 = T(y = h)

. 5..5q| 5 5 »

9/q-Vh q 8Vq
o7 (37

[13q VN Shy 3<Vh Vq—Vth>

4 h? 16 \ h h

L 8Vh-Vh  23V*h 7@@
2w 9% 9 76\n

7. (VA" vq
+2hV<h >+hV<h)}7

where V=(dx, dz), 4=(g,p) and i is the streamwise unit vector.

V) Vh
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averaged energy balance :

1—-60—Bho
Préo6 = S(hiz)
7 vV-q 27q-V6
+Pro [40(1_9)h_20 h
5. Vh-V6 .\ VPh
+1 | VEO + h +(1-9) 7
3 Vh-Vh
+<1—6—25h6> 2 ]
mass balance :
dth=-V-q

coherent model at O(&) [O(&?) for diffusion terms]

|
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e extension to O(&?) is possible

¢ intoduction of secondary fields to account for departures from
parabolic velocity profile and linear temperature distribution:
9 scalar equations

o Padé-like regularization technique (%, =¥~ 1.%) :
coherent O(¢2) model in terms of 4 equations

hierarchy of models in terms of complexity and accuracy
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2D flows : Solitary wave
solutions

maximum height
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streamlines in moving frame (above) and isotherms (below)
(Re,Ma) = (0.01,50), Bi=0.1, Pr=7.
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02 0B E/L 3 035
(Re,Ma) = (3,50), Pr=1 (Re,Ma) = (3,0)

formation of a thermal boundary layer
spurious behaviour: free-surface temperature lower than air
temperature
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3D flows: simulations in a

periodic domain

Re=0.5, Ma=25, Bi=0.1, Pr=7 and ['=3375 (water)

t =450 — {0.998,1.002}

t = 950 — {0.991,1.009}
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n
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S
el
i)



Hydrodynamique
de films liquides

C. Ruyer-Quil

Background
Phenomenology

Heated film
flows

2D flows

3D flows

Dealing with
suprious behaviours

t = 1450 — {0.957,1.044}

t=1950 - {0.931,1.071}
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l

Ml

t =2450 - {0.899,1.101}
Compettion between Marangoni instability (isotropic) and Kapitza
insatbility (aligned with flow) leads to channeling phenomena

t = 3450 — {0.692,1.334}
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(b) II;: Re=2, t =6120 — {0.004,2.799}
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(c) IIy,: Re=4, t=9510 — {0.067,3.371}
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(d) III: Re =5, t = 20000 — {0.752,1.612}
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B e problem: divergence of free-surface temperature !
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Modelling: Saint-Venant

solution: convection terms rewritten to assure compatibility
with limit Pe > 1

o simplest model (3 variables)

e more complex model (4 variables): height (h), flow rate (q),
free-surface temperature (6), wall flux (¢/h)



Hydrodynamique
de films liquides

C. Ruyer-Quil

Background
Phenomenology

Heated film
flows

2D flows

3D flows

Dealing with
suprious behaviours

o At Pré < 1 we shall have d:6 + u(y = h)dx6 = O(1/(Pro))

Modelling: 3egn model

e modification of convection terms

3q 7 B

J-(1+Bho

929
30 Pré

|

_|_

h2
dxhdx 6
h

+(

{(1 —(-)—gBihB
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3D fows ¢ no more divergence of the temperature !
Dealing with
suprious behaviours
4.5 0.6 T
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Modelling: 3eqn model

DNS

A

Re =15, Pe =460, Bi=0.1,f=9.4 Hz
steamlines (moving frame)

model
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2

D

=

Re =15, Pe=460,Bi=0.1,f=9.4 Hz
isotherms and heat flux density

model (0)
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Heated film 0.29 I T T T T T T T T T
flows f.s. flux
D 0.28 - f.s. flux-(model) -------- 7]
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040608 1 12141618 2 222426
h
Re =15, Pe=460,Bi=0.1,f=9.4 Hz
heat flux density (temperature) at free surface
1 eqgn for 6
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Modelling: 3egn model

impossibility to capture correctly the onset of thermal
sublayer at free surface (competition convection—heat
transfer)

Pb: critical temperature 6, = 7/22 ~ 0.32 at which convection
terms (unphysically) disappears. . .

crude representation of temperature field
solution: add more fields. ..
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introduce @ = hd, T|,—o

e thus (d: + u(y = h)dx)0 = O(1/Pe) and d:(¢/h) = O(1/Pe) at
Pe < 1

suprloSS behaviours. °

T=TO4 (0-TO_p) (7)+ (@~ hay TO|y—0) o(y) + hort

Heated film
flows

with y = y/h, f{(0) =0 and f,(1) =0
weights wy =y and wo = 1 — y are determined so that h.o.t.
need not to be determined to assure consistancy at O(¢)

1 _ 1\,
T = 1+<1+Bih_1)y+<6_1+Bih)y+

+ﬂ __§_2+1_3
*T1xBin)\Y 2V 7Y
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Modelling: 4eqn model

« R; = (heat|w;) = 0 contain convection terms « Pe, say R°°™)

o R'°™) are rewritten as I.c. of d;+(3q/(2h)dx)6 and dx(¢/h)
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Re =15, Pe =460, Bi =100, f =12.6 Hz
isotherms and heat flux density
DNS model (6 and ¢ = hd, T(y =0))
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Modelling: 4eqn model

DNS

Re =15, Pe =460, Bi=0.1,f =9.4 Hz

isotherms and heat flux density

model (6 and ¢)
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Conclusions

simple models enable to capture hydrodynamics (amplitude,
form, wave speed)

e reasonable representation of free-surface temperature

e low numeraical cost enable to silulate 3D flows on complex or
large domains
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