Introductio

Conclusions, outlook

Acknowledgements

Introductio

Results 0000 00 Conclusions, outlook

Acknowledgements

Efficient heat transport by Elastic Turbulence

Boubou Traore, Antoine Souliès, Cathy Castelain, Theo Burghelea

Laboratoire de Thermocinétique de Nantes (LTN) - UMR 6607, CNRS

SFT day, 19th of November 2015, Paris

Outline	Results 0000 00 0000000000000000000000000000	

Related publication

"Efficient heat transfer in a regime of elastic turbulence", B. Traore, C. Castelain, T. Burghelea, Journal of Non Newtonian Fluid Mechanics **223** (2015) 62 – 76

Heat transfer in fluids: getting beyond the conduction

- The thermal conduction is the "natural" mechanism of heat transport in fluids.
- The thermal conduction is "slow": $\tau_c = \frac{\text{Characteristic Length Scale}^2}{\text{Thermal diffusivity}} \approx 10^3 - 10^5 s.$

One clearly needs to resort to other "ways" of transporting heat within fluids...

- Inertial turbulence? Sometimes not very practical (high *Re*), *e.g.* in a microchannel.
- Laminar chaotic advection? Sure, but it needs a special design of the flow channel and/or forcing conditions.

Heat transfer in fluids: getting beyond the conduction

- The thermal conduction is the "natural" mechanism of heat transport in fluids.
- The thermal conduction is "slow": $\tau_c = \frac{\text{Characteristic Length Scale}^2}{\text{Thermal diffusivity}} \approx 10^3 - 10^5 s.$

One clearly needs to resort to other "ways" of transporting heat within fluids...

- Inertial turbulence? Sometimes not very practical (high *Re*), *e.g.* in a microchannel.
- Laminar chaotic advection? Sure, but it needs a special design of the flow channel and/or forcing conditions.

	Introduction OOO	Results 0000 00 00000000000000 00000000	
What? Why? How	w?		

Linear flexible polymers in solutions: ELASTIC NONLINEARITY

$$\frac{d\vec{V}}{dt} + \underbrace{\vec{V}\nabla\vec{V}}_{\text{Lnertial Nonlinearity}} = -\frac{\nabla p}{\rho} + \frac{\eta_S}{\rho}\Delta\vec{V} - \frac{\tau_p}{\frac{\rho}{\text{Elastic Nonlinearity}}}$$

Constitutive equation:

$$\tau_{p} + \lambda \frac{D\tau_{p}}{Dt} = -\eta_{p} \left[\nabla \vec{v} + (\nabla \vec{v})^{T} \right]$$

And... here is where the elastic nonlinearity comes from:

$$\frac{D\tau_{p}}{Dt} = \frac{\partial\tau_{p}}{\partial t} + (\vec{v}\nabla)\tau_{p} - (\vec{v}\nabla)^{T}\tau_{p} - \tau_{p}(\nabla\vec{v})$$

Introduction

Results 0000 00 000000000 Conclusions, outlook

Acknowledgements

What? Why? How?

Inertia shall play no significant role during this movie: the nonlinear elasticity sets the "game"

The control parameter: the Weissenberg number

$$Wi = \frac{\text{Elasticity}}{\text{Viscous Disipation}} = \lambda \nabla v$$

	Introduction ○○○●	Results 0000 00 000000000000000 00000000	
What? Why? How?			

Episode One

Heat transfer by ET in a macroscopic von Karman swirling flow (PhD work of Boubou Traore)

Introducti 0000 Results

Conclusions, outlook

Acknowledgements

Macroscopic Heat Transfer by ET

Experimental Setup, Modus Operandi

Several points to note

- To avoid triggering the <u>thermal convection</u>, we cool from below.
- The cell is mounted on a rheometer: accurate measurements of the power injected into the system: P = TΩ.

Introducti 0000 Conclusions, outlook

Acknowledgements

Macroscopic Heat Transfer by ET

Why looking at a macroscopic von Karman flow? - some expectations

Figure: Phys. Fluids **19** (2007), Phys. Fluids **15** (2005), Europhys. Lett., **68** (2004)

E.T. mixes well a passive scalar

- A roughly 1000 times increase in mixing efficiency
- Ideal realisation of the Batchelor regime of mixing

Introduction 0000

 Conclusions, outlook

Acknowledgements

Macroscopic Heat Transfer by ET

Experimental Methods

Assessment of the efficiency of the heat transfer

Point wise measurements of the temperature

Under the hood:

- Six thermocouples are evenly spaced along the vertical axis at r = R_c/2: YES, they will perturb the flow, but don't worry about this right now!.
- 2 We acquire long (several τ_c) T series.
- The local efficiency of the heat transfer is inferred from the local rate of change of T.

Introducti

Results 0000 00 Conclusions, outlook

Acknowledgements

Macroscopic Heat Transfer by ET

NOTA BENE

Because we want TOTAL control and we care about the tax payer (\$)) we do not rely on ready flow visualisation solutions: we took it from the screw to the publication level.

Space-Time characterisation of the flow structure

Time resolved measurements of the flow fields using a **home-made DPIV** technique with several "exotic" ingredients:

Under the hood:

- Description of the out of focus image features
- 2 adaptive inter-frame, sub-pixel interpolation
- 3 median filtering, signal to noise rejection of outliers
- **④** spline interpolation of individual flow fields and subsequent differentiation

	~

Introductio

Results ○○○○ ○○ Conclusions, outlool

Acknowledgements

Rheo, Thermo

Rheological and thermal properties of the polymer solutions

Polymer solution

- 150 ppm polyarcylamide (PAAM)
$$M_w = 22 \cdot 10^6 Da$$
 in 65% sucrose solvent,
 $\rho = 1200 kgm^{-3} - \kappa_s = 2.21 \cdot 10^{-7} m^2 s^{-1}, \ \kappa = 1.31 \cdot 10^{-7} m^2 s^{-1},$
 $t_d = H^2 / \kappa \approx 25714s$

Figure: 2(a) Shear viscosity 2(b) Relaxation time

	Results 0000 0● 00000000000000000000000000000	
Rheo, Thermo		

Summing this up:

• An Arrhenius *T* scaling is found for both the shear viscosity and the largest relaxation time, but the activation energies are different: $\eta \propto e^{\frac{E_{\eta}}{RT}}, \lambda \propto e^{\frac{E_{\lambda}}{RT}}, E_{\eta} \neq E_{\lambda}$

NOTA BENE:

In the absence of buoyancy T is expected to behave as a <u>"passive scalar"</u>. But...

... in the presence of a strong T dependence of the elastic stresses ... IS THE PASSIVE SCALAR BEHAVIOUR STILL GRANTED?

Introductio

Results

Conclusions, outlook

Acknowledgements

Results

Observation of the Elastic Turbulence

The Reynolds number: $Re = \frac{\Omega R_c^2 \rho}{\eta(\dot{\gamma})} \le 25$. Is it too large (any inertial instabilities)? - only one way to find out I guess.

- Time averaged power $\bar{P} = \Omega \bar{T}$ measured with the solvent alone. Full line, analytical prediction: $\bar{P} \propto \Omega^2$
- No physical fluctuations of *P* (see insert), just 2% instrumental noise

<u>To conclude</u>: No significant inertial contributions observed for $Re \leq 25$.

Introduction

Results

Conclusions, outlook

Acknowledgements

Results

Observation of the Elastic Turbulence

Measurements of the time averaged reduced power \bar{P}/P_{lam} (left) and power fluctuations (right) at various Wi

<u>To conclude</u>: The transition to Elastic Turbulence is marked by a sharp increase of the flow resistance and of the power fluctuations, features that are common to a random flow. Again, nothing to do with inertia!

Introductio

Results

Conclusions, outlook

Acknowledgements

Results

Flow structure in a regime of Elastic Turbulence: top line - mean flow field, bottom line - mean vorticity

Introducti 0000 Results

Conclusions, outlook

Acknowledgements

Results

Heat transfer within the solvent alone

Reduced temperature: $\theta = \frac{T_0 - T}{T_0 - T_b}$, T_0 - room temperature, T_b - temperature of the cooling bath.

- A clear vertical gradient is observed spatially inhomogeneous *T* field.
- No "random" component of the *T* signals is observed.

• Each series can be "formally" fitted by a 1D solution: $\theta = A \cdot erfc \left(\frac{B}{\sqrt{t}}\right)^{C}$.

In the absence of both elasticity and inertia, the heat transfer is "poor". Can we do better than that?

Introductio

Results

Conclusions, outlook

Acknowledgements

Results

Heat transfer within the polymer solution: *Wi* - control parameter.

- Below the onset of the elastic instability, Wi = 0.8 < Wi_c, the heat transfer scenario is similar to that observed with the solvent alone: spatially inhomogeneous T field, non fluctuations, poor transport overall.
- T fluctuations and improved heat transport observed within the transitional regime Wi = 7.7.
- Vertically homogeneous T distribution and strong T fluctuations are observed in a regime of elastic turbulence, Wi = 15.4

Introducti 0000 Results

Conclusions, outlook

Acknowledgements

Results

Efficiency of the heat transfer by Elastic Turbulence

Fit the reduced time series $\theta(t)$ by: $\theta \propto a + b \ln\left(\frac{t}{t_d}\right)$. Local transfer intensity: **b**.

Summing up this part:

The **Elastic Turbulence** may increase the efficiency of the heat transfer in the absence of inertia up to 400%.

Introductio

Results

Conclusions, outlook

Acknowledgements

Results

Efficiency of the heat transfer by Elastic Turbulence: spatial dependence

$$heta \propto \mathbf{a} + \mathbf{b} ln\left(rac{t}{t_d}
ight)$$

Several points on the efficiency

- Strong anisotropy (z dependence) of the efficiency in a laminar state (rhombs) - quite obvious (you remember where the heat sink is, right)?.
- Spatially homogeneous transport efficiency in a regime of elastic turbulence (note the red circles)

Introductio

Results

Conclusions, outlool

Acknowledgements

Results

Statistical properties of the heat transfer by Elastic Turbulence

Look at the "fluctuating" part of the reduced temperature time series - just subtract the pedestal of the signal.

Introducti

Results

Conclusions, outlook

Acknowledgements

Results

Statistics of temperature fluctuations

A strong spatial inhomogeneity of T fluctuations is obsevered.

Introducti 0000 Results

Conclusions, outlook

Acknowledgements

Results

Passive or active scalar? - that is the question!

Note

A first signature of the passive scalar behaviour: exponential tails of the pdfs.

Introducti

Results

Conclusions, outlook

Acknowledgements

Results

Space dependence of the statistical properties

Note

Strong intermittency observed near the bottom plate (the squares and circles)

The statistical distribution of T fluctuations is strongly inhomogeneous along the z direction.

Introducti

Results

Conclusions, outlook

Acknowledgements

Results

Decay of correlations of the T fluctuations

In a regime of ET the correlation time is set by the relaxation time of the polymer

Introducti 0000 Results

Conclusions, outlook

Acknowledgements

Results

Passive or active scalar? - that is the question!

Note

A second signature of the passive scalar behaviour: exponential decay of the variance

$$M_2 \propto exp(-t/t_{decay})$$
, $t_{decay}=7500~spprox t_c/3$

Introducti

Results

Conclusions, outlook

Acknowledgements

Results

Decay of spectra of the T fluctuations

Note

As in the case of a passive scalar, a power law decay of the spectrum is observed: $P\propto f^{-1.1}$

	Results	Acknowledgements
	0000 00 0000000000000000 00000000	
Results		

Episode Two

Heat transfer by ET in a microscopic curvilinear flow (ongoing postdoctoral research of Dr. Antoine Souliès - started April 2015)

Introductio

Results

Conclusions, outlook

Acknowledgements

Heat transfer by Elastic Turbulence in a microscopic flow (ongoing) (postdoctoral research of Dr. Antoine Souliès)

Observation of Elastic Turbulence in a micro-channel

- 200µmx200µm curvilinear micro-channel (also "home made" in the "low budget" spirit!)
- $Re \approx 10^{-4}$ no inertia playing in this movie, remember?

Figure: 3(b) Laminar Case 3(a) Elastic Turbulent Case

Introductio

Results

0000000

Conclusions, outlook

Acknowledgements

Heat transfer by Elastic Turbulence in a microscopic flow (ongoing) (postdoctoral research of Dr. Antoine Souliès)

Some extra tricks under the hood...

Space-time investigation of the flow fields.

The "Black Magic" toolbox we developed

- Home made state of art high resolution micro-PIV: down to $3\mu m$ space resolution
- Long time series of flow fields: roughly 100 polymer relaxation times

Introducti

Results

Conclusions, outlook

Acknowledgements

Heat transfer by Elastic Turbulence in a microscopic flow (ongoing) (postdoctoral research of Dr. Antoine Souliès)

More (but not all!) about our "black magic" tricks

Did I mention High Resolution flow field measurements? I surely did, and I was serious about - Antoine too!

Introductio

Results

Conclusions, outlook

Acknowledgements

Heat transfer by Elastic Turbulence in a microscopic flow (ongoing) (postdoctoral research of Dr. Antoine Souliès)

The transition to Elastic Turbulence in a serpentine micro-channel

Measure long time series of flow fields, monitor the level of fluctuations.

Introductio

Results

Conclusions, outlook

Acknowledgements

Heat transfer by Elastic Turbulence in a microscopic flow (ongoing) (postdoctoral research of Dr. Antoine Souliès)

The transition to Elastic Turbulence in a serpentine micro-channel

00000000

Measure long time series of flow fields, monitor the level of fluctuations.

Introductio

Results

Conclusions, outlook

Acknowledgements

Heat transfer by Elastic Turbulence in a microscopic flow (ongoing) (postdoctoral research of Dr. Antoine Souliès)

The transition to Elastic Turbulence in a serpentine micro-channel

Quantify the level of fluctuations past the onset of the elastic instability: instrumental error roughly 4%.

proper scale of the velocity gradients

Look at the profiles of the invariant of the velocity gradients tensor

Nota Bene

 The local peaks of the profiles indicate the position of the elastic stresses boundary layer

Define "locally" the control parameter - rely on the state of art flow characterization

Use the maximal value of the measured second invariant of the velocity gradient tensor: ${\rm Wi}_{\rm local}=\lambda\dot\gamma$

Introduction

Conclusions, outlook

Acknowledgements

Acknowmedgments

People

- **Gwénäel Biotteau**: design and machining of the von Karman flow system, design and micro-milling of the micro-channels.
- Julien Aubril: interfacing, data acquisition for the micro-channel experiments
- Christophe Le Bozec: interfacing, data acquisition for the von Karman swirling flow experiment

Funding

• ANR - project HotET (T. B.)