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Abstract. This text proposes simple methods for the processing of time and space 
temperature fields such as the fields provided by infrared thermography devices, for 
the non-destructive evaluation of heterogeneous samples. A first part is devoted to 
noise considerations and the possible errors coming from the instrument and the 
experimental situation. The second part is concerning the estimation of fields of 
thermophysical properties from space-time fields of temperatures. As illustration 
examples, the space derivative of the signal and the local estimation of thermal 
diffusivity fields are analyzed in the case of 1D transverse or in-plane diffusion. The 
main strategies consist in projecting the space-time signal in a suitable basis of 
functions, nevertheless other strategies such as considering the correlation between 
space laplacian and time derivative of the observable field, can be useful even if the 
signal is very noisy. 

0.Introduction 
 The processing of space and time temperature fields is more and more necessary 
because devices are now currently available in order to quickly measure, store and process 
thermal information. Infrared thermography devices are the most usual. But a lot of other 
possibilities with contact or non-contact sensors (with optical or mechanical scans) will 
appear in the future and a lot of questions about “how to process” and “how to estimate” 
thermophysical properties from such fields are now posed. 
 It is here proposed to review some of the difficulties occurring with such instruments 
and how to overcome them. 
 The first part will be devoted to the analysis of the noise and signal perturbation from 
such kind of “space-time” sensors. 

 A 2D temperature field can be the signature of a lot of heat transfer phenomena at the 
surface of a solid or a liquid (heat conduction or diffusion through homogeneous or 
heterogeneous media, convective transport in complex systems,…). One of the main intuitive 
way to process the signal is to study the time or space derivatives of such fields, in order to 
link the temperature observation to a heat transfer model. The second part of this text will 
illustrate on simple examples, some ways and difficulties related to the derivations of the 
signals and the estimation of thermophysical properties with regards to the general heat 
transfer equation. 
1. Noise and signal perturbation from temperature sensors 
 
1.1 Characterization of time/space noise, depending on the measurement device: 
1-1-1 Monosensor 
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 In the past (only 30 years ago!), only one measurement generally at steady state 
was related to a very expensive and technological experiment. The guarded hot plate was 
the emblematic example of such devices, in order to estimate the thermal conductivity of a 
homogeneous sample. In such devices, only one or two temperature measurements were 
implemented and “hand-controlled” for maintaining the steady-state regime. 
 Now, millions of thermal data related to simple experiments are available from 
infrared cameras or optical and mechanical devices. It is necessary to examine the 
characteristics of such devices and to analyze the validity of the signals, but first keep in 
mind that the enormous amount of data is advantageous since the computational effort 
related to such data is reduced. 
 Generally a monosensor (thermocouple/ electrical resistance, quantum detector, 
photomultiplier…) is giving a regularly time-spaced information coming from a complex 
unknown electronic chain (amplifier, analogical/numerical converter, filters, ….). It is 
instructive to observe (as far as possible) a stationary signal (trying to avoid any perturbation) 
coming from a measurement chain, in order to intuitively set out some characteristics. The 
figure 1 is illustrating several situations often encountered (gaussian noise, periodic parasite, 
correlated signal, digitization noise…). Such noise, in the different situations of figure 1, has 
a zero mean and a quite uniform standard deviation, even if the fundamental nature of the 
noise is not the same. 
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Figure 1: several noise illustrations from a monosensor (A-random signal, B-histogram of A- 
with 10000time steps (instead of 100 in fig A-), C- parasitic periodic noise superposed to the 
signal, D-Digitization noise from A) 

For practical reasons, the noise associated to the real signal vector  
∧
Y  of a monosensor 

will be considered as an undesired random fluctuation (random variable: Ye ) which is added 
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to a signal Y (even distorted and biased) coming the physical phenomenon of interest, such 
as: 

 Y
∧

= Y + eY 
 
The main characteristics of a monosensor is generally the noise amplitude (or the standard 
deviation of Ye ) and the mean value which is assumed to be zero ( E( ˆ Y )  = E(Y ) ---> 
E(eY) = 0 ).(with E( ) : expected value operator). The signal to noise ratio is generally the ratio 
between the standard deviation and the mean value. 
Generally, it is assumed that the error on Y has a constant standard deviation σ ��such as :  
 
 cov ( Ye )= I2σ  
 
1.1.2 Sensor array 
Since the years 2000, the infrared cameras are offering signals form a focal plane array of 
detectors which gives at the same time not only one signal but a matrix of signals coming 
from all the detectors with different characteristics. The consideration of the whole matrix of 
detectors as uniform is a dangerous assumption and instead of one mean value and one 
standard deviation, it is suitable to consider the covariance matrix of the array (very often and 
because it is simpler, the covariance of the array will be considered as uniform as the 
covariance of a monosensor, such as: cov ( Ye )= I2σ ). 
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Figure 2; Examples of noise occurring with a 2D array of sensors, A- random Gaussian, B-
non-isotropic spatial correlation, C- Digitized noise D-Non-uniformity distortion 
 
1.2 Examples of systematic errors with thermocouples and IR cameras 
1.2.1 Inertia and position errors with contact monosensors 
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Even if the previous random noise is undesired, the properties of the mean value and the 
knowledge of the variance, standard deviation or covariance matrix allow to process the 
signal. Unfortunately, systematic errors can also occur and introduce a non-detectable error. 
A thermocouple is a solid sensor which is perturbating the temperature field especially when 
high temperature gradients are implemented. Even if several precautions are taken such as 
putting the sensor and the connection wire along the assumed isotherm curve or plane, the 
inertia in the case of transient experiment cannot be avoided (see [1] ). Generally the output 
signal of the sensor is considered as a convolution product which take into account the 
thermal contact resistance or an exchange coefficient h and an apparent heat capacity 

cLρ for the system such as: 

 
Y(t) = K

ρcL
exp − h

ρcL
τ

 

 
 

 

 
 U(t −τ )dτ

0

t

∫ = H (τ )U (t −τ )dτ
0

t

∫ = H (t −τ )U (τ )dτ
0

t

∫  

K is an arbitrary multiplicative constant and U(t) is the idealized signal without inertia and the 
inertial and resistance effects can be represented under an impulsional response: H(t). 
The implementation of the previous expression needs often a discretization and can be 
presented as: 
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One way to avoid such difficulties is to estimate the transfer function between the measured 
temperature response and a surface heat flux which causes the transient gradient. A 
prerequisite condition is to be able to excite the system with a calibrated heat flux and to 
estimate from  a model the impulse response or the transfer function (see [2]). 
 
1.2.2 Some examples of systematic errors with sensor-arrays,(Calibration, non uniformity of 
a detectors array, bad pixels, dead time...) 
 
-Calibration, emission and reflexion 
In the case of infrared cameras, the systematic errors are not coming from the inertia or the 
thermal resistances (only with contact solid sensors) but from the calibration of the great 
amount of radiative sensors and the estimation of the radiative balance between the sensor 
(proper emission, reflexion and influence of the environment) (see [3], [4]). The Luminance 
coming from the observed surface is a function of the temperature of the object (Planck’s 
law) and must be calibrated previously with a black body source. Such calibration is a source 
of systematic error (non linearities, emissivity,..) which will be here assumed to be overcome. 
If the influence of the atmosphere between the camera and the measured surface is 
considered as perfectly transparent, the measured luminance is then considered as only 
depending on the proper emission of the surface  and the reflection of the environment. 
In order to avoid the parasitic effects of the reflexion, it is convenient to study the transient 
temperature response of the surface of a system to a calibrated even localised heating (see 
[5]).  
 
 
 
-Non-Uniformity Correction 
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The infrared cameras are generally sold with a pre-calibration system of the pixels, A 
distribution of gain and offset for each pixel must be regularly re-estimated (Non Uniformity 
Correction). The estimation is generally obtained from the measurement of the emission of 
an isothermal surface at two different temperatures (generally with an extended blackbody). 
Sometimes, these distributions are corrected by the internal temperature of the camera in 
order to take into account the time derive of the environment or the electronic system. 
Then the relationship between the measured heat flux (measured luminance) is related to the 
temperature of the observed surface by a global calibration (estimation of Planck law 
parameters or of polynomial parameters fitting the Planck Law). 

 
-Bad or dead Pixels 

Out of the non-uniformity correction, the detector array can present defects such as bad or 
dead pixels (less than 0.5%). Generally, these pixels are recognized initially by the device 
provider and corrected by a signal averaged from the neighbouring pixels (Bad Pixel 
Replacement).  

-Time recording, dead time step 

One other important defect related to the infrared cameras consists in the dead time 
detections. Even if the recording of frames is assumed to be at regularly spaced time steps it 
is necessary to examine the real time recording steps provided by the last generation of 
thermographic devices (see [5]). In fact, a lot of delays have to be considered in a 
thermographic device. 
The integration time is the delay for the recording of the radiation emitted by the considered 
surface, by the detector. The detectors of the array are recording simultaneously the thermal 
scene (snapshot mode) and therefore the integration time is the time resolution limit of the 
device. The electronic transfer of the informations from the detectors to the storage memory 
is then insured with a delay (electronic transfer delay) generally much longer than the 
integration time (several ms instead of several µs). This characteristic is important because 
for fast phenomena observation (or fast apparent scanning) the electronic transfer can fail 
and give irregular recording time steps. It is then more advantageous to implement a high 
frequency periodic phenomenon and to record the images with a trigger controled at 
stroboscopic frequencies (see [6]). In all cases, if the recording time is not perfectly 
controlled, the errors induced, for instance, with a time derivation of the signal will be strongly 
different from the classical random noise assumption since the time is considered as an 
explicative variable (known without errors…). Generally this phenomenon is not affecting the 
visualization of the thermal phenomenon, but the processing (see [7]). 
 
-Thermal stability of the instrument 
The stability of the signal delivered by the infrared camera is often related to the internal 
temperature of the detector array which is about 80°K. Unfortunately the freezing of the 
detector array and the thermal regulation is not always stable (1 to 5 mK). This instability is 
influencing the nominal properties of the detector array and consequently the Non Uniformity 
Correction.  
By the same way, the detector array is an energetic system influenced by the internal heat 
pump and also by the external ambient temperature conditions. 
 

-Space resolution 
The apparent number of pixels of an image is not a sure indication about the space 
resolution. With the ancient thermographic devices, the image was built with an optical 
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scanning and a single detector. Very often the scanning was inducing an “overlapping” of the 
pixels and a strong spatial correlation acting as a space convolution effect (or blurring effect) 
of the image dramatically damaged by the absence of possibility of snapshot mode (time lag 
for each pixel). 
The effects of such “pixel correlation” are attenuated with a focal plane array of detectors and 
then improving the image resolution (or the apparent image quality). Nevertheless, the 
examination of the correlation of the pixels with the neighbors remains necessary. A classical 
test is the slit response function measurement. 

A cool slit (at Tslit) with a variable width x is placed in front of a hot plate at Tplate. The width 
of the slit is varied in order to obtain the Slit Response Function (SRF(x)) such as : 

 

TslitTplate

TslitxT
xSRF

−
−= )()(

,  

 
Such a function is corresponding with symmetry considerations to a step response see figure 
3. 
It means that the image signal is convoluted with the derivative of the SRF. (see figure 3). 
Generally the characteristic width of the  is about 2 or 3 pixels but can vary in the image. The 
measurement of such a response in the center of the image gives often slightly different 
results on the boundary of the image. 
The derivative of the SRF can be considered as a weighting function in a spatial convolution 
product, such as: 
 

    Y(x) = p(χ)U (x − χ)dχ
0
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∫  

Or under discrete form : 
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 This space convolution is different from the time convolution previously implemented with 
solid sensors. Generally this weighting function is centered and symmetrical. The 
corresponding matrix is a band matrix. 
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Figure 3: A-Example of Slit Response Function and corresponding pixel positions, B- 
Derivative of the previous SRF function: p(x) which is the kernel of the moving average 
applied to the signal. 
 
1.3 Conclusion/ Synthesis of the first part 
The previous list of possible errors and “unwanted noises” related to temperature field 
estimation is often frightening for the beginner. Maybe a rought synthesis can help the 
inexperienced user to start and practice the processing of such noisy and plentiful data. 
Tree categories of noise can be globally considered: 
-the random noise : with zero mean value is an unwanted perturbating noise but able to be 
processed with simples asumptions (related to the uniform covariance matrix). 
-the systematic errors: (NUC, time derive, radiative parasitic effects, sensor positions ...) 
which must be fought, detected or bypassed by the experimenter. 
-the space and time convolutions and correlations of the signal acting on the real time and 
space resolution limit. Such convolutions are considered as filters on the space and time 
signal. It will be generally difficult to obtain good estimations when the resolution limit is 
passed (even if deconvolution is a class of inverse problems). Such remark is remaining that 
the processing of a large amount of data must not give the illusion to dispose of the complete 
information about the phenomenon to be studied.  
Other filters or convolutions will be considered in the second part of this text, devoted to the 
signal processing. 
 
 
2. Thermal » processing of a 2D transient T(x,y,t) field 
From a 2D transient T(x,y,t) field, and a heat transfer model (even simplified) is it often 
possible to estimate a resultant thermophysical properties field. The diffusion and convection 
transport modes can be considered in order to set out an identification model.The simple 
observation of the evolution of the temperature field can give the intuition of such 
phenomena (see the figure 4). 
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Figure 4. Illustration of the evolution of convective, in plane diffusive field, capacitive 
transverse field... 
 
The processing of such fields needs of course to be aware of the previous “noise and 
perturbations” considerations about the temperature field recording. The random noise with a 
zero mean and a uniform and diagonal covariance matrix will generally be considered, but 
several aspects related to the “bad pixels”, the space or time correlation and the non regular 
time steps will appear on the following examples. Maybe, the first “natural”processing of such 
field is to try to set out the derivative (versus space or time) of the field. The space-derivative 
is often a mean to analyse the signal by considering the gradient of the signal (from 
displacement to stress in solid mechanics see [8]). 
 
2.1 Strategies for the estimation of the time and space derivative of the signal : 
The space or time derivation of noisy fields is a difficult task, because such operator is 
amplifying the random measurement noise, if no precaution is taken (see figure 5). A 
“filtering” is then necessary, but the risk is to lose a part of the original information. Several 
strategies will be here examined (the finite differences, the polynomial fit, the orthogonal 
basis decomposition and the convolution), in order to numerically implement the derivation of 
a dicrete signal. 
In order to test these strategies the relaxation of an initial step such as: 
 
 T(x,t=0)=1 if 0<x<b=L/2 and T(x,t=0)=0 if b=L/2<x<L 
  
After a time t, the temperature field is relaxed (or filtered) by diffusion, and an approximation 
of the field is then: 
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with:  Lnn /πα =   and n,N  finite integers. 
Rigourously, the previous expression is a serie with N tending to infinity. A physical filter (due 
to the exponential term) is acting here and limiting the space-frequency content of the signal. 
The parameter which allows to control the filter is here the observation time. This observation 
time will be fixed in this section and only the space field will be considered. 

The observed temperature is a vector obtained from the previous expression at regularly 
spaced space steps and a white gaussian noise is added. 
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Figure 5: A- Temperature field from the previous analytical expression at time t=0.5s; a=10-5 

m2 s-1; b=L/2; L=0.1m; (continuous line: real signal, ‘o’: discrete noisy signal);  B-Derivative of 
the previous noisy signal by finite differences.  
The initial gaussian noise is with zero mean and σ=0.01.  The resulting noise is amplified by 
the derivation operation. 

 
2.1.1 Finite differences 
The finite difference approach used on figure 5 is generally presented at each space step i, 
as: 

 ˆ T ' i =
ˆ T i +1 − ˆ T i

∆x
 

If it is assumed, that the relation between the observed temperature ˆ T i  and the real 
temperature iT is: 

 ˆ T i = Ti + eTi
,  

with eTi
 representing the random variable related to the gaussian noise, uniform whatever the 

position xi. The asymptotic expansion around xi is such as: 
 

 ˆ T ' i = T (xi +1) −T (xi )
∆x

+ε(xi +1) + eTi+1 − eTi

∆x
 

With: 

 0)(
lim

=
→

x
xx i

ε  

Two kinds of errors have then to be considered: the approximation error )( ixε related to the 
rest of the asymptotic expansion and the random error related to the random variable eTi

. 

Unfortunately, when the space step x∆ is tending to zero, the approximation error is 
effectively tending to zero, but the random error is tending to infinity! 
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The difference of two random variables is a linear operation which amplify the initial noise. In 
order to avoid such a difficulty, it is necessary to “filter” the signal or to project the discrete 
observed information in a basis of functions. One of the simplest basis of function can be a 
polynomial basis. 
 
2.1.2 Polynomial fitting 
From the same previous measurements, a polynomial fitting can be implemented such as: 
 

 ∑
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n ]....,,[ ββββ 321=B can then be obtained by 

a linear least-square relation such as : 
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In order to minimize the distance: 

 ( ) ( )XBTXBTXBT −−=− ˆˆˆ T
 

The construction of the derivative will then consist in considering the derivative of the 
polynomial function. The Matlab software is convenient in order to implement such 
calculations because the XX t matrix can be bad conditioned (Wandermonde matrix) and 
must be inversed with special precautions. One example of such processing is shown on the 
figure 6. 
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Figure 6: A-polynomial fitting of the signal shown on figure 5. B- Derivation. 
The chosen degree of the polynomial fitting is here: N=30. The number of observation points 
is 100. 
 
Is shown here that the direct derivation of the estimated polynomial expression is giving a 
suitable continuous approximation in the considered domain. Approximation errors are 
occurring at the boundary of the domain if no precautions or assumptions are taken. One 
other strategy is to chose a basis “near from the considered physical phenomenon”. Here, 
the ideal basis if the basis made of the Fourier cosine functions, because the cosine vectors 
are here verifying the boundary conditions (null derivative at x=0 and x=L) and are also the 
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eigenvectors of the diffusion phenomenon (eigenvectors of the Laplacian operator in 
Cartesian coordinates and adiabatic boundaries). 
 
2.1.3 Fourier cosine basis 
The same processing as the polynomial fitting can be considered with such an expression: 

 )cos()(
0

xxT nn

M

n

αβ∑
=

=  with: Lnn /πα =  

The estimation of the parameter vector: T
M ]....,,[ 321 ββββ=B  is then obtained by the same 

expressions as previously (in section 2.1.2), excepted that the XX t  matrix is orthogonal, and 
then very easy to be inverted. The covariance matrix related to the parameters is then as 
diagonal as the observable vector. 
The result of the estimation is then, with 30 terms for the serie, illustrated on figure 7. 
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Figure 7: A-Fourier fitting of the signal shown on figure 5. B- Derivation. The number of terms 
is N=30. The number of observation points is 100. 
 
2.1.4 Filtering with a convolution kernel 
The filtering is a usual operation in signal processing, which consist in weighting the signal 
with a moving average. It must be noticed that the observable signal himself is maybe 
previously filtered by the proper instrument. Such as explained in part 1. A new 
approximation of the signal can then be considered by )(~

xT such as : 
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The derivative of )(~
xT is then conveniently considered by the commutability of the 

convolution product such as : 
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The discrete approximation of the derivative is then conveniently considered by a convolution 
with a « derived » kernel. 



 
 
 
 
 
Metti 6 Advanced School: Thermal Measurements and Inverse Techniques            Biarritz,  March 1- 6, 2015 
 

One very simple illustration is given on figure 8. The discrete convolution kernel of the filter is 
for example [1 2 1]/4 and an approximation of the convolution kernel for the derivation is then 
[1/2 0 -1/2]. It can be noticed that this “slight” convolution (affecting only a few number of 
neighbors and very similar to the finite difference method) allows to obtain good results with 
less effort. 
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Figure 8: A-Filtering of the signal shown on figure 5, with a convolution kernel: [1 2 1]/4  B- 
Derivation with a convolution kernel: [1/2 0 -1/2] (plot’o’) and comparison with the finite 
difference derivative of the previously filtered signal (plot’+’). 

 
1.2.5 Singular value decomposition of the whole space and time signal 
The previous methods consists in finding a compromise between the “approximation error” 
and the “filtering”. The number of terms of the serie (or the rank of basis), or the width of the 
convolution kernel are biasing the signal if they are “used too far”. A lot of other methods can 
be considered (for example more sophisticated regularisation technics, see [9]). When a 
large field must be processed the choice of the compromise between the filtering and the 
bias is made by trial and error.  
The key point is the knowledge of the random noise (at the minimum the standard deviation). 
Often, the experiencer does not know the characteristic of the noise in his proper experience. 
It is then difficult to implement an optimal filtering of the signal. 
One way to separate the “available signal” from the “random noise”, when the experiencer 
has a great amount of space and time information, consists in implementing the singular 
value decomposition (SVD) of the ),( txT  field, or the ˆ T (xi , t j )  discrete observable matrix. 

Applying the SVD to temperatures matrix ˆ T  yields 
 

 ˆ T = UnxnΣnxnVnxm
T    

 
Where Σ  is a sparse diagonal matrix as described below 
 

 ( )0n m n n n m n× × × −
 Σ = Σ
      

 
So that finally the following truncated formulation of the SVD is commonly accepted 
 

 ˆ T = UnxnΣnxnVnxm
T = γ k Uk .Vk

T( )
k=1

n

∑  
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Where the modesUk  and Vk  are the column vectors of matrices U and V respectively, and 
the singular values γ k are the diagonal elements of Σnxnarranged in descending order. 
Such a decomposition of the global space/time field is offering a lot of advantages. First, the 
examination of the singular values γ k allows to select the really available signal. Thermal 
phenomena are often related to diffusion problems (naturally filtered), with only a few 
available singular values. 
The decomposition obtained with the reduced number of singular values is then offering a 
reduced representation of the field which allows a lot of possibilities (reduced computational 
effort for the further parameters estimations, low memory storage, new orthogonal basis and 
projection possibilities, see [10]).  
In the case illustrated on figure 9, the SVD is allowing an optimal filtering without any 
previous knowledge about the random noise at any time. The finite differences derivative is 
then available without precautions. 
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Figure 9: A- T(x,t) noisy temperature field (time extention from figure 5), B-3 first singular 
values,C-D-First U and V vectors, coming from the SVD decomposition, E- Reconstruction of 
the previous signal at time t=0.02s, with 3 term of the SVD decomposition.F- “Noisy” 
derivation of the previous signal (initial noisy observation) compared the finite differences 
derivative of the SVD reconstruction) 
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The previous example is showing that the transient situation even non-stationnary, is giving a 
greater amount of data than a unique image. The SVD decomposition is a mean to squize 
and to process the great amount of data quite with the same effort as in the stationnarycase. 
It must be noticed that the orthogonal basis U is more reduced than the the basis of cosine 
functions used in section 2-1-4. 
 
2.2 Estimation of a transverse diffusivity field from flash experiments (comparison of classical 
Non Destructive Evaluation methods): 
2.2.1 Estimation with physical asymptotic expansion: 
Non Destructive Evaluation (NDE) with infrared cameras consists generally to apply a heat 
pulse on a non homogeneous parallelepipedic slab and to process the temperature response 
T(x,y,t) from one face of the sample (the front face or the rear face). The aim of such 
processing is to estimate some characteristics of the heterogeneities (structure, size, nature, 
position inside the sample…). The resolution of a general direct problem of transient heat 
transfer in a 3D heterogeneous geometry is often heavy and not convenient to implement 
such methods.  
Here, thin samples with small heterogeneities such as the transfer is locally 1D (versus z 
direction), will be considered. One asymptotic expansion assuming that the heterogeneities 
fluctuations are small compared to the mean value of one thermophysical property of the 
sample yields a linear relationship, such as: 


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Where the functions q(x,y) is the spatial distribution of energy coming from a flash excitation 
and ),( yxβ∆ is the spatial thermophysical property variation(diffusivity, conductivity, 
thickness…). q(x,y) and ),( yxβ∆  have to be specified with a finite number of parameters 
which will be the object of the estimation procedure. Such procedure will then consists in 
processing the weighted sum of the images T(x,y,z,t) where the weighting functions are the 

sensitivity functions f(z,t,β0) and 
),,( 0ββ

tz

f

∂
∂

. 

The temperature response of the front or the rear face of the sample will be recorded by a 
camera in order to estimate a map or a field of thermophysical properties. In the ideal case, 
the sample (a plane plate of small thickness L) is assumed to be thermally insulated and with 
a temperature field initially uniform (T(x,y,z,t=0)=0). If the heat transfer is supposed 1-D, then, 
the temperature response related to a unique location (x,y) corresponding to a pixel, to an 
instantaneous thermal pulse, is given (See [11]) on the front face  (z=0) : 

 

( ) ( )2

1
2 /²²exp21,0 Latf

cL

Q

L

tan

cL

Q
tzT

n ρ
π

ρ
=



















 ⋅⋅⋅⋅−⋅+⋅== ∑
∞

=
 

 
Such expression is rather incomplete because the simplified assumptions (1D transfer, 

adiabacity…) can introduce a bias between modeling and experiment. Therefore, this 
expression is convenient to understand the different estimation procedure strategies. From the 
previous expression, the estimation problem of several parameters can be considered. 
Instead of the thermal diffusivity, the estimation problem of the sample thickness L, the 
thermal conductivity λ and the volumic heat capacity ρc can be considered. In each case, a 
reference approximated value of the parameter must be known (and noted: L0, λ0 and 
ρc0). 



 
 
 
 
 
Metti 6 Advanced School: Thermal Measurements and Inverse Techniques            Biarritz,  March 1- 6, 2015 
 

In many cases such reference values can be obtained by a previous global measurement. 
The following first order asymptotic expansions can be for example written for the front face, at 
each time ti: 

 -If a thickness variation is to be estimated: 
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 -If a volumetric capacity variation is to be estimated: 
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 -If a thermal conductivity variation is to be estimated: 
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It is very important to notice that in all previous cases, it is possible to replace the sensitivy 

functions f(z=0,t,β0) and 
),,( 0ββ

tz

f

∂
∂

 by a linear combination of f(z=0,t,β0) and the time 

logarithmic derivative 
),,0( 0βtzt

f
t

=∂
∂ . It is then possible to implement a linear relationship such 

as: 
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21 21 iii tXtXtT ββ ββ +≈  

 
The functions )( itX

jβ are the sensitivity functions of ),0( itT  to parameters jβ . Such 

functions are shown on figure 10. If other parameters combination estimation (such as 
thermal diffusivity estimation) is considered, the resulting sensitivity function will be a linear 
combination of functions f and t (∂f/∂t). 
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Figure 10 Sensitivity curves related to the 2-2-1 section. 
 
The parameters jβ are defined in each estimation situation such as: 

  
 -If a thickness variation is to be estimated  
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 -If a thermal conductivity variation is to be estimated  
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That is to say with matrix notation, considering the vectors and matrices: 
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It yields under matrix notations: 
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If the measurement noise on each component of the experimental temperature vector ˆ T is 
assumed with a constant standard deviation and not correlated, in the domain of validity of 
the previous asymptotic expansions, then, the optimal estimator of the parameters vector 

 ˆ β 1 ˆ β 2[ ] is obtained by : 
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The linear approximation allows not only the estimation of the parameters, but also the 

confidence interval of this estimation to be studied. An intermediate stage is the covariance 
matrix of the estimation on the vector ˆ β 1 ˆ β 2[ ], given depending on the standard deviation of 

the temperature measurement noise σT : 
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The method can be used whatever the length of the vector T̂ . These expressions can be 
implemented simultaneously with all of the pixels of the image. Thus, the matrix product 

TX t ˆ can be incremented and consists in a real time weighting. The choice of the weighting is 
linked to the choice of the estimation strategy (estimation of L, ρc or λ). The terms of the 
sensitivity matrix are theoretically calculated with the references values or the averaged 
images. This sequential method considerably eases the problems of storage and images 
manipulation. It is very suitable for a simple Non Destructive Evaluation. 
Moreover, f(t) can be “measured” on the data, because at each time step, the average of the 
image is a filtered approximation of f(t). The computation of the logarithmic derivative of f(t) 
would then give a suitable method applicable without any idea about the knowledge of the 
nominal values of the thermophysical properties of the considered sample. 
Unfortunately, the logarithmic derivative of this experimental signal is not easy with simple 
finite differences methods. In order to overcome such difficulties Shepard [12] proposed 
intuitively a logarithmic time-fitting each pixel signal and Rajic[13]  to consider the SVD of the 
global data cube.  
 
2.2.2 The logarithmic polynomial time-fitting [12] 
In order to conveniently process the great amount of data provided by the flash NDE 
experiment, Shepard proposed to decompose the signal with a polynomial fitting, such as: 
 
 Ln(T(x,y,z=0,t))=β0(x,y)+�β1(x,y)Ln(t)+�β2(x,y)Ln2(t)+… 
 
Such decomposition has no physical meaning because the new parameter vector is not 
related to a physical model, but the time-logarithmic derivative (considered by Shepard) 
appears to be very well correlated with the depth or thermophysical properties changes of 
the tested samples. The calculation of the logarithmic derivative is then taking the 
advantages related in section 2-1-2. It is also a very efficient and convenient method in order 
to reduce and manipulate the great amount of data (only N images corresponding to the 
degree of the polynomial expressions are to be manipulated). 
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2.2.3 The SVD decomposition ([13]-[10]) 
An other way to reduce the amount of data consists in considering the SVD of the 
information cube. Rajic [13] proposed the SVD decomposition (explained in 2.1.5) such as: 

 
∑

=
==

K

k
kkk tvxutzyxT

1
)()(),0,,( γ  

Such data obtained from NDE experiments appears to be nicely reduced by 2 or 3 terms of 
the previous serie. Generally, the U1 vector (or )(1 xu  function) is giving a good approximation 
of the spatial energy distribution. The V1 vector (or )(1 tv  function) is related to f(t). The U2 
vector (or )(2 xu  function) is giving a good approximation of the defects localisation. 
Bamford [10] proposed to compare the asymptotic expansion explained in the 2.2.1 section 
to the previous SVD decomposition. The slight differences are coming from the non-
orthogonality of the functions in 2.2.1. 
 
In fact all the methods presented in section 2.2 are very similar. They consist in projecting 
the data cube in a suitable basis of functions (physical or not) and then to try to process the 
signal with a physical model. In the next section, an other strategy is proposed. It consists in 
using the physical model in order to reduce or eliminate the non useful data (because 
nothing physically happens or because the sensor is providing a wrong signal). 
 
2.3 Estimation of in-plane diffusivity field-Time-space correlation and elimination of the non 
useful data  
Initally, in-plane characterization methods were related to  modal methods (using cosine 
Fourier transform or projection on cos(αnx) functions basis) allowing to estimate the thermal 
diffusivity of homogeneous anisotropic samples (see  [14] ,[15] ,[16]). The main drawback of 
these methods is to be non adapted to heterogeneous samples, and also to consider only 
heat pulse or heat step heating responses.  
When the sample is heterogeneous and when heat source terms can occur whatever the 
time or the space localization, it is difficult to set out analytical Fourier solutions, even 
polynomial fitting nor SVD decomposition (especially when the heating is random in time). 
 
Nodal methods are then suitable and allow to consider other estimation strategies (see [17]). 
The local energy balance is then discrete and considered such as : 
 

Foi, j ∆Ti, j
k + Φ i, j

k = δTi, j
k  

  
with: ( )k
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kkkkk
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temperature field, 
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=  Is the Fourier nondimensional local parameter related to the thermal diffusivity 

jia ,  ;  the pixel size ∆x ; and the time step ∆t . 

k
ji ,Φ  is a nodal source term which can occur randomly in space or time. 
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,, −= +δ is related to the discrete time-derivative. 
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It is then proposed to process the temperature field by looking only for the zone where there 
is a pure diffusion phenomenon (verifying only Foi, j ∆Ti, j

k = δTi, j
k ). A criterion suitable to detect 

such zones is to consider the local correlation between the laplacian and the time derivative: 

    tF
ji ,ρ j =

∆Ti, j
k δTi, j

k

Ft

∑

∆Ti, j
k 2

Ft

∑ δTi, j
k 2

Ft

∑
 

where Ft is a temporal window such as: [ ] ],1[, ltNkwithltkkFt −∈+= , k is the time step number 
and lt the width of the time window. If such a coefficient is near from 1, a diffusivity parameter 
is then estimable: 
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One example of temperature field processing is given on the figure 11 to 14. 

A- B-  
 
Figure. 11 Source term A- Position of the hot spot B- Time evolution for 3 pixels in the center 
of the image 
 
 

A B  
 
Figure. 12 Temperature response A- Temperature field at  t = 55 wu (without unit), B- 
Evolution of several pixels in the center of the image 
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A B  

Figure.13 Correlation coefficients calculated for Ft =4. A- Field at t = 55 wu (just after the 
heat step)  B- Time-evolution for3 pixels et the center of the image. 

 
 

The field of correlation coefficient illustrated on figure 13 are showing the zones where the 
thermal diffusivity ois able to be estimated (correlation near from 1) and the zone where no 
estimation is possible.  

This knowledge of the correlation field allow to estimate the diffusivity only in the suitable 
area (see figure 14). 
 
 
 
 

A- B-  
 
Figure 14:  Estimation of the reduced diffusivity A- Field obtained from the whole information 

cube B- Quasi instantaneous estimation (window of 4 time steps). 

 

From figure 15 it is interesting to remark that the “physical” correlation process allow to 
discriminate the zone where there is a pure diffusion phenomenon from the zone where there 
is a source term from also the zones where nothing appear or maybe the pixel are dead. This 
processing can then sometimes allow to partly overcome the processing and the 
considerations explained in the part 1. Especially when the signal is very noisy, the simple 
consideration of correlations can help to discriminate the areas where a source term or a 
purely diffusive relaxation appear. 
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Figure 15 Study of the correlation between Laplacian and time derivative for several pixels 
(‘o’ pixel with or without source term with diffusion,  ‘+’ pixel where no diffusion appear or 
“bad pixel”. A- From noisy signal, B-From less noisy signal. 
 
3 Conclusion: 
 
The time-space thermal signal is offering a great amount of data which must be processed 
from several points of views. First, the different kinds of noise and bias (random, systematic 
and space and time correlations) coming from the instrument must be analysed and 
understood. Then several strategies are available in order to process the signal in relation 
with a physical model. Often the main strategy will consist in projecting the signal in a 
function basis which can come from intuition, statistical processing or physical analysis. This 
projection is advantageous in order to filter the random noise, to reduce the great amount of 
data and to conveniently manipulate and estimate the parameters. But the projection is not 
always the most suitable strategy. The direct condideration of a physical model will allow to 
eliminate or discriminate the data correlated or not with a chosen physical phenomenon (one 
example has been evocated with the estimation of a thermal diffusivity field). 
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