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Abstract. In this lecture, the electronic noise of a measurement system and its physical 
origin is presented, as well as its main characteristics (see also lectures L2 and L5 for 
temperature measurements). The main properties of random signals (joint probability 
density, expectation, variance-covariance matrix) are also briefly recalled. These notions are 
essential for the assessment of residual error in linear (see lecture L3) and non-linear 
parameter estimation problems (see lecture L7) and for function estimation problems (see 
lecture L8), 
 
Introduction 
 

Measurement noise constitutes a critical point that is crucial to understand in parameter 
estimation, that is when comparing measurements and a model: the knowledge of noise 
properties allows an assessment of the level of the estimation errors (bias and dispersion) in 
this type of experimental inverse problems. Section 1 is devoted to the characterization of the 
measurement noise and a to brief description of the different origins of measurement noise 
an “inverter” (that is an experimentalist combined with a model-builder) can meet. Section 2 
presents the vector-matrix representation of these characteristics, for further use in 
parameter estimation problems.  
 
 

1. Physics of measurement noise 
 

1.1. Definition 
 

 
 

Figure 1 – Random signal 
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A random signal (or stochastic process) is a signal that does not remain unchanged when 
the experiment it stems from is repeated (see Fig. 1).  
 
It is noted  X (t,ω)where ω is a test (that is a random variable that contains the outcome of a 
random draw). 
. 
x (t, ωi)is a  realization of X (t,ω)for a specific draw ωi. 
 
1.2. Statistical descriptors  

 
• 1rst  order descriptor 

 
Expectation = Ensemble mean :   
 

mX(t) = E { X (t, ω) }    (4.1) 
 
It is an indicator of the average position of the signal at time t (see Fig. 2)  
 

 
 

Figure 2 – Realizations of a random, local probability density function and expectancy variation  
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• 2nd order descriptors  
 

Instant power = Quadratic mean : 
 

PX(t)=E{ X (t, ω)2}     (4.2) 
 
It is a quantification of the average power of the signal at a given time t 
 
Calculation of the instant power of signal at time t : 
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Variance 
 

VX(t)=E{ lX (t,ω)−mX(t)l2}     (4.4) 
 

It quantifies the instant power of random fluctuations around the mean (dispersion indicator).  
 
Standard deviation 
 

)()( tVt XX =σ      (4.5) 

 
 
It has the same physical meaning as the variance, but its physical units are the same as the 
signal. 
 
The previous descriptors characterize the signal behavior (average position, dispersion) at a 
time t. 
 
They do not allow for any analysis of the relationships (dependence) that exist between 
samples. 
 
An indicator is needed for quantifying the level of the « force » that makes a sample at time t 
+ T depend on its value at time t. 
 
• The autocorrelation function 

 
{ })()(E),( ττ += tXtXtRX    (4.6) 

 
 

It quantifies the correlation (or the scalar product or the projection, in the stochastic meaning) 
between )( τ+tX and )(tX  (see Fig. 3). 
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Figure 3 – Correlation between signal for a given time lag  high level (left) and low level 
(right) 
 

 
Interpretation of the autocorrelation function: 
 
A signal very highly correlated with itself exhibits very slow fluctuations (with a “smooth” 
appearance), see Fig. 4, top.  
A signal lowly correlated with itself exhibits very rapid fluctuations (with a “chaotic” 
appearance), see Fig. 4, bottom.  
 

 
 

Figure 4 – Typical slow (top) and fast (bottom) fluctuations of signal 
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Figure 5 – )0(/)( =ττ XX RR for a) a discrete white noise 
b) a thermal noise and c) a noise of narrow frequency interval 

 
 
1.3 Properties: stationarity, ergodicity 
 
• The stationarity property of a signal 

 
Definition : A stationarity random signal is a signal whose statistics do not depend on time: 

 

XXXXXX PtPVtVmtm === )(;)(;)(   (4.7a, b, c) 
 

Remark 1 : In fact, this assumption is nearly compulsory, in order to be able to estimate the 
characteristics of the signal; 

 
Remark 2 : The stationarity property of a random signal is analogous to the periodicity 

condition of a deterministic signal. In any case, it just an idealization. 
 

• The ergodicity property of a signal 
 
Definition : A signal is ergodic (in the strong sense), see Figure 6,  if: 
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Figure 6 –Ergodic signal 
 

As a particular consequence, it yields: 
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ω     (4.9) 

 
 
which means that its time average is equal to the ensemble average. 
 
1.4. Examples 

 
Different types of noise exist: 
 

• White noise: constant spectrum (Figures 7, 9 and 10)) 
• Pink noise: spectrum in 1/f 
• Brown noise  (brownian), sometimes called « red »: spectrum in 1/f ² Figure 11) 
• Blue noise: spectrum in f 
• Violet noise: spectrum in f ² 
• Grey noise: blue + pink 
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Figure 7 –Different types of noise 
 
Other types of noise: 
 

• Thermal noise (Johnson) 
• Flicker noise 
• Shot noise (Figure 12) 
• Burst noise 
• Avalanche noise 
• Popcorn noise (see Figure 8)... 

 

 
 

Figure 8 –Popcorn noise 
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The Popcorn noise (random telegraph signal) corresponds to a discrete modulation of the 
channel current caused by the capture and emission of a channel carrier 
 

 
 

Figure 9 –White noise: autocorrelation (left) and frequency spectrum (right) 
 

 

 
 

Figure 10 –White noise 
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Figure 11 –Brownian noise (non-stationary) 
 

 

 
 

Figure 12 –Shot noise  
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Figure 13 –Noise of limited spectral interval 
 

 

 
 

Figure 14 –Sine signal with random phase 
 

1.5 Noise in 1/ f a 

 
This type of noise lies in between a white noise and a brownian noise : 
 

- It is a process with a long memory. 
- Many natural signals exhibit a spectrum in 1/f. This is based on repeated 

observations. However no clear theoretical explanation is yet available. It does not 
stem from any differential equation. 

- The longest series of information of data is the level of the Nile river measured by 
Egyptian over a 3500 years period: it follows a law in 1/f.  
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• This type of noise is called by different names : 
 
- pink noise (with a law) in 1/f, 
- Flicker noise in 1/f a (in the special case where a = 1) 
 
It is met in electronics, see Figures 15 and 16. 
 

 
 

  

 
Figure 15 –  Electronic noise 

-   left: spectrum (linear scale), B. Johnson, Phys. Rev. 26 (1925) 71 
- right: noise spectrum of an amplifier over 3 months (log-log scale), M.A. 

Caloyannides – J. Appl. Phys. 45 (1974) 307.the heat flux density q that 
flows through the wall.  

 

Other examples of pink noise are shown in Figure 16. 
 
Flicker noise : 
 

- is a generalization of the pink noise 
- its spectrum is in 1/f a , with 1/2 < a < 3/2 

 
Thermal noise of Johnson-Nyquist 
 
– the electronic noise has been observed first by Johnson in 1926 and it has been explained 
by his colleague, Nyquist. 
 
- it results from the Brownian motion of electrons at constant temperature (thermalization).  
 
- in its most general form, it is an elementary stochastic model of noise: 

 
• white noise 
• pink noise 
• Brownian noise 
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Noise in a measurement chain 
 

The noise in measurement chain based on a multi-stage measurement chain results from 
noises at different level of this system, see Figure 16. 
 

Noise for a multi-stage circuit 

 
 

Figure 16 –  Pink noise: other examples 
 

 

Noise in a measurement chain 
 
The noise in measurement chain based on a multi-stage measurement chain results from 
noises at different level of this system, see Figure 17. 
 

 
 

Figure 17 - Noise for a multi-stage circuit 
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Figure 18 –  Current and voltage modeling of the noise of an operational amplifier  
 

 
At the local level, one has to model the behavior of each stage, see Figure 18. 
 
The correlation function and the spectral density can be used as tools for the characterization 
of the system. 
 
 

 
 

Figure 18 –  Relationships between signal values at different measurement times 
 
One has to answer the following question: 
 
- are any values of )(tf  at times tt ∆1 + , tt ∆2 +  , ..., ttm ∆1 +− , ttm ∆+ , ttm ∆1 ++  possible ? 
 
It is possible to plot the autocorrelation function (see Figure 19): 
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The value of this function for a zero time lag  is: 
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And the sign of the time lag does not matter in its definition since this function is symmetric: 
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Figure 19 –  Example of the shape of an autocorrelation function 
 
The energy of the signal is defined by: 
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It can be decomposed on a frequency basis, see Figure 20: 
 

ffXem d)(domain)Fourier(in =     (4.14) 
 

 
The quadratic mean in the time domain is equal to the quadratic value in the frequency 
domain. 
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2. Mathematical c haracterization
 
2.1  A reminder of vector r andom
 
2.1.1  Static model and e stimation

 
We assume here that the model

independent variable, called 
output is 'static' and repetition
sampling process, without replacement
 
This very classical procedure 

and/or variance 2σ   of the distribution
starting from the real discrete 

 
With these assumptions, it 
measurements m is high enough,
follow a normal law,  noted  N

2
sS  , after a scaling by m/2σ

freedom : 
 

 
:with

(:  ,yY moN

 
This allows to find non-biased
designate an estimated value 
 

 Measurements and Inverse Techniques      Biarritz,
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Figure 20 –  Measurement of the spectral density 

characterization of noise for parameter estimation

random variables 

estimation of the parameters of a probability law

model output is a constant µ  (it does not

 'times' her), which means that µ=moy . This
repetition of measurements y of ymo corresponds to

replacement here, in order to construct a sample

 is used to get a statistical estimation of the stochastic

distribution of y (the infinite number of 'potential'
 measurements of y  in the sample. 

 can be easily shown that, as soon as
enough, higher than 30 in practice, the sample

N   here (Central limit theorem), and the sample

m , follows a 2-Chi law, noted  χ2 here,  with 
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biased estimations of µ  and 2σ , using the 'hat'
 of the corresponding parameter : 

Biarritz,  March 1- 6, 2015 

 

estimation problems 

law 

not depend on the 

This means that its 
to a simple random 

sample (y1, y2, ... , ym).  

stochastic mean µ
'potential' measurements) 

as the number of 
sample mean Y  tends to 

sample variance, noted 

 (m – 1) degrees of 

2

1

)

)−
  (4.15) 

'hat' notation (^) to 
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 22

1
et s

m
m

ˆyŷmo −
== σ     (4.16) 

 
with y  and 2s  the observed values of Y  and of 2

sS ,  replacing random variables Yi  by the 
corresponding measured values yi.  
 
 
2.1.2  Measurements for a dynamical model and random vector   
 
We consider now a dynamical model, where measurements  iy   of )( x,ty imo η=  at m times  

ti (for mi to1= ) constitute a sampling operation but now the expectation of the iy
measurements varies with times. This means that this sampling is made for a dynamical 
population. 
 

• The first natural idea is to consider each measurement  as the realization of a scalar 
random variable iY , of expectation )()(E exact

iexact
perfect
ii ,tyY xη== that is the 

'perfect' (noiseless) output of the model whose structure )( .,t iexactη  is exact as well 

as the set of parameters gathered in a column vector exactx (see equation 3.1 in 
Lecture 3 of this series):  

 

i
perfect
ii yy ε+=     (4.17) 

 
where iε  is the measurement noise, that is the difference between the measured signal and 
the perfect output of the model that corresponds exactly to this measurement.  
 
Let us note that it is  impossible de to discriminate in a measurement yi  the contribution of 
the exact model output perfect

iy from the noise iε .   
 
That is why the measurement noise is considered as a random variable. The expectation of 
the noise is equal to zero for a good measurement chain, and one says then that the (direct) 
measurement iy  of  perfect

iy is unbiased. So, because of (4.17), the experimental signal iy   

(of expectation equal to perfect
iy ) is also a random variable. 

 
One calls L  the probability law L  followed by noise iε . One good measuring instrument 

provides a noise whose standard deviation σ is constant. This probability law is characterized 
by several parameters: its expectation (that is its stochastic mean, equal to zero here), its 
variance σ 2 as well as possibly other parameters required to define the probability density 
function (pdf)  fε i of this random variable. If one limits oneself to the mean and variance (case 
of a normal law by example), one notes: 
 

 ), (0,(: 22 σσε perfect
iii y:Y) LL ⇒    (4.18) 

 
A capital character has been used here to designate the random variable Yi whose 
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realization at time ti  is the meaured signal yi : so this measurement is clearly a random 
variable too. 
 
If the expectation of iy  is different from perfect

iy , either the model is wrong (case of a model 
bias, but we have excluded this assumption above), or the measurement is biased, which 
means that in average (that is with repetitions)  the sensor (with its acquisition chain and its 
calibration law) does not yield the exact value it is supposed to measure. 
 

• The second idea is to consider the whole set of measurements (a multi-dimensional 
sample) as a column vector  [ ] t

myyy L21=y , that is the realization of a 

vector random variable [ ] t
mYYY L21=Y . So, equation (4.17) can be given a 

vector form: 
 

εyy += perfect        (4.19)  

  
where the noise vector ε  is also a random vector. 
 
In the general case, vector noise ε  defined in (4.19) has a probability law noted L  : 
 

 ( )...),(cov0,)(E: εεε =L     (4.20)  
 
where the (symmetrical) variance-covariance matrix )(cov ε  is defined by : 
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With this second point of view, the joint probability density function Yf  of Y can be 
defined as followed: 
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      (4.22) 

 
 
 
2.1.3  Example of a binormal joint distribution   
 
We consider here the particular case of a Gaussian distribution. This allows a graphical plot 
of the joint pdf fY, see Figure 21, whose expression is given below: 
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Figure 21 – Binormal law, case of 2 correlated measurements  

 
Three parameters are present in this law : the variances 2

1σ  et 2
2σ  of the two individual 

random variables Y1 et Y2 and their correlation coefficient ρ12 ( 11 12 ≤≤≤≤≤≤≤≤−−−− ρ ). The variance-
covariance matrix of Y is defined in Table 1 in the very general case of a random vector Y  of 
size 2 and of joint probability density function ),( 21 yyfY . This can be easily generalized in 
the case m > 2. 
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Let us note that, by definition, the expectation of a real noise should be equal to zero (
0=)(E ε ). This vector noise will be : 

 
- non correlated (or independent), if its variance-covariance matrix is diagonal : 

kiiki , δσεε 2)(cov = , where kiδ  is Kronecker symbol (null if i ≠ k, and equal to 1 if        i = k), 

where 2
iσ  is the  variance of iε . 

 
- independent and identically distributed (i.i.d.) if this noise is uncorrelated with a constant 
variance : 2σε =)(var i . In this case its variance-covariance matrix is spherical : cov (ε ) = 

2σ  I, where I is the identity matrix of dimensions (m x m). In this case each component of ε  
is independent and follows the same probability law.  
 
 
2.2 Properties of random vectors 
 
The notion of random vector has been introduced above. In the type of applications 
concerned by this school, it is the column vector of measurements Y, of dimensions 
(m x 1).  
 
This vector has an expectation, noted E (Y), that is a vector of same size, whose 
coefficients are the expectations of the corresponding coefficients of  Y. It has also a 
variance-covariance matrix, noted cov (Y), of dimensions (m x m) whose coefficients 
are the covariances of the coefficients of Y : 
 

 [ ] [ ] )Y,Y()()Y( kikiii covcovandE)(E == YY   

 (4.23) 
 
It is always possible to linearly transform signal Y using a linear transformation 
whose deterministic coefficients are set in a matrix sont rangés G of size  (p x m), in 
order to get a transformed signal  Z = G Y of size (p x 1). Since Y is a random vector, 
such is also the case for  vectoriel Z. The expectation and the variance-covariance 
matrix of  Z depend on the same properies of Y:  
 

 TGYGZYGZYGZ )(cov)(covet)(E)(E ==⇒=
 (4.24) 

 
3. Conclusions 

 
In this short course, the different characteristics of an electronic noise have been detailed 
and the resulting effect on the signal, that can be considered as the realization of a random 
vector has been given. The stochastic properties of this random signal vector completely 
depend on the same properties of the noise vector, if the model used is unbiased. So their 
knowledge is important if one wants to characterize the estimation error in any experimental 
inverse problem (see lectures 3, 7 and 8 of this series, for example).  


