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Abstract. The aim of this lecture is to present a methodology for enhancing the
estimation of parameters in the case on a Non-Linear Parameter Estimation problem
(NLPE). After some definitions and vocabulary precisions, useful tools to investigate
NLPE problems will be introduced. Different techniques will be proposed for tracking
for instance the true degree of freedom of a given estimation problem (Correlation,
Rank of sensitivity matrix, SVD, ..) and enhancing the estimation of particular
parameters by using either a Reduced model or a Model with some parameters fixed
at their nominal values. The resulting reduced model can be unbiased or biased.

NB: This text is a version that has been modified and improved with respect to its original paper
version in the textbook that has been handed to the attendees of the school.

List of acronyms:

* NLPE:
» PEP:
« MBM:
e SVD:
e OLS:
* SNR:

Non Linear Parameter Estimation
Parameter Estimation Problem
Model-Based Metrology

Singular Value Decomposition
Ordinary Least Squares
Signal-to-Noise Ratio
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1. Introduction

The Non Linear Parameter Estimation problem has been the subject of numerous lectures
during the past METTI schools (see [1] Thermal Measurements and Inverse Techniques,
edited by Helcio R.B. Orlande, Olivier Fudym, Denis Maillet, Renato M. Cotta, Series: Heat
Transfer, CRC Press, 770 p, 2011). This text aims first at gathering in a synthetic way the
basic notions and tools that can be used practically to analyse NLPE problems in
engineering and science.

At the same time, it provides new insights about the tools available to:

(i) enhance our knowledge about parameter identifiability in a given problem (which
parameters can be really estimated in a given experiment and which precision can be
achieved ?),

(ii) track the origin of pitfalls in PEP,

(iii) offer new perspectives for enhancing the quality of MBM in a general way.

This lecture is composed of three different parts. The first one gives some definitions and
vocabulary precisions. The second one presents some useful tools to investigate NLPE: ill-
conditioned PEP will be considered and analyzed and the use of SVD to track the PEP’s
degrees of freedom will be introduced next. The last part of this lecture consists in presenting
some techniques for enhancing the performances of estimation, such as a dimensional
analysis for identifying the degrees of freedom of a given problem and a reduction of the
number of parameters involved in a theoretical model to make the PEP well conditioned. As
an example, the case of thermal characterization of a deposit on a substrate will be
considered here.

2. Some definitions and vocabulary precisions

Performances of contemporary metrology, that is the science of measurement which
includes material characterization for example, are not the result of the enhancement of the
technology of measuring instruments only. They are also the consequence of the significant
progresses accomplished in the field of Inverse Problems solving, especially when it is based
on a very large amount of data. These are provided by new tools and by the facilities now
available for numerical acquisition of experimental signals (CCD detectors allowing for 2D/3D
numerical data acquisition and high frequency time resolution). Understanding the conditions
for which parameters can be estimated from the model/measurements pair constitutes also a
key point for reaching a high-quality estimation.

Measuring a physical quantity ﬁj requires a specific experiment allowing for this
quantity to "express itself as much as possible" (notion of sensitivity). This experiment
requires a system onto which inputs u(t) are applied (stimuli) and whose outputs y (t) are
collected (observations). t is the explanatory variable: it corresponds to time for a purely
dynamical experiment. A model M is required to mathematically express the dependence of
the system's response with respect to quantity 5, and to other additional parameters
Bi KZ]) @ Ymo=n (t; B,u) where input function u(t)has been parameterized, that is

decomposed under a finite set of basis functions, the coefficients of this decomposition being
gathered in a vector u [8, page 26]. Many candidates may exist for function # - depending
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on the degree of complexity reached for modelling the physical process - which may exhibit
different mathematical structure — depending for example on the type of method used to
solve the model equations. Once this model is established, the physical quantities in vector
B acquire the status of model parameters. This model (called knowledge model if it is
derived from physical laws and/or conservation principles) is initially established in a direct
formulation. Knowing inputs u(t)and the value taken by parameter B8, the output(s) can be

predicted.

The linear or non linear character of the model has to be determined:
= A Linear model with respect to its Inputs (LI structure) is such as:
Yo (13 By ayuy () + a3 U, (1)) = a1 Yo (15 B Uy (1)) + a5 Yo (B B, U, (1)) 1)
= A Linear model with respect to its parameters (LP structure) is such as:
Yo (6 a1 B+ a5 By, U(t) ) = @1 Yo (1 By U(L)) + @ Yo (T By, U(E)) 2
In a metrological problem referred here as MBM (Model-Based Metrology), observations of

the outputs will be provided by measurements. The inverse problem consists in making the
direct problem work backwards with the objective of getting (extracting) B from

Ymo (15 B, u(t)) for given inputs and observations y . This is an estimation process. The
difficulty stems here from two points:

0] Measurements Yy are subjected to random perturbations (intrinsic noise €) which

in turn will generate perturbed estimated values iB of B, even if the model is

perfect: this constitutes an estimation problem.
(ii) the mathematical model may not correspond exactly to the reality of the
experiment. Measuring the value of B in such a context leads to a biased

estimation, where the bias is defined as Bias = E (8) - B, E (B) being the
expectation of the (stochastic) estimator B: this gives rise to an identification

problem (which model structure # to use ?) associated to an estimation problem
(how to estimate B for a given model structure?).

The estimation/identification process basically tends to make the model match the data (or
the contrary). This is made by using some mathematical "machinery" aiming at reducing
some gap (distance or norm)

Fr(B)=Y - Ymo (t; B, U) (3)

One of the obvious goal of NLPE (Non-Linear Parameter Estimation) studies is to
assess the performed estimation through the calculation of the variances V([i) of the

estimators of the different parameters. If the probabilistic distribution law of the noise is
known, this allows to give the order of magnitude of confidence bounds for the estimates.
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NLPE problems require the use of Non Linear statistics for studying such properties of the
estimates.

Because of the two above-mentioned drawbacks of MBM, the estimated or measured
value of a parameter ,Bj will be considered as "good" if it is not biased (or if its relative bias is

low) and if its variance is minimum. Quantifying the bias and variance is also helpful to
determine which one of two rival experiments is the most appropriate for measuring the
searched parameter (Optimal experiment design). In case of multiple parameters (vector 8)

and NLPE problems, it is also interesting to determine which components of vector 8 are
correctly estimated in a given experiment.

3. Useful tools to investigate NLPE problems
3.1. Sensitivities

The central role of the sensitivity matrix in PEP has been shown in the preceding lecture
(Lecture 3). In the case of a single output signal y with m sampling points for the

explanatory variable t and for a model involving n parameters, the sensitivity matrix is
(mx n) defined as

5, = Ymo g;ﬁ”"m)
) t,B for k#j
As the problem is NL, the sensitivity matrix has only a local meaning. It is calculated for a
given nominal parameter vector g™ .
If the model has a LP structure, this means that the sensitivity matrix is independent from B.
It can be expressed as (Lecture 3)

Ymo (; B) =D S; (1) B, (5)
j=1

(4)

The sensitivity coefficient S; (t) to the jn parameterﬁj corresponds to the j™ column of
matrix S, once m discrete observation times have been chosen.

The primary way of getting information about the identifiability of the different parameters is
to analyse and compare the sensitivity coefficients through graphical observations. This is

possible only when considering reduced sensitivity coefficients S’; (sometimes called

"scaled" sensitivity coefficients) because the parameters of a model do not have in general
the same units.

R a t , nom a mo t ; nom
s; =48, =p T B ((3’8-13 ) = mo B ) 6(I(n ,5'[-3) ) (6a)
J J

t,ﬁk for k#j t,ﬂk for k #j

Or

S =SR (6b)
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with R the square diagonal matrix whose diagonal is composed of the components ,Bj of B.

TOOL Nrl: A plot of all the reduced sensitivity coe  fficients S’; (t) gives a first idea

about the most influential parameter for a given mo del (largest magnitude) and about
possible correlations (sensitivity coefficients fol lowing the same evolution).

Example: Measurement of thermophysical properties of a coating layer through the Flash
method using thermal contrast principle (Number of parameters n = 2).

e e,
— a — ‘
R — A\

— — |

b, PG 1, %, |1) T,
R 4 2) — %

E— —> &

ExperimentA experiment B

Figure 1 : Basis of the “ thermal contrast” method

The thermal contrast method requires the repetition of two "flash" experiments A and B
(Figure 1). The first one is operated on the substrate only (index (2)) whose thermophysical
properties are known. The second experiment is performed on the two-layered sample (index
(1)/(2)). In both cases, one records the rear face temperature evolutions. The thermograms
so obtained are normalized with respect to their maximum and the difference of the scaled

thermograms T, and T, is computed to produce the thermal contrast thermogram. This
latter is a function of the thermophysical properties of the coating (1) and of the substrate (2)

through two parameters:
K,=2 %2 ang K, = [HAG (7)
€\ a A P, C,

The observable (contrast curve) and the reduced sensitivity coefficients to K, and K, are

plotted in Figure 2. They show (i) that the sensitivities have the same order of magnitude as
the signal (a good thing) but unfortunately (ii) these sensitivities appear to be totally
correlated, since their maxima occur at roughly the same time (a bad thing). In this case, this

simple plot shows that sensitivities to K, and K, are likely proportional and therefore that

the identifiability of both parameters is impossible. This example will be more thoroughly
modelled and studied in section 4 of this lecture.
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Figure 2 : Reduced sensitivity coefficients for K, =0.1 and K, =1.36

3.2. Variance/Correlation matrix

To go further and to investigate more deeply the PEP, the statistics of the estimator must be
analysed. This can be made when (i) an estimator has been chosen (that is, a method to
derive estimated values for the different parameters from the experimental signal), and (i)
the statistical properties of noise & are known (according to experimentally founded
observations).

We assume that the noise on the experimental signal is additive (this is in fact the definition
of a noise), unbiased (which means that its stochastic average, its expectation is zero, for an
unbiased model structure 77 of course ) and independent (which means that the noise taken

at two different times are independent) and has a constant variance o : this is sometimes
called a IID. (Independent and Identically Distributed) noise, which occurs for perfect
measurement with an ideal sensor. This corresponds to

Yi =Ymo (i B) + & E(e)=0 ; cov (¢) = o° |, (7)

where |, is the identity matrix of size m (number of measurement points).

According to Beck's taxonomy (see [2] p. 134 and chapter VII), these assumptions
correspond to the set "1111—11" with the following additional precisions: nonstochastic
independent explanatory variable (time), and no prior information for the parameters.

The OLS (Ordinary Least Squares) estimator B, s minimizes the least square sum, which
gives:
2 m
Jors (B) =17 (t:B.W)r (t:8,u) = r (t:B.W)] =D (Vi = Yoo (t: B.W))  (8)
i=1
where
r{t;B,u)=y —yu,(t:B,u) 9)

are defined as the residuals.

The estimator expression is found through a minimization process, where the j" equation,
also called “normal equation” is:
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0ous (t,BO°)/08, =0 for j=12,..n (10a)

verified. If the global minimum of J, < (B) is reached, the OLS estimator is unbiased, which

means that the statistical mean of repeated estimated values fi is equal to the exact
parameter vector 8.

Lecture 3 describes the behaviour of such an estimator for a LP model where the
calculations can be fully completed to get an explicit linear OLS solution:

Bos =(sTS)"sTy (11b)

In the case of a NL structure, the minimum is found through an iterative process using local
linearity (Gauss-Newton algorithm basically, see [3]) of the form:

By = B+ (5750 ) SOy -y, B) an

The iterative process (12) requires to compute the inverse of matrix S'S at each iteration k.
Therefore, this latter must offer a good enough conditioning through repeated iterations. This
is possible if the sensitivity coefficients are non zero and linearly independent. Without any
specialized and dedicated tool, this iterative process can be stopped when the residuals

norm r'r is of the same order of magnitude as the measurement noise, that is when:
Jors (B®) =m o (12)

At convergence, the standard deviation of the error made for the estimated parameters can
be evaluated thanks to the (symmetrical) estimated covariance matrix of the estimator. It
characterizes the precision that can be reached on the estimated parameters (its inverse is
sometimes named the precision matrix) and depends on the statistical assumptions that can
be made on the data. In view of an OLS estimator, this matrix is

VarA(,@lz COV(,@H,@Z) COV(?p@n)
cou(@y=| VBB B BB e gys )t a3

cov(B.B,) cov(B, B,) - var(f,)

It depends on the level of the Signal-to-Noise Ratio (SNR) and brings into play the inverse of
the S'S matrix, already pointed out as a decisive operation for a troubleless estimation.

Matrix S'S, which is also called the Fisher's information matrix with assumptions (8),
depends on the number m of measurement points and on their distribution along the
estimation interval, which may also be optimised if necessary [2]. The diagonal coefficients

are the squares of the estimated standard deviation of each parameter 02_ . They quantify
]

the error that one can expect through inverse estimation. This is true if the assumptions
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made for the noise are consistent with the experiment. The problem being NLP, retrieving
these optimum bounds through a statistical analysis may depend on the starting guesses
made to initialize the estimation algorithm. This matrix can also be an indicator for detecting
possible correlations between the parameters. An estimation of the correlation matrix is
calculated according to

1 p
cor (B)z p; 1 .| allterms being the result of P, =

cov(f3./3,)

2 2 14
EEA as)

The correlation coefficients (off-diagonal terms) correspond to a quantification of the 2 by 2
correlation existing between the two estimations of parameters 3 and S; and, more

precisely, between their errors (let us note that other forms of correlations involving more
than 2 sensitivity coefficients exist, that is the multiple colinearity problem, which is detailed
in section 3.3.2 further down). They vary between -1 and 1. They are global quantities (in
some sense, “averaged” over the considered estimation interval, the whole [O ,tm] here).
Gallant [4] suggested that difficulty in computation may be encountered when the common
logarithm of the ratio of the largest to smallest eigenvalues of cor exceeds one-half the
number of significant decimal digits used by the computer.

A more practical hybrid matrix representation Vcor can be constructed. It gathers the
diagonal terms of the cov ariance matrix (more precisely their square root, normalized by the
value of the estimated parameter) and the off-diagonal terms of the cor relation matrix.

War(3) P

~ ~

Veor (B) = o) Jvar (E, i/ B - (15)

TOOL Nr2: Matrix Vcor ([}) gives a quantitative point of view about the i dentifiability of

the parameters. The main interest of this matrix li  es in its diagonal coefficients, the
relative standard deviation of the estimations of e ach parameter: these can be
calculated independently from their physical units. These standard deviations of the

estimated parameters are the stochastic root mean s  quares of the errors that are
caused by the sole stochastic character of the 11D noise, for an unbiased model.

The off-diagonal terms (correlation coefficients) are generally of poor interest because of
their too global character. Values very close to =1 may explain very large variances (errors)
on the parameters through a correlation effect.

NB: Another matrix, rcov (B) defined in equation (35) further on, is also very useful for
assessing the quality of a potential inversion. Its diagonal coefficients are the squares of
those of Vcor (B) , but its off-diagonal coefficients are different.
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Example: Here are two Vcor matrices taken from [1]. They were obtained for the same
NLPE problems and for the same given set of nominal values of the n = 3 parameters but

considering two different observables A and B (two different locations of the temperature
measurements).

0.027 0.994 -0.999 0.0002 -0.38 0.63
Veor,(B)=| o  0.0066 -0.989 Veory(B)=| O  0.0008 -0.93
O O 0.029 O O 0.0042

Observable A Observable B

In the case of observable A, high relative standard deviations (nearly 3%) is observed for
parameters S, and f, : it can be explained by a high degree of correlation between them

(|,013 = 0.999|). Observable A can clearly not be used for estimating these parameters. On

the contrary, observable B offers good identifiability for all parameters (small relative
standard deviations) and does not show any 2 by 2 correlation.

3.3. lll-conditioned PEP and strategies for tracking true degrees of freedom
3.3.1.Pathological example of ill-conditioning resulting from correlated parameters.

The good identifiability of parameters can be related to the local convexity of the cost
functional J, 5 (B) in the hyper-parameter space. One obvious consequence of a correlation

between parameters is that several local minima may exist and make estimation algorithms
consequently fail. The discussion that follows here is taken from an example of parameter
estimation in a case of coupled radiative-conductive heat transfer [5]. The thermal
characterization of a semi-transparent material implies a model depending on three basic

parameters at least: the thermal diffusion characteristic time t, = e®/ a, the dimensionless
optical thickness 7, and the dimensionless Planck number N (explanations to follow in

section 4.1) and so B = [td,ro,N]T. The estimation of the three parameters in this NLP
problem may be difficult for some range of values of parameters 7, and N where matrix

Vcor(B) shows that a high degree of correlation between these two parameters exists,
whereas the value of parameter t; remains unconcerned.

A plot of the OLS criterium Jg g (B) in the 2D space (ro N ) for a given t, value and a given
noise ¢ (Figure 3) makes the consequence of such bad conditioning quite clear.

All level sets draw a very narrow valley oriented along a line which graphically corresponds
to the relation N = 2 r,. A 3D plot would show that the central line of this valley does really

correspond to a descending slope and hence that no real minima can be found. The level set
indicated in the figure corresponds to exactly Jg s (B) =0.07=m ¢®. Trying to make the

iterative optimization algorithm works below this limit for the stopping criterion is useless. In
other words, the larger the noise, the higher the stopping level-set should be.
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Figure 3 : Level sets for J, 5 (B) in the (ro N ) parameter space

In the present case, this will not change the identifiability criterion. Depending on the initial
guesses for the parameters, the deterministic algorithm will find different minima and different

parameter estimates.

The four local minima are presented as big dots in Figure 3 and correspond to the 3
parameters whose values are given in Table 1. Let us note that the local minimum Nr 4 Table
4) has been obtained with a stochastic algorithm (Simulated Annealing) different from a
deterministic gradient based minimization algorithm used for finding the first 3 local minima.
This shows that when the problem is ill-conditioned, stochastic algorithms are of little help for
a correct estimation process (contrary to what is usually believed).

Such a behavior is more likely the result of a model which is not adapted to the physics
involved. In the present case, it is interesting to note in Table 1 that all local minima that were

found follows the relation N (7, + 1)/7, = Constant.

Local Minima

Parameter
corxe((:)tr?eznts (found using either
p deterministic or stochastic

algorithms)
N°1 N°2 N°3 N°4
a (10'm2s) | 5.2 49 | 585 | 48
N 0.6 0.74 | 0.16 | 0.82
1o 0.38 0.5 0.07s | 0.56

Rr=¥(ro+1) 218 |222 |226 |228
0

Table 1 : Example of local minima found B
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In fact, an approximate modeling for conductive-radiative transfer in optically thin media can
be shown to be more pertinent and more parsimonious. It makes naturally arise the notion of
radiative resistance R, which can be expressed as R, = N (7, + 1)/7, . This resistance is the

appropriate parameter in this limiting behavior and prove that there is no way to identify
independently 7, and N (Many different pairs are able to produce the same value for R, )

TOOL Nr3: For an independent noise with known stand  ard deviation and for a given
model, it may be interesting to look at the level-s et representation of the optimisation
criterion in appropriate cut planes (for a given pa ir of parameters if n > 3), and

compare it with the minimum achievable criterion gi ven by J=nmp?*, where m is the
number of measurements.

3.3.2.Rank of the sensitivity matrix.

We focus here on the scaled (or reduced) sensitivity matrix (see definition in equations (6a)
and (6b)). This (m, n) matrix is composed of n column vectors, the reduced sensitivity

coefficients S’;

S :[S; S, - S;] with S;:ﬂj% (16)
J

t,[ fork#]j
where t is a column vector composed by all the m times of measurement:
T
t=[t, t, - t,] (17)

These n column vectors S’; are in fact just the components of a set of n vectors S; inam-

dimension vector space. One can recall here that this set of vector X = {§I , §; ,...,§;} is
linearly independent only if m coefficients a; exist such as :

> a;S;=0=  a =0 forany j with 1<j<n (18)

j=1
This means that a linear combination of all these m vectors is equal to zero only if all its

coefficients (the a;'s here) are equal to zero. If it is not the case, system X is linearly

dependent. Let us note that the presence of a null vector in the set of vectors ~ makes it
linearly dependent: such a null vector §] would correspond here to a parameter that has no

influence on the variation of the model output, (the very specific case of a parameter ﬁj
rigorously equal to zero is discarded here).

So, if the set is dependent, one has to remove one vector §J from the original set ¥ and try
again to test the independence condition (19) with the n-1 remaining vectors. This can be
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made with the n possible choices for the vector §J that is removed from set %. If one finds

one such independent set of n-1 vectors, the rank of the set is n-1. In the opposite case, one
has to test the independence with n-2 vectors and so on... The rank r of X is the larger
number of vectors for an independent subset of X that can be formed with the n original
vectors.

In order to illustrate this, we will assume that m = n =2 and that the model is linear. This
corresponds to two observations of a model with two parameters £, and 5. This leads to the

set of two sensitivity vectors 2 = {§I : §; } from which the situations shown in Figure 4 can be
considered:

»
>

S;(t)="5;, S;(t)=S, 5, (t)=5;

Figure 4 : Reduced sensitivity vectors:

- independent sensitivities (r = n = 2) b - dependent sensitivities c- nearly dependent sensitivities

Case a corresponds to linearly independent sensitivity coefficients: the rank of X is equal to

2. It is also the rank of the reduced sensitivity matrix S° and hence the rank of the sensitivity
matrix, since S*=S R (where R is the square diagonal matrix with two diagonal

coefficients [, and g, according to equation 7). One can say that the observations of the
model output provides two degrees of freedom since two parameters can be estimated.

Case b demonstrates a pathological nature of the sensitivity coefficients: they are
proportional, with §2 =2 §1 (one sees that the choice a;=2 and a, = -1 in (19), which allows
to show that the set of vectors X is not independent) and estimation of both coefficients is not
possible anymore. In this case, the rank of S” and hence the rank of S is r = 1 and the
determinant of the information matrix S'S is equal to zero. This means that the explicit value
of BOLS, in the linear case (see equation 11b) and with a noise of spherical covariance
matrix, which requires an inversion of the information matrix, is not possible. The same is
true for the calculation of the variance-covariance matrix of ﬁOLS: the observations of the

model output provide only one degree of freedom and only one parameter can be estimated,
if the value of the other one is known.
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Case c lies in between: the two reduced sensitivity vectors are nearly proportional §; =2 §i :

Even if the mathematical rank is still equal to 2 (the previous equality is not an exact one),
one guesses that the number of degrees of freedom is somewhere between one and two and
a more refined statistical analysis, taking into account the noise level in the measurements,
has to be implemented.

Let us note that it is possible to test the presence of two nearly proportional vectors in set Z,
in the very general case, with of course a number of parameters less or equal to the number

of observations (n < m), by testing the assumption §ﬁ —ckjé; =or =0, where C; Is a
proportionality constant: a plot of S, (t;)as a function of S; (t;), for the m common values
t, of the independent variable where observations are available (parametric representation of
a curve) shows whether the plots gather on the S, (t) = Cyj S, (t) line or not.

As an example of this type of representation, Figure 5 illustrates the case taken from [1] of a
1D rear face transient response of a low insulating sample (conductivity A) sandwiched
between two very thin copper layers. The knowledge model (RDM1 in [1]) assumes pure
thermal resistance for the insulating layer and pure known capacities for the copper layers.
The front face is stimulated by a Dirac pulse of energy Q (J.m®), with a heat loss coefficient
h (W.m? K equal over its two faces: the sensitivities to the three parameters Q, Aand h
seem to be qualitatively independent, but only in terms of two by two linear dependencies:
this does not mean that the rank of the reduced sensitivity matrix (if only these three
parameters are looked for) is equal to three, because three by three linear dependencies
may be possible.

This aspect, a possible dependency between the three sensitivity coefficients, is shown in
Figure 6, for the same experimental design: a linear combination of the form

S; -¢,S,-¢,S, =or =0 is looked for between the three sensitivity coefficients (for 4= Q,
B=hand S = A) and a linear OLS estimation of ¢, andc, is made using the S; (t;)'s and the
S,(t)'s as the new independent variables and the S;(t)'s as new observations. The
corresponding S; (t,) values are plotted as a function of the recalculated values (optimal
linear combination) of the corresponding model, ¢, S;(t) + ¢, S, (t): since the corresponding

curve is very close to the first bisecting line, a qualitative 3 by 3 possible linear dependency
is detected.

However one can wonder how this dependency would impede the estimation of the three
parameters: this has to be confirmed by a calculation of the covariance or Vcor matrix of the
corresponding estimations, as explained in 3.2.

So, we will focus here on non linear parameter estimation problems where local linearization
concepts as well as a Singular Value Decomposition of matrix deserve to be introduced.
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@ Optimal Linear Combination |
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Figure 6 : Evidence of Linear Combination

Figure 5: Sensitivities plotted by pairs between all three parameters

3.3.3. Generalization : Use of SVD to track PEP degrees of freedom

It has been shown previously (see Lecture 3) that the question of identifiability of the
parameters of a model relies on the condition number of the information matrix S'S if the

physical units of the parameters are the same and of its scaled form s'S" if it is not the
case. However a systematic tool for tracking down hidden correlations is lacking. Such a tool
will be presented now to circumvent this problem. Ultimately it will allow determining which
parameters it is wise to exclude from the estimation (metrological) process, in order to get
better estimates of the remaining ones.

In the next section two sequential steps will be presented.

First, in order to use all the tools available for linear estimation (see Lecture 3) on which the
iterative OLS estimation (12) is based, the differential dy,, of the model will be calculated

nom

around a reference point ™", that is a nominal value of the parameter vector for which a
sensitivity analysis has been carried out (see previous sections) and the original parameter
vector B will be made dimensionless using the components of ™" : a reduced parameter
vector x with a well-defined norm will be constructed.

Second, Singular Value Decomposition (SVD) will be applied to the reduced sensitivity matrix
of the "tangent" local linearized model around B"", the ultimate goal being the

determination the r parameters that can be estimated in a problem with n original parameters
(with n =r ), when the levels of the measurement noise and measurement magnitude are
known (SNR).

The non linear model vy, (t; B)is still considered here with m available measurements.
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3.3.3.1. Parameterizing a non-linear parameter estimation problem around the nominal
values of its parameters

The following single-output non linear model is considered here:
Ymo =17 (t; B) (19)

where B is the column vector of the n parameters, of size (n, 1), y,,, its (scalar) output at
time t and # is a scalar function of t. If m observations of y_, are available for times t;, one
can use a column vector notation:

Ymo =0 (t;B8) (20)

where y ., is the output vector of the model, of dimensions (m, 1) and t the column vector of
the m times of observation. n (.)is a vector function whose values belong to R™.

Since the model is non linear, it will be written under a differential form, in the neighbourhood
of a reference point ™", which corresponds to a nominal value, where a sensitivity study
has been already implemented . This allows to use a local linearity :

dyn, =S (t;6°")dB  with s, = 22LE)

21
o8 (21)

t,B fork#j

Let us note that in the notation dy,,, the column vector t of the measurement times has
been "frozen". S is the sensitivity matrix.

s=[s, s, - S,] with szm

22
o8 (22)

t,B for k#]j

In (22), the column vector dy ., has a norm, because all its m components have the same
physical units. However, such is not the case for column vector d 8, which is only a column
matrix composed of n parameters whose physical dimensions are not necessarily the same:

nom

dg, is a very small variation in the neighbourhood of B™", which can be a thermal

nom

conductivity A. dB, a very small variation around S;°", which can be a volumetric heat
capacity pc and so on ...

So dgf is not really a vector belonging to any vector space of dimension n, but a simple
collection of n parameters.

In order to transform it into a real vector, a normalization of all its elements is necessary. The
components of B™™ will be used for that purpose. A new dimensionless parameter X is
introduced.
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Its components are defined by:

x, =In (5,1 87°") (23)
And its nominal value is equal to zero:

x®=0=[0 0 - 0] (24)

nom

In the neighbourhood of B™" , each component of x is equal to the relative variation of the
corresponding component of B8 around its nominal value (first order series expansion):

nom nom

X; =1In (:Bj / ,Bjnom) =1In [1+ < _nOrrll J - _nonj1 (25)

J J

The new parameter vector x is written the following way :

x =In R B)=R:L (B - B™") (26)
with :
lnom O 0
0 om- .
Room = . "2 . 27)
0 O nom

n

With this definition, the differential dx of x is the logarithmic differential of B:

dg.  dga
dx =[dx, dx, - dx,|T with dx, =%=ﬁ=dln(ﬂj) (28)
B, B,
Let us note that the very last equality is only valid in the neighbourhood of "™ . It can also
be written with a column vector notation:
dx =R.> dB=R™dB (29)

where R is the square diagonal matrix whose diagonal is composed of the components of 8,

nom

in the same way as (28) for the definition of R,,,, starting from B

m

Equation (22) is rewritten in order to make dx appear:

dy,, =S* dx with S*=SR,, (30 a-b)
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So, dy,, is a column vector belonging to R™ (it can be made truely dimensionless by a

division by”n (t;ﬁ”"m)H but it is not necessary here) and dx is a true column vector

belonging to R™ because its norm can be defined.

Using this change of variable as well as the SVD decomposition (see Appendix 1) of the
scaled (also called reduced) sensitivity matrix S* , one can show that equation (31a) can be

used to get a first order development in the neighbourhood of B

demonstration) :

nom

B =Rugn [ 1+V WU (Vo - Yo (B™™))| = B™™ + Ry V W U

with the following SVD decomposition: : S* (B™™)=UW V'

(see Appendix 2 for the

( mo = Y mo (Bnom))

(31a)

(32b)

Equation (12), that gives the Gauss-Newton algorithm can also be recast in terms of the

scaled parameter Xx:

x=(s7 (8" (8"™™) ST (B (v -y mo (B))

(33)

This expression is equivalent to equation (12) where one has replaced the left-hand side B

by its estimated value B for a single iteration number k for B= B and ™™ = B*Y . The

complete demonstration is given in Appendix 3.

In a similar way, the variance-covariance matrix of scaled vector X can be derived from (33)

and (32b), see Appendix 4:

cov (%) = R, cov(B) RZ,) =o2 v w27

nom nom

(34)

One can note that, by definition, matrix cov(X)is the reduced (or scaled) covariance matrix

of B which can be called rcov(B):

a3 (B cov (B BB BE™)

rcov(ﬁ) =cov(X) = J;g;z 1B:°m)?

Symmetric

cov (B, B B"

a2 1B

)2

nom
n

)

= o2 (S*TS* )—1

(35)

One also shows, in Appendix 4, that the trace of cov(X), that is the sum of the square of the

relative standard deviations of all the estimations ,5’ , at convergence, is equal to the sum of
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the square of the inverses of the singular values of S™, with a multiplicative factor equal to
the variance o? of the 1ID noise :

TI’(COV()A()) = Zn:(gﬁj /IBI.”O’“)2 = g2 \ i (36)

2
i=1 ket Wk

This allows to define a criterion m, that assesses the global precision of the estimation:

1/2 1/2
n

m, = EZ(aﬁj/ﬂjnom)z :%Tr(cov(f())=a %Zw_lz (37)

n
j=1 k=1 K

m, is the root mean square relative standard deviation of the different parameters. So, it

can be expressed in percents. If a specific parameter is estimated with a high relative
variation, this will have an effect of m, that will get large. The advantage of this criterion is

that it takes into account the level of the measurement noise, contrary to the condition
number of the relative sensitivity matrix cond(S™) = w,/w, (see Lecture 3). It is quite easy to
find an upper and a lower bound for it:

1/2
n

1 o 1 2 o
=My = HZ;(aﬁj//;pom) Sw_n (38)
J:

Other points about this criterion that allows to study the well-posedness of a non-linear
parameter estimation problem are given in Appendix 4.

TOOL Nr4: The SVD of the normalized sensitivity mat  rix calculated for nominal values
of parameter vector B can bring valuable information to quantify the rea | identifiability

of the parameters, once the level of noise known.

3.3.4 Residuals analysis and signature of the presence of a bias in the metrological
process

One way to analyse the results of an estimation process is to calculate the residuals

(equation 10) at convergence, when the assumptions (8) are fulfilled (an IID noise). When
the model used for the estimation is not biased, the calculation of the residual column vector

r(B) whose k" coefficients is the residual r (t, ;B) attime t, is:

FrB)=Y Yo B)=Ymo (B™) +& -y, (B)= &-S (B-B™") with S =S (B) (39)
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One shows in Appendix 5 that, strictly speaking, the residuals, when the model is unbiased,
are correlated but, in practice, adding more measurements times for a given estimation
interval tends to make them nearly uncorrelated. This is especially true for thermal
characterization of materials or systems, where the number of parameters is low (2, 3, 4, ...)
and the time sampling rate high enough with respect of the length of measurement (several
hundredth of measurements at least for modern data acquisition systems).

So, when these previous conditions are fulfilled, "signed" residuals can be considered as the
signature of some estimation based on a biased model.

This bias can stem from different causes such as:

® the a priori decision that some parameters of the model are known and therefore
fixed at some given value (maybe measured by another experiment). As active
parameters in the PEP, they can alter the estimates of the remaining unknown
parameters.

(ii) Experimental imperfections which make the model idealized with respect to the
reality of the phenomena.

The existence of a bias means that a systematic and generally unknown inconsistency exists
between the model and the experimental data.

We give here an example taken from [1] and already studied in section 3.3.2 above. It
concerns the simulation of a flash experiment applied to a three-layer medium: two highly
capacitive and conductive coatings and a central layer made of a material with very poor
conductivity (highly insulating material) and heat capacity (aerogel material). This system can
be modelled through some function T** =y__ (t,8). An artificial biasd (t) is introduced
under the form of a linear drift superimposed to the output simulated observations. It
corresponds practically to a linear deviation of the signal from the equilibrium situation before
the experiment starts. So, the correct model that should be used to mimic the observed rear
face measurement should be:

Yoo (e, BN) =y g (B B) +d (t,) (40)

A noise respecting equations (8) is also added to the simulation of the measurements so that
we have at each time t, :

Y = Yrirziaﬁ (tkvﬁexm) T & (41)

Of course model vy, (t,B) is exact if no drift is present in the experiment. However, in the
opposite case, it becomes biased, since it does not accounts for the presence of this drift.

Let us note that in this definition, the drift model is the reference one (y22* = y 9™y and the

mo
biased

preceding thermal model is the biased one (Yo = Y mo)-

If this biased model is used for estimation, the minimization will be done by a minimization of
the following criterion based on a biased residual vector:
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'Jbiased (B) = rl;Eased (B) rbiased (B) with rbiased (B) =y - ymo (B) =y _yrci]rcith (B) +d (42)

As a consequence, at convergence, the error on the estimated parameters vector will have a
deterministic part and a stochastic part:

ey, = B - B =, + Ag withb,=0ifd=0 (43)

where A is a matrix that corresponds to the linearization of the inverse problem with respect
to the noise in the neighbourhood of the exact value of B®*and b, a bias of non zero

average, that stems from the presence of the drift d. .

As a consequence, the residual defined in (42) can be calculated, at convergence, using
(43):

Finsed (Bbiased) =y -y, (B) - ygﬂlrgt (Bexact)+ £y, (Bbiased) (44)

or

Ifbiased = ymo(ﬁexact) +d + “:_Ymo(ﬁexzjICt +b[3 + A£) (45)

exact

A first order development of the last term around the exact value B~ yields:

Finsed (igbiased) - ymo(ﬁexact) +d +&- ymo(Bexact) - S (Bexact) [bﬁ + AS] (46)

or
Fsses (B™°%)= 0 + S (B%*) by +[I-S (B*)Ale (1)

This means that the residuals are biased, because of their first deterministic component,
even if its second stochastic one may be diagonal.

We return here to the estimation problem described in section 3.3.2 (flash experiment on a
three layer sample for the inner insulating layer characterization): we have seen that the
model used for parameter estimation was ill-conditioned: some correlation exists between
the parameters (Case n =3 corresponding to the correlation existing between parameters

shown in Figure 5 and Figure 6). Figure 7 below shows that

» the simulated rear face noisy output of the system, with the drift and some added
noise (dotted curve)
« the corresponding rear face recalculated output using the biased estimate
ﬁ(obtained through minimization of criterion (42)) - (blue solid line)
« the drift of the model output (function by (t)) introduced (brown solid line) . At the
final time of the experiment (t; = 1000 s), the magnitude of the drift represents less

than 4% of the maximum level of the signal.
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* the residuals curve, with the noised signal (minimization of criterion (42), grey
stochastic line), and after substraction of the noise, that is with the same
estimation process starting from a noiseless signal, that is with €= 0, blue solid
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Figure 7 : Signed character of "post-estimation" residuals in the presence of a bias and
using a badly conditioned PEP

The "signed" character of the residuals is obvious (oscillation around zero with a much
smaller frequency than the noise). The three parameters estimated (Q, h and A) using these

biased "measurements” have averaged values (obtained by repeated Monte Carlo simulated
measurements) that differ respectively by -18%, -7.5%, +19% from the exact input
values. These differences are not of stochastic origin (caused by noise only) but result from
the introduction of the bias.

One possibility for the experimenter who wants to check whether his estimations are biased
or not, is to observe the output of the inversion process for varying identification ranges of
the independent variable. For example, we can vary the identification time interval. If a bias
affects the data when compared to the modeling, then the estimations will vary, depending
on the selected identification interval. This is what can be observed in Table 2 where three
identifications have been performed for three different time intervals [0-70s], [0-150s], [O-
300s]. In this case we have used a more refined model than the one used for Figure 7 and
thus a more badly-conditioned PEP. In this table both thermal properties of the insulating
material (thermal conductivity and thermal diffusivity) were estimated from the biased data.

Obviously with such a material, the small heat capacity makes a good estimation of this
parameter difficult, but sadly (because of a lack of sensitivity) this also affects the estimation
of the second parameter. The thermal diffusivity and conductivity estimated from the data of
Figure 7 depend strongly on the identification intervals. The values can change within a
factor of 60% or 170% in that case.
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Time Interval 70 s 150 s 300 s
a (m2/s) 3.76.10°° 3.22.10° 2.21.10°
A (W/m.°C) 0.031 0.064 0.084

Table 2 : Influence of the existence of some bias on the parameter estimates for a
badly conditioned problem

TOOL Nr5: The "post-estimation” residuals have to b e analysed carefully to check the
potential existence of a bias of systematic origin. Its magnitude can be compared to
the standard deviation of the white noise of the se nsor in order to check whether this

bias may introduce too large confidence intervals f or the estimates (with respect to
the pure stochastic estimation of the variances of parameter estimates in the absence
of any bias). Invariant estimates for different ide  ntification intervals suggest that the

bias is acceptable. In the opposite case, strategie s must be implemented, either to
change the nature of the estimation problems (reduc  tion of the initial goals) or to use
residuals to give a fair quantitative evaluation of the confidence bounds of the
estimates. Some hints on that topic will be given i n the next section.

4. Enhancing the performances of estimation

Some tools have been given above: they can help the experimenter to gain insight into its
metrological problem. They can lead to a conclusion of failure: the problem is ill-conditioned
regarding the estimation of the interesting parameters. This means that the parameters we
initially wish to measure will actually never be estimated accurately. Two strategies are
possible: recognizing that the initial goal is in vain, or modifying the problem through physical
thinking to make it well-posed or adequately conditioned even by changing the goals
themselves (number of parameters to estimate). Quoting J.V.Beck [2]: "the problem of non-
identifiability can be avoided, through either the use of a different experiment or a smaller set
of parameters that are identifiable".

This  position emerges from the well-known parsimony  “principle” (see
http://en.wikipedia.org/wiki/Parsimony) which in the field of science could be summarized by
this sentence : “trying to perfectly recover reality is indeed very easy, when one adds
parameters to each others so that it connects-the-dots”. There is much more to learn and to
retrieve from the distance maintained between a model and the observations it is supposed
to match. The resulting consequence is that any minimization algorithm is a good one
because the problem is well defined. This section will now proceed to give additional tools to
work out badly conditioned problems with special analysis regarding the role of known versus
unknown parameters.

4.1 Dimensional analysis or natural parameters: case of coupled conduction/radiation flash
experiment

Through the preceding sections, the reader should have been convinced of the
importance of notions like the pertinence of a model (good representation of reality,
controlled origins of bias), the application of the parsimony principle that is to adapt one's
metrological objective by making the "quality" of the available information match the degree
of complexity of the model.
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A reduced model, seen as a model with a reduced number of parameters, has to be
considered first in the light of Dimensional Analysis. The principles of Dimensional Analysis
in Engineering precisely relies on the construction of "appropriate” natural parameters (the
Pi-groups) emerging from the rank determination of the dimensional matrix of all physical
guantities involved in the problem with respect to a basis of "base" quantities [6].

If we consider the heat transfer problem in a semi-transparent material like glass, coupled
conduction and radiation transfers must be considered. Material parameters involve classical
thermophysical properties of the opaque material (thermal conductivity A, specific heat oc)

with the additional parameters accounting for radiative transfer : the absorption (extinction
coefficient) B (m™), the level of temperature of the material T, (in Kelvin) which rules the
magnitude of radiation emission, the Stefan-Boltzman constant ogg, the refractive index n,
and the inner emissivities & of the boundaries (no units - opaque coatings of the glass slab
are considered here).

Let us assume that a flash experiment is planned, with an absorbed heat density Q (J.m?).

In order to study the possibilities for a transient thermal characterization technique of such
materials (which parameters can be measured with this experiment ?), the model will give
the rear face temperature response of the slab (thickness e) as the following function:

ymo =Trfe|2?h (t1e1Q1,OC'/‘1:8’ USB’TO’gi’n) (48)

Practicing a "blind" Dimensional Analysis leads to the construction of a new function
depending on a new set of parameters:

Trfelth B TO flash* [ .+ _ @t A ,3 « Q
=_rear 07 t =—,7,=Be,N= T = y & 49
ymo To rear e2 0 :3 nga_SB T03 0 ,OC e i ( )

which naturally produces 4 pi-groups governing heat transfer inside the sample, with a
reduction of the number of initial parameters of the model from 10 to 5.

Another classical example deals with conductive and convective mechanisms of transfer
which appear jointly in problems of heat transfer within boundary layers. Solving the Inverse
Heat Conduction Problem in order to get a heat exchange coefficient estimation will require
the introduction of the classical Reynolds, Nusselt and Prandtl numbers.

4.2 Reducing the PEP to make it well-conditioned: case of thermal characterization of a
deposit

» Model: Case of the contrast method

The method of the thermal contrast already presented in Section 3.1 consists in making two
"flash" experiments in order to estimate the thermal properties of the coating layer, denoted
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(1) in Figure 8 below (the same as Figure 1). We will now on detail the modelling already
presented briefly in section 3.1, in order to be able to find out which parameters of the model
can be really estimated, in this non linear parameter estimation problem.

Let us remind that the first flash experiment is carried out on the substrate denoted (2), which
allows characterization of the substrate in terms of diffusivity (the thermal capacity of the
substrate is measured by another facility). The second flash experiment is performed on the
two-layer material denoted (1)/(2).

In both cases, the variation of the rear-face temperature T with time, called thermogram, is
measured. By taking the difference of theses thermograms TA* and TB* normalized by their

respective maximum, we obtain a curve called a thermal contrast curve, which is a function
of the thermophysical parameters of the film (1) and of the substrate (2).

& &
— — 7
S N /
0, | P& [, ¢ é @ [T

experiment A experiment B

Figure 8 : Principle of the Method

The thermal quadrupoles method [7] is very appropriate to find the rear-face temperatures.
Taking the Laplace transform of the heat equation yields a linear relationship between the
different quantities of the "in" and "out" faces of each layer of the material.

Let 6?(2, p) and (a(z, p) being the Laplace transforms of the temperature T(z,t) and heat
density ¢(Z,t) respectively, with z the axis normal to both faces :

6(z,p)=L [T (z.t) = TT (z,t) exp(- pt)dt (50)
and

w(z.p)=L[¢(z,t)]:T¢(z.t)exp(—pt)dt with ¢(z.t)=—Af,—Z (51)

0
The thermal quadrupoles method allows to linearly link the temperatures and the heat flux

densities of a homogeneous layer (numbered i here) without any source term and with zero
initial temperature, through a transfer matrix M;, defined in the following way:
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|:Hiin:| — |:A| Bi:| |:6iout:| (52)
Win Ci Di Wout
with the coefficients of the matrix being calculated as:

A =Di=cosh(ei,/p/ai);Bizﬁsinh(ei 1/p/ai); C=Ap/y sinh(ei 1/p/ai)

The subscript (I) is related to the layer (I) : film (1) and substrate (2).

: thickness of the material
: thermal diffusivity
: thermal conductivity

‘8_.&_93-@

o : specific heat

It is convenient in this 1D transient problem, to notice that time can be made dimensionless
with the thermal diffusivity a, of the substrate and with its thickness e,, to make a Fourier
number t appear, which will be associated to a reduced Laplace parameter p defined as:

*

2
t =aLZt,p*=peLand s=\/§ (53)
) a,
We can then define a reduced Laplace transform & as:

_~

8(z,p*)=L [T (z,t*)] =TT (z,t*) exp(- p* t*)dt* :% 6(z,p) (54)

0
» Flash Experiment on the substrate:

The expression of the rear face response to a pulsed (Dirac) stimulation ¢(t)=Q, d(t) ,
where Q, is the energy density (in J.m™?) absorbed by the front face, is given by the following

relationship:
|: HZin :| - |:A2 BZ:| |: HZout :| (55)
%in :QZ C2 D2 %out =0
_Q _ Q,

Orou = o -
2
A, /psinh{W/peZJ
a, a,
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Here subscript 'in' designates the front (stimulated) face while subscript 'out' is associated to
the rear face, where temperature can be measured. This rear face is supposed to be
insulated here (¢, =0 in (55)).

Setting s =+/p and normalizing the thermogram with respect to its maximum that

corresponds to the adiabatic temperature: T, = Q reached for long times for this
T P8,
adiabatic model, we obtain:
2
g, =L T | ei; (57)
o T, )] &, ssinh(s)

Using the reduced Laplace transform (57), we can write:

52* = E Ts = ; (58)
an T, ] ssinh(s)
» Flash Experiment on the two-layer material:

The expression of the rear face response of the two-layer material can also be obtained
easily through the quadrupoles method:

Hl/?n — Aeq Beq |: 81/20ut :| (59)
@./Zin _Ql,z Ceq Deq ﬂ/zout =0

[Aeq Beq}z {Al Bl} [Az Bz}:[AlAﬁBlCz Ale+A281}

Ceq Deq C, DJ|C, D, AC, +AL, AA, +B,C,

where: (60)

and where Q is the energy density absorbed by the front face in this second flash
experiment on the two-layer sample.

In the case of good conductive materials with small thicknesses, the Biot nhumber which
represents the ratio between the internal resistance and the external resistance is low, which
justifies neglecting the heat losses in the model output (rear face temperature) above. The
expression of the temperature takes the following form:

H]_ — Q1/2 — Q1/2 (61)

jo = =
? Ceq Ai C2+A2 Cl
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Note: If we switch the two layers of the material, it means inverting subscripts 1 and 2, and
the expression of the rear-face temperature can be proved to remain unchanged.

Q1/2

Grr20u = 2 2 2 2
A, /Bsinh 1/& cosh 1/& +A, P sinn 1/& cosh 1/&
a a a a a, a

(62)
If we now scale the thermogram with the adiabatic temperature of the two-layer material, that
is with T,,, = Q. , the expression of the Laplace transform of this reduced

P1Ci€; + 0,C28,
temperature temperature T,,, / T,,,,, takes a simpler form:

, 1+ PiC&
- & P2C28, (63)

61/2 -
out a
? s /%sinh &1 %25 |cosh(s) +sinh(s)cosh| ot |22
A20,C, &V &\Va

As in section 3.1 two reduced parameters are introduced:

K, =& /i: ratio of the root of characteristic times
€ \a
or K, =4/tc,/ tc, with tc; =e’/ a, fori=1,2 (64)

K, = /ﬂ ratio of the thermal effusivities
A205C,

or K, =,b, /b, with b, =.,/4pc; fori=12 (65)

We can note that K, is a function of the thicknesses of the substrate and coating and K, is

an intrinsic parameter of the materials. The reduced Laplace transform of the response of the
two-layer system can then be written, using (54):

*

- 1 1+KK
H _1 12
2o =g {Kz sinh(K,s) cosh(s) + sinh(s) Cosh(Kls)} >

The heterogeneous nature of the two-layer material system appears here through the
expression of the denominator that cannot be simplified: this makes the definition of an
equivalent material associated to this two-layer sample impossible.

Lecture 7: Non linear parameter estimation prolslenpage?8



Metti 6 Advanced Schoolfher mal M easurements and I nverse Techniques Biarritz, March 1- 5, 2015

» Contrast Curve:

The contrast curve is obtained by taking the difference between the two thermograms, that
is:

~u *

A‘acjmz 51*/2 _520ut = E (rl*/zom - Tzom):E (A *) (67)

out

The expression of the reduced thermal contrast in the Laplace domain is:

=~ 1 1+KK 1
BGout =— L2 -
Abou = [Kz sinh(K,s) cosh(s) + sinh(s) cosh(K;s) sinh(s)} (68)

Theoretically, K, and K, can be measured from an experimental thermal contrast curve

through an "inverse" technigque. The numerical inversion of the model is implemented by De
Hoog's algorithm [10] whose MATLAB version (Invlap) is given in [11].

From K; and K, (or by a parameter substitution), it is also possible to calculate the thermal
capacity and conductivity of the deposit by the following relations:

K; =K, K, = PCCL thermal capacities ratio

P2C2€;
or K; =C, /C, with C; = pc; e fori=12 (69)
and
K, LS r) thermal resistances ratio
Ky e A
or K, =R,/ R, with R; =¢;/ A fori=12 (70)

Another parametrization of the same model consists in writing expression (68) as a function
of K; and K, .

The expression of the theoretical model with scaled parameters clearly shows that its output
is in this case only function of two parameters. This means in particular that the
thermophysical properties of the deposit can theoretically be obtained only if the properties of
the substrate are known and as well as the thickness of each layer. Thus, the precision of the
measurement also depends on the precision of these known parameters.

In the followings, our attention will be focused on two particular cases. The first one
corresponds to a conductive deposit on an insulating material. The second one corresponds
to an insulating film on a conductive substrate.

In these two cases, the materials we consider have low thicknesses and are good
conductors. So, the Biot number based on the properties of the substrate Bi =he,/A, is low

Lecture 7: Non linear parameter estimation prolslenpage?9



Metti 6 Advanced Schoolfher mal M easurements and I nverse Techniques Biarritz, March 1- 5, 2015

and it is possible, as a first approximation, to neglect its influence on the measured reduced
rear face contrast AT .

It can be shown that even in the presence of heat losses, there is some kind of
compensation through the construction of this contrast, which is a difference, which means
that the present adiabatic model is a robust one: we will see in a later section that this
parameter has a low influence in the estimation of the coating properties. The thicknesses
and thermophysical properties are given in Table 3

Thickness (um) | a (m?s) | A (W/m.°K) Ly
(J/Im3.°K)

Case 1: Aluminium coating on a Cobalt/Nickel subst  rate
Film (1) 220 9.46 10° 230 2.43 10°
Substrate (2) 1100 |2.36107 84.5 3.57 10°

Case 2: Insulating film on a Alumina substrate
Film (1) 247 6.84 107 2.23 3.26 10°
Substrate (2) 640 7.47 10°® 23 3.08 10°

Table 3: Thermophysical properties and thicknesses of the materials

The reduced thermograms for the substrate and two-layer material as well as the contrast
curve are plotted for the conductive/insulating and insulating/conductive cases in Figure 9
and Figure 10 respectively.

08
0B
0.4r

02r

02
0

Ky =01-K,=138

— Substrate
—  Bi-layer
-- Contrast

0.2
0

Ky =128-K,=

0.32

— Substrate
—  Bilayer

-- Contrast

Figure 9 : Case 1 — Conductive coating
/ Insulating substrate

Figure 10 : Case 2 — Insulating film /
Conductive substrate
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» Sensitivity Study

The contrast curves and reduced sensitivities to parameters K; and K, for the two cases
considered (conductive and insulating deposits) are plotted in Figure 11 and Figure 12.

K, =01-K,= 136 K =128-K,=032

02

—— Constrast Curve —— Constrast Curve

— Sensitivity - k| ] 08k __ Sensitivity - K, [{
- Sensitivity - 1K,

015+

- Sensitivity - 1K,

otr

00s-

ool Pt
o1t \/

015+

a 2D D|1 D.I2 D.I3 D.‘ri D.IS DIB D.I?' DIB D.I9 1 o DIS 1I 1.|5 é 2.|5 é 3.|5 JIJ A.IS 5
tx:azh’eg tx:azh’eg
Figure 12 : Contrast curve and reduced

Figure 11 : Contrast curve and reduced "
94 N . sensitivities to K, and K, (Case 2)

sensitivities to K, and K, (Case 1)

These two examples are representative of most of the cases that can be met. In the first
case, both sensibilities are of the same order of magnitude but seem to be strongly
correlated: they exhibit a nearly constant ratio, which means that they are proportional. In the
second case, one of the sensitivity is low.

» Covariance and correlation matrices

Table 4 gives the scaled covariance matrix rcov(K) = o2 (S*TS* )_1defined in (35), as well as

the correlation matrix cor(K)defined in (15), for the two cases considered (the standard-

deviation of noise ¢ is taken equal to unity here and 1000 points in time are used for the
simulation of the thermal contrast curve).

Scaled Variance -Covariance Scaled Variance -Covarian ce
28.0302 -35.9846 0.1067 3.1409
-35.9846 46.6417 3.1409 99.1677

Correlation Correlation
1.0000 -0.9952 1.0000 0.9655
-0.9952 1.0000 0.9655 1.0000

Case 1 Case 2

Table 4 : Reduced covariance and correlation matrices K, and K, (for o= 1)
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The most interesting information is given by the reduced variance-covariance matrix
rcov(K): it takes into account at the same times the reduced sensitivities through the

inversion of the reduced information matrix S''S" as well as the noise through its standard
deviation o.

We calculate now the square root of the diagonal terms of matrix rcov(K), that is the relative
standard deviations of the estimates of each parameter K; and K, for a reduced standard
deviation of the noise on each of the two T, and T,,, scaled thermograms now equal to
o* =0.01. This corresponds to a signal over noise ratio of 100. So measurement of the
(experimental) reduced thermal contrast AT ®?® is affected by a (relative) standard deviation
AT equal to \/E o* (for two independent experiments, because

var (AT ®®) = var (T,®) + var (T,5®) =2 g*?), one gets (application of equation (35) with
\/EO'* replacing o):

o, 1K, =20%/28.0302 =0.0749 = 7.5% for K,=0.1
-forcase 1:| (71)
0y, 1 Ky =20 J46.6417 =0.0966 = 9.5 % for K, =1.36

It is interesting to calculate the singular values of the reduced sensitivity matrix S” .They are
the square roots of the eigenvalues (equal to the singular values) of the reduced information

matrix S™'S” and can also be calculated through the inverse of the eigenvalues of (S*TS* )_1:

w,(S) = (w,(s7s) )7 =1/ (w, ((577s) %)) = 2.4347

(72)
w,(S) = (w, (57 )" * =1/(w, (s7s") )" * = 0.1150
This allows to get the condition number of S™ (see Lecture L3):
cond(S") = w, (S")w,(S")=21 (73)

We can also calculate the root mean square reduced standard deviation m, of the estimates
of both parameters K, and K, defined in (37):

m, =o' V2 (/w2 +1/w2)"'? =0.0864 (74)

It is easy to check that this value is simply the root mean square of the relative standards
deviations given in (71).
Let us note that this value (73) is close to the lower bound of m, defined in (38), here:

(o \/E)/(\/sz) =0 | w, =0.0862. The smallest singular value is mostly responsible for the
relative errors on both parameters.

The same calculations can be made for the second case:

Lecture 7: Non linear parameter estimation prolslenpage32



Metti 6 Advanced Schoolfher mal M easurements and I nverse Techniques Biarritz, March 1- 5, 2015

o, 1K, =420*/0.1067 =0.0046 = 0.5% for K, =1.28

- for case 2: ' (75)
0y 1Ky =20%4/99.1677 =0.1408 =14.1%  for K, =0.32

and : w,(S") =11.7851 w,(S") = 0.1004 (76)

So, the condition number of S’ is:
cond(S™) = w, (S")Iw,(S")=117 (77)

which means that matrix S” is more ill-conditioned in the second case with respect to the first
one.

One also get here:

m, =0.0996 and lower bound for m, : o Iw,=0.0996 (78)

So, returning to case 1, it appears clearly that both the ratios K; of the characteristic times
and K, of the effusivities can be estimated with a relative error nearly equivalent for both
parameters (in the 7 to 10 % interval): this was already apparent in Figure 11 where the
reduced sensitivity curves corresponding to both parameters were very close, with a slightly
higher absolute value for the sensitivity to Kj.

For case 2, it is clearly the ratio K; of the characteristic times that can be reached, with a very
good precision (0.5 % here): this is quite natural since the reduced sensitivity to K, in Figure
12 is close to zero. So, because of the non linear character of this PEP problem, the
accessible parameter depends on the location of the (K;  K,) parameter vector in the R?
plane. The question that remains is to know if is possible to measure, with higher precisions,
two parameters derived from (K; , K;) using the experiment corresponding to case 1 for
example. Let us introduce for instance the (K;,K,) pair instead of (K,,K,) in the analytical

model.

Ky =0.136 - K, = 0073629
0.1a

T T T
— Constrast Curve
___ Sensitivity - I'<3

o - Sensiiity- K, 1 Variance -Covariance

05| 1 2.6921 -18.5189
-18.5189 145.8475

i \\‘WM /// ] Correlation

\\ e 1.0000 -0.9346
it - 1 -0.9346 1.0000

0151

Case 1l

02 I 1 I 1 1 1 I I 1
u] 01 02 03 0.4 o0& 0B 0.7 08 09 1
A 2
t=at/es

Table 5 : Reduced covariance and
correlation matrices K, and K, (for o=1) -

case 1l

Figure 13 : Contrast curve and reduced
sensitivities to K; and K, -casel
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The thermal contrast is naturally the same (the materials are identical).

Table 5 gives the scaled covariance matrix rcov(R) as well as the correlation matrix cor(K)
for the estimator of K= [K3 K4]T . The relative standard deviation of both parameters
becomes (for o* = 0.01):

o, 1Ky =420%2.6921 =0.0232 = 2.3% for K, =0.136
- for case 1: ’

0y, I Ky =y20% /1458475 =0.1708=17.1%  for K, =0.0735

(79)

So, when comparing (79) and (71), one clearly sees that instead of having (K;  K;) with quite
poor precisions, the (K3,K4) allows to retrieve very precise values for the ratio of volumetric
heat capacities K;. This was already apparent in Figure 13 : the relative sensitivity to K, was

quite low when compared to the one of Ks, but both minima of the corresponding curves
occurred at times far apart, with a degree of colinearity much weaker than in figure 11 (see
also section 3.3.2 of this lecture).

This result obtained for the two cases can be explained from the expression of the contrast
curve.

AG”

1 1+KK, 1 } (80)

:g|:K2 Sinh(K1S) cosh (S) + sinh(s) COSh(KlS) _ Sinh(S)

In the previous case (conductive coating on an insulating substrate), K, is close to zero. A
sinh(K,s)=Ks

rough approximation can be obtained by setting:
gh app Y g {cosh(Kls)=1

5 -1 1+K, 1
Ao = s [K3 s cosh(s) + sinh(s) sinh(s)} (81)

We can see then that within this first order approximation, the model is only a function of K;=
K,K,. We can check the other criteria already considered for case 1 with the (K; A Kj)
parameters :

w,(S") = 1.7270 w,(S") =0.0821 (82)
So, the condition number of S’ is:
cond(S™) =w, (S )Iw,(S")=21 (83)

Compared to the preceding parameterization, the reduced sensitivity matrix S” as well as its
singular values have changed, but the condition number is the same, see (73).
One also get here:

Lecture 7: Non linear parameter estimation prolslenpage34



Metti 6 Advanced Schoolfher mal M easurements and I nverse Techniques Biarritz, March 1- 5, 2015

m, =0.1219 and lower bound for m,: " / w,=0.1218 (84)

When both m,'s are compared, see (74), one can say that the global precision of the

estimation of the (K;,K,) parameterization is lower than the (K,,K,) one. However we will
see later on that this superiority of the (K3,K4) parameterization is only an apparent one if
both thermophysical characteristics of the film are looked for.

Ky =0.40596 - K, =4

— Senatty Variance -Covariance
... Sensitivity - K,

103.5845 -97.1801
-97.1801 91.1985

Correlation

1.0000 -0.9999
-0.9999 1.0000

as] e Case 2

Table 6 : Reduced covariance and

Figure 14 : Contrast curve and sensitivities to correlation matrices K, and K, (for o= 1)

K; and K, (Case 2)

In case 2 (insulating coating on a conductive substrate), parameters K, and K, are strongly
correlated and exhibit the same sensitivity curves — see Figure 14 . This confirms the result
we observed previously, that is a thermal contrast mostly sensitive to K, .

Ky Ky ==t L=—t =—L =K/ (85)

This can be also explained by the fact that K, is close to unity :

sinh(K,s) cosh(s) =K, sinh(s) cosh(K,s) (86)
This yields:
~. 1 1 1
AG, =t - 87
out sLinh(s)cosh(Kls) sinh(s)} (87)

So, the thermal contrast is mainly a function of K. Returning to the same calculation as in
the other case, using Table 6, one gets:
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0y 1Ky =\20% /1035845 =0.1439=14.4%  for K, =0.4096
-forcase 2 0y, 1Ky =y20% /91,1985 =0.1351=13.5% for K,=4 (69)
The singular values of the reduced sensitivity matrix are:
w,(S") = 8.3624 w,(S")=0.0717 (89)
So, the condition number of S is:
cond(S™) = w, (S")Iw,(S")=117 (90)

We observe here the same thing as for case 2: the condition number of the reduced
sensitivity matrix is independent of the parameterization, see (77).

One also gets here:

m, =0.1396 and lower bound for m,: o Iw,=0.1395 (91)

When both m,'s are compared, see (78), one can say that the global precision of the

estimation of the (K;,K,) parameterization, which provided an excellent estimation for K. is
lower than the (K,,K,) one.

4.3 Note on the change of parameters

It has been suggested earlier that some change of parameterization would allow to overcome
parameter estimation difficulties such as in the case of high correlation coefficients inducing
high variances for the estimated parameters for example. We want here to come back to this
discussion to give, very briefly, some precisions and our conclusions.

First, and taking experience of what has been shown previously, if a change of
parameterization is made that results in the production of a nhew parameter of sensitivity
close to zero (and thereof excluded from the model), this new parameterization will have a
positive effect and will allow to properly estimate the remaining ones. Note that it is the object
of Dimensional Analysis to help making such reparameterization efficient.

Second, if all the parameters of the problem have non negligible sensitivities but appear
correlated, the question is: is it possible to find a new set of parameters defined from the
initial one, to enhance the quality of the estimation process?

The answer is no. It can be demonstrate, see Remy [9] that the sensitivities to a new set of
parameters can be derived from the sensitivities of the current set (using the Jacobian of the
transformation). The same is true for the variance-covariance matrix and the explanation is
obvious from the quantified SVD analysis given above (the same condition number of S is
obtained whatever set of parameterization is used) These relationships show that:
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« if two parameters appear correlated in a given set of parameters, two parameters of a
new set, recombined from the previous ones, will also be correlated.

« if the sensitivity of a parameter is changed with a new parameterization (for example,
it is enhanced), this will not change its variance ultimately.

For instance, if we keep the parameter K; and choose another second parameter instead of
K,, we can show that the sensitivity curve to K; can become higher or lower: we have to

remind that the partial derivative that appears in the definition (4) of a sensitivity coefficient is
associated to the variation of the output of the model for a variation of a given parameter,
which requires that the other ones stay fixed at given values. This means that if the definition
of these other parameters is changed, such is also the case for the sensitivity coefficients.
So, talking of a sensitivity coefficient to a given parameter does not mean anything if the
other parameters in the parameter vector are not specified.

So, one can wonder whether it would be possible to improve the estimation of K, by

combining this parameter with a particular parameter that can increase its sensitivity. In fact,
this is not true because the standard-deviations of the estimates of the new parameters do
not only depend on the sensitivities of the old parameters but also on the correlation between
the estimates of the old parameters.

To show this, we are going to see through an example how the standard-deviations (square
roots of variances) of the new set of parameters change when one parameter is kept as for

instance parameter K,, that is K, =K,"K,” with a=1;$=0, while K, is replaced by
Ky =F, (Ky.K,):

K,.=FI(K,)]=K
a a( 1) 1 (92)
Kp :Fb(K11K2)
We have:
. K, . K,
Ymo = N(t; K) with K = K =dy,, =S dK =S dK' with K'= K (93)
2 b

where S is the sensitivity matrix to the old (Kl, Kz) set of parameters and S' the sensitivity
matrix to the new (K,, K, ) one. This requires the calculation of the Jacobian matrix J of this
transformation since ;

dK'=JdKk = S=857 and cov(K')=J cov(K)JT (94)
The last equation in (94) stems from the linearization around the exact value of the K

parameter vector:
cov(K) = cov (dK) (95)
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OF, OF,
D(F,,F,) _| K, K, 1 0
D(K,.K,) 2R IR,

JK, OJK,

with: J= (96)

So, the sensitivity matrix to the new parameter set K' is:

1

~Fy /Fy, 1/ FbJ = [51_(Fb,1/ Fo.)S, @/ Fb,z)sz] (97)

S =[Sa Sy ]:53—1:[51 S, ]{

Here the old sensitivity column vectors S, and S, , as well as the new ones S, and S, ,

have been explicitly written in terms of the corresponding sensitivity matrices, S and S'
respectively.

Application of (94) allows the calculation of the variances and covariance of the estimators of
the new set of parameters (K, K,):

| ) o[ 1 0 ) ot ]

covlK,.K,) varlK, For Foo cov(Kl,Kz) var

that is:
var (Ra) =var (R )
var(Rb) Foi’ var(K)+Fb2 var(Az) FblFbyzcov(Rl,Rz) (99)
cov(Ra,Kb) Fblvar( )+Fb2 V(A R)

We can see that even if the change of parameters modifies the sensitivity to parameter K, ,
that replaces parameter K; in the new set of parameters, the variance of this parameter
remains unchanged whatever the choice of the second parameter.

This means that the variance of a given parameter (and consequently the error on this
parameter) is independent on the choice of the second parameter. Thus, identifying the
parameter K, from the (K,,K,) pair is equivalent to estimating K, from the (K,,K;) or

(K,.K,) pairs.

Similarly, we can show that estimating parameters (K3,K4) either through the
parameterization (Kl,Kz) or directly, is strictly the same.

The conclusion is that the interest of a change of parameters is justified only when an
improved estimation of a particular parameter of in terest is looked for.

Whatever the parameterization, if the thicknesses o f both layers are known, as well as
the thermophysical properties of the substrate, we have:
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Og | pc,=0; Ky =23% for casel
’ (100)
o, 13 =0z, /K, =05% for case 2

These relative standard deviation of the estimated thermophysical properties of the front face
layer are valid for a signal to noise ratio equal to 100 for the experimental thermogram of
each flash experiment (single substrate layer and two-layer sample). So, this rear face
thermal constrast technique allows estimation of the capacity of the film for case 1 and of its
diffusivity in case 2, for high enough signal over noise ratios.

In case of very low sensitivity to a given paramete  r, it is possible to fix the value of the
corresponding parameter to its nominal values. So, if the number of parameters that are
looked for is reduced, then the stochastic errors on the remaining parameters (reduced
standard deviations) decrease. However, their estimation becomes biased and leads to a
systematic error on each estimated parameter such as:

bs, = E(Br )—ﬁr =—(SrTS, )_lS,TSC (pgf”“ - pgxact) (101)

Here the initial parameter vector has been decomposed into two parts 8= [gr} where B,
Cc
gathers the parameters that are looked for and its complementary part B, is supposed to be

nom

known, that is its value is blocked to a nominal value B, = B;"" which differs from its exact

exact

value B.*" . Equation (101), which has already been derived in the case of a linear model in

lecture L3 of this series (see also [1]), corresponds here to a linearization in the
neighborhood of the exact value of 8.

This technique, which consists in reducing the number of parameters that are looked for,
presents an interest only if the bias caused by the reduction of the number of parameters and
its associated standard deviations are much lower than the initial stochastic error as
illustrated in Figure 15.
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Probability density function
of the j" parameter of B

-1/27] B e 1727
O_ﬂ =0 |:(STS) | - / O-,E?r_; =g |:(S.' Sr J J;;

=17

ﬁrj

>

J
£ (B,)= e N e (p)= preeen,

A,

Figure 15 : Comparison between the probability density distributions of the | parameter of
the parameter vector for two different estimators 1) all the parameters in 8 are

estimated altogether (red) or 2) only the components of one of its part B, (blue)
are estimated while its complementary part B, are blocked to its nominal value.
NB: here one assumes that index jin B andin B, are the same (4,; =f,) and

that the scale of the vertical axis is different for both distributions for practical
plotting reasons (the area below both distributions should be equal to unity)

5. Conclusion

Useful tools have been introduced for the analysis of estimations (variance-covariance
matrixX) and the detection of the ill-conditioned character of the Parameter Estimation
Problem (PEP). Different techniques have been presented for tracking the true degrees of
freedom of a given PEP (matrix rank, correlations between parameters, SVD, ..). If we want
to enhance the estimation of a given parameter, one solution is to use a reduced model. This
reduced model can be either unbiased or biased. It is of particular interest to know if a
reduced model is biased or not.

We have proposed, in the last section of the lecture, to work with a variable estimation time
interval in order to evaluate the systematic error caused in the estimated parameters. We
hope that the different "realistic" examples of thermal metrology presented in this lecture will
help the reader to master the corresponding tools to get good estimates in a PEP.
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Appendix 1 - Reminder of the Singular Value Decompo  sition of a rectangular matrix

Any rectangular matrix (called K here) with real coefficients and of dimensions (m, n) with
m = n, can be written under the form :

K =UW VT, thatis K = U VT (Ala)

This expression is sometimes called "lean" singular decomposition or "economical" SVD and
involves

- U, an orthogonal matrix of dimensions (m, n), : its column vectors (the left singular vectors
of K) have a unit norm and are orthogonal by pairs: U'U =1_, where | is the identity
matrix of dimension n. Its columns are composed of the first n eigenvectors Uy, ordered
according to decreasing values of the eigenvalues of matrix K KT . Let us note that, in the

general case, UU" # | .

-V, a square orthogonal matrix of dimensions (n, n), : V VT =V'V =1 . Its column vectors
(the right singular vectors of K), are the n eigenvectors V, ordered according to decreasing
eigenvalues, of matrix K™K :

- W, a square diagonal matrix of dimensions (n , n), that contains the n so-called singular
values of matrix K, ordered according to decreasing values: w, 2w, =---=2wW_. The
singular values of matrix K are defined as the square roots of the eigenvalues of matrix

KTK . If matrix K is square and symmetric, the eigenvalues and the singular values of K are
the same.

Another SVD form called "Full Singular Value Decomposition" is available for matrix K. In this
equivalent definition, both matrices U and W are changed: the matrix replacing U is now
square (size m x m) and the matrix replacing W is now diagonal but non square (size m x n).
In the case m = n, this can be written:

\W

K=U, W, V' with U, =[u ucomp];wo{o
(m -n) xn

} and dim (Ug,,,) =m x (m-n)

(Alb)

or:
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- - - lwy 0
0 w
K = U U comp 0 .. 0“ V! (Alc)
- - - - 10 0 |

Matrix U is composed of the (m - n) left singular column vectors not presentin U. So, the

comp

concanated matrix U, verifies now:

UsU, =U, Uy =UU"' +U_, Ul =1

comp ~ comp m

(Ald)

This singular value decomposition (Alb) can be implemented for any matrix K , with real
value coefficients, for m = n.

Appendix 2 - Singular Value Decomposition of the scaled sensitivity matrix
This singular value decomposition can be implemented for any matrix K .

A double change of basis, in the measurements domain and in the parameter domain, using
the matrices of the left U and right V, in the SVD of S* written for K = S* yields :

S*=UW V' (A2)

Matrix V is used as a (square) change of matrix basis and it transforms the differential of the
reduced parameter vector dx , see (29) into a new differential vector dp, where p can be

called the diagonal parameter vector, of dimensions (n, 1).

Matrix U allows to change the differential observation vector dy,, of dimensions (m, 1) into

a differential vector dz,,, of smaller length, where z,,,, can be called the diagonal observation
vector, of dimensions (n, 1).

dy,,=U dz., and dx =V dp (A3a,b)

Let us note here that the reduction of the length of the observation vector (m observations for
dy,., andonly n components in dz,, stems from the fact that the (m-n) singular eigenvectors

Uy not present in matrix U corresponds to null singular values wy (for k > n).

Use of equations (A1) to (A3), together with the property U'U =V TV =1_, allows to get the
equivalent of the differential model (31a) in the double transformed space:

dz,, =W dp (A4)
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This equation corresponds to a diagonalization of the model in R", and one gets then,
component by component:

dp, =idzmok for k=212,-,n (A5)
W, '
Combining (A3a,b) and (A4) yields:
dx =VW 'UTdy,, =S " dy,, (AB)

where S™"=VW 'UTis the pseudo-inverse, or Moore-Penrose inverse, of the scaled
sensitivity matrix S* .

Combination of the preceding equations leads to a relationship between dB8 and dy ., :

dB =R,,, VW *U" dy,, (A7)
and an integration can be implemented to give the relationship between the diagonal and
original sets of parameters in a column vector form:

p=V'x=V'in (R;jm p)sz R (B - B”"m) because p™™ =V'x™"=0 (A8)

The transformed observation vector can be expressed:

Zmo = UT (Yo = Ymo (B™™)) =W p because Zpe =W p™" =0 (A9)
Combining (A8) and (A9) yields:
P =VTIn Rk B) =W UT (Vg = Yo (B™™)) = B = Room X0 (V WU [y s - v o (8™™)

(A10)

nom

An approximation of this expression in the neighbourhood of ™" is available:

B=Room | 1V WU (V0 - Vo (B™™)) = B™™ + RogmV W U (Y 1o = Voo (B™™))  (A11)

where 1 is the column vector of length n whose coefficients are equal to unity.
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Appendix 3 — Non-linear Ordinary Least Square estim  ator and SVD

It is interesting to compare diagonal equation (A5) that shows the interest of an inversion in
the left and right singular spaces with the OLS estimator (12) of parameter B. So, if the first

order approximation in the neighbourhood of B""is considered, the difference between

measurements and model outputs can be expressed with the residual vector defined in (10),
and rji, the linearized form of this difference vector:

FB)=Y =~ Yo (B)= 1y (B) =Y = Yo (B™) - S (B™") (B~ B™") (AL2)

The least squares sum Jo s can be written as a quadratic form J o using the fact that Jo.s =
Jows | (scalar) :

IB) =" BB =I B =y = Yo B"™) [y = Yo (B™™)

+(B - B°™)TST(BOMYS(B™™) (B - B™)-2(B - ™) ST(B°™)y - ymo (B™™)
(A13)

When the minimum is reached, one gets:

% =0 = ST(B™")S(B™") (B~ B™")=S"(B™")(Y - ¥,0 (B™™) (AL14)

which leads to an approximation of the OLS estimator:

n nom nom nom -1 nom nom
BB =(ST(8M)S(B™™)ST(B™M)y -y o (B™™) (A15)
This is exactly the same equation as the iterative algorithm (12), with
B = BED and g™ = BX) . One shows, using (31b) and (A2) :
(ST(Bnom)S(Bnom ))_lST(Bnom) — Rnom vV W -1 UT (A16)

The least square estimator (Al5), with the diagonal parameter p and the experimental
diagonal signal z in their new bases, can be written thanks to (A16) :

p=W=1z withz =U"(y -y, (B"™) (Al7a, b)

Equation (Al7a) is diagonal. Use of (A15) and (A16) provides a new expression for the OLS
estimator of B8 :

A~

B=R™(L+V WU (y -y, (B™)) (A18)
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This expression is the same as relationship (Al) that links B and y.,(B): these

corresponding two values are simply replaced by the linearized OLS estimator B and by
measurements y respectively.

The linearized OLS estimator of the reduced parameter vector X stems directly from (A19):

g = (S*T (B™™) s’ (ﬁ”om))_lS*T (B™™) (y Vo (Bnom)) (A20)

Appendix 4 — Variance-covariance of the Non-linear Ordinary Least Square estimator
and SVD

With the noise properties defined in (8), the variance-covariance of the linearized OLS
estimator B given by equation (A15), can be written thanks to (31b) and (A2) :

cov(B) = o* (ST (B™™)s (B™™) " = 0* Rit, S*T s R )T a21)
= 02 Rnom (S*T S*)_anom = 02 RnomVW _ZVT Rnom

nom

This expression is valid if the difference between B and B™"is small: it is always the case

nom

near convergence of algorithm (12) where B™™ can be redefined as B™™ = B%) and with

n _ Akl
B=B5s -

-1
nom

The expression of the variance-covariance matrix of X =R, B becomes:

cov (&) = RL, cov(B) Rk, )| =02 v w27 (A22a)
The first relationship in equation (A22a) allows to calculate the reduced covariance matrix of
B, rcov(B), whose diagonal coefficients are the reduced variances of the estimators of each
parameter, using the nominal values of the parameters as scaling factors:

o IB") cov(BuBI(B"B™)  cov(BL BB B°")

roov () = cov (X) = % NE"Y - o2fs s )

Symmetric agn I(B°™)?

(A22D)

where g, is the standard deviation of ,Ej. The square roots of the diagonal terms of this
]

matrix, a/;, | B°", can be considered as a measure of the relative error made for each
1

parameter and caused by presence of noise in the measurements y.
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It is very interesting to calculate the trace of this matrix, which is equal to the sum of the
variances of the different components of X :

Tr(cov (X)) = Z o5 Z(Jm/ﬁ”"m)
- (A23)

n

= Z(aﬁjl nom)zzazTrNW_sz):Zn:U_f _Zn:Vii

-1 k=1 W

where ¢ jis the standard deviation of the estimate of reduced parameter x; and oz the
corresponding one for A. Since the right singular vectors have a unit norm

(VAR Zn: V2 = 1), this last equation becomes:

i=1

Tr(cov(x)) = Z(Jﬂj / ,Bj”"m)z =0 ). iz (A24)
k

i=1 k=1 W

In order to get a good estimation (in percents) of all the parameters of the model, the
quadratic mean of the relative standard deviations of their estimates m, should be smaller

than a given level m, ., (NB: subscript g corresponds here to the quadratic mean of the
normalized standard deviations) :

B 1 n ( nom)2 1/2 B 1 n 1 1/2
My =15 Z T; 1 B =9\, 2 s < My max (A25)

One of the objectives of the "inverter" (the person in charge of the inversion) is to get a
relative error m, , expressed in term of quadratic mean, lower than an upper threshold m, .,

equal to a few percents. This means that as soon as the number n of parameters that have
to be estimated becomes large, the singular values w, of the corresponding reduced
sensitivity matrix decrease, which increases the error. This increase of the error is
proportional to the standard deviation of the noise. This standard deviation has the same unit
as the output of the signal and the same is true for the singular values which do not depend
on the structure of the model (function #) only, but also on the intensity of the stimulation (in
a problem where the output is related to a field: temperature, concentration, ...) and on the
choice of the "times" of observation t.

Both a lower and an upper level can also be constructed for the criterion of global relative
error m, defined in (A25), using the smaller singular value w,:

1/2
n

EE TS N AP -

n 4
i=1
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This clearly shows that a too large value for the ratio o/ w,,, between the standard deviation
of the measurement noise and the smaller singular value of the reduced sensitivity matrix
S"(B™™), can make the estimation of the whole set of parameters « explode ». In that case,
one of the B, parameters (the parameter "supposed to be known", ;) has to be removed

from the original set of parameters to be estimated. This will lead to a new parameter vector
B to be estimated, of smaller dimensions (n-1, 1), with a better (smaller) associated m,

criterion (lower average dispersion) but with the apparition of a bias on its n-1 estimates,
because of the biased value of the removed parameter [, that will be fixed to its nominal

value that is different from its exact value (see Lecture 3).

Appendix 5 — Residual analysis for an unbiased mode | using the SVD approach

If the model used for estimation is unbiased, the residual vector, at convergence, is defined
by:

FB)=Y ~Ymo (B) =Ymo (B™™) +& -y, (B)= £-S (B-B™) with S =S (B) (A27)

The last approximation in equation (A27) is based on a first order developpement of the
model with respect to parameter B, assuming that 8 and B are close. So,

r(B) =g -S (ST S)—lST Y =Yoo (ﬁexact)) —g-S (ST S)—lsT (Y o (ﬁexact) +E-y . (Bexact))
(A28)

The second term in equation (A28) is also a first order development that stems from the
Gauss-Newton algorithm (12) used for minimizing J,, 5 (B) defined in (9) in an iterative way.

After simplification, equation (A28) can be rewritten using the scaled sensitivity matrix S” :
r(B)=(l,-S(S"S)'ST)e = (I, -S" (S S)?S ") e with S"=S(B) diag(B) (A29)

The lean SVD form (32b) (in the main body of this paper) of the scaled sensitivity matrix (see
also Appendix 1) can be used then:

S*(B)=UWwW VT (A30)
This yields, using the orthogonality property of the right singular matrix V:
r(B)= (I,-UU") ¢ (A31)

So, under the IID noise assumption, for an unbiased model, one can show that the
expectation of the residual vector is equal to-zero:

Er(@)= (l,-UUT) E(g) =0 (A32)
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This means that if the model used for describing the experiment is appropriate, the residuals
curve is centred on the y = 0 axis.

In order to get “unsigned” residuals, the variance-covaraince matrix of the residuals should
be diagonal. If the model is unbiased, this matrix is:

cov(r (B)) = (I,,-UUT) cov(e) (I, -UUT)=0c? (I, -UUT) = g? U (A33)

t
comp U comp

Here U is the complementary left singular vectors matrix composed of the (m — n) left

comp

singular vectors, that appear in the full SVD decomposition of S* (B) given by equation
(Alb) in Appendix 1:

W
S =U, WoV  with Uy =[U U] where UT U, =1, and W, = {0 } (A34)
(m -n) xn

In case of a square non-linear least square problems, there are as many measurements as
parameters to be estimated (m=n) and 1, =UUT . So, in this case, the residuals (A27) are
deterministic and equal to zero (U is an ‘empty’ matrix with O column in that degenerated

comp
case). As soon as the number m of measurements gets higher than the number n of
parameters, matrix U Ul  becomes non-diagonal, especially if the difference (m — n) is

comp ~ comp
small and the residuals are correlated. However when this difference increases, that is when
the number of measurement is a lot higher than the number of parameters, the ratio n/ m
goes to zero and U, becomes very close to U,, which means that

cov(r (B)) = 0% Uggmp U 0O OO~ 02 U Uy = 0%, (A35)

as n/m

This means that, strictly speaking, the residuals are correlated, even for an unbiased model
but, in practice, adding more many measurement times to a given estimation interval tends to
make them nearly uncorrelated. This is especially true for thermal characterization of
materials or system, where the number of parameters is low (2, 3, 4, ...) and the time
sampling rate high enough with respect of the length of measurement (several hundred
measurements at least for modern data acquisition systems) where the asymptotic level
given by (A35) is reached.
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