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Abstract: The system identification technique is used in order to formulate a 
reliable direct model to be used in an inverse heat transfer problem. This approach 
found several practical applications in thermal sciences for raisons that will be 
developed in the text. For clarity, we will restrict our presentation to monovariable 
linear systems relating the temperature at one point in the system to a heat flux 
acting on the system. Two approaches are presented in this course. In the first one, 
the non-parametric method only used the temperature and heat flux measurement 
by calculating the cross correlation or power spectral density. The second set of 
methods relates to the parametric methods that consist in identifying the parameters 
of a model that expressed the successive time derivatives of the temperature to the 
heat flux. 
 
 
 
 
 
 

Nomenclature 
 
a Thermal diffusivity m2.s-1  power spectral density between x and y 

 correlation function between x and y T temperature, K 

 specific heat, J kg-1 K-1 T time, s 

Dν derivative of real order ν  sensor coordinates 

e measurement error y temperature measurement, K 
 impulse response V Loss function 

h exchange coefficient, W m-2 K-1 tΔ  Sampling time  
H transfer function ϕ  heat flux density W m-2 
Iν integral of real order ν  density, kg m-3 
k thermal conductivity, W m-1 K-1
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1.1 Introduction 

The system identification framework is a well known domain that has applications in automatic (for 
control purpose mainly) and in signal processing [1][2]. For several years the heat transfer scientific 
community found very interesting applications of those methods for the modelling of heat and mass 
processes that occur in thermal systems [6][7][8]. In this course we present the system identification 
technique as an efficient tool in order to formulate a reliable direct model that can be used to solve the 
corresponding inverse heat transfer problem. In case of a monovariable system, as that represented 
inFigure 1, the inverse procedure will consist in estimating the heat flux acting on the studied system from 
temperature measurement at one point in the system. Let us highlight now that the methods that will be 
present below can be obviously generalized to multivariable systems (several heat flux or heat sources 
acting on a system equipped with several sensors). As an additional constraint, we will also restrict the 
presentation of the methods to linear systems. It means that the thermal properties of the system will not 
depend on temperature. However, system identification has been developed for non linear systems but 
mathematical derivations of such techniques are largely beyond the scope of this course. 
 

 

Figure 1: example of a 2D monovariable linear system. 

Why scientists working in the field of heat transfer and more particularly in measurements inversion are 
interested with system identification? The first answer relates to model reduction. Indeed, whatever the 
implemented inverse technique, inversion requires simulating a direct model in an iterative manner to 
approach the solution. Statistical methods as the Bayesian technique one calls upon the direct model a 
huge number of times and computational times could become dramatically long. As an example, let us 
consider the 2D system represented in Figure 1. The domain Σ is characterized from its thermal properties 
(thermal conductivity , specific heat per unit volume  an density ). A heat flux density  is 

imposed on the boundary  whereas the remain part of the outdoor boundary is subjected to convection 
with the coefficient  and the temperature of the surrounding fluid is denoted . Finally, the inner 
boundaries are insulated. The objective here is to estimate the heat flux density from temperature 
measurements in the plate. It is thus assumed that a sensor has been embedded in the plate and the 
temperature of the sensor is denoted . Although this problem is quite simple, only a discrete method 
(finite elements for example) can be used to solve the heat diffusion equation and associates boundary and 
initial conditions in order to simulate the temperature of the sensor. A mesh is thus built (see Figure 1) that 
leads to calculate the temperature at each node. This discrete model is so-called a high-order model, the 
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order referring to the mesh degrees of freedom. Simulating this model leads to results as those presented 
in Figure 2. 

 
Figure 2: simulation of the temperature field at t=10 sec and of the time dependent temperature of 

the sensor for a step heat flux density. 
 
The reliability of the direct model rests on the accuracy on two sets of data: the thermal properties 

 and the location  of the sensor. Uncertainties on those data will lead to a 

very low confidence domain for the estimated heat flux [9]. 
This system identification approach is described in a schematic way in Figure 3. The goal is to apply a 
known heat flux ( )tϕ  on the system and to measure the signal at the thermal sensor. We must note as a 
first point that it is not require calibrating the sensor (the link between the measured signal and the 
absolute temperature) since the same sensor is used both for the identification system and the inversion. 
Given to those data it is then possible to estimate “a” model M that relates them. However, it must be 
emphasized that this estimated model has only significance on the measurement time-domain. Prediction 
is therefore a main issue of system identification. Secondly, the measurements are affected by an error 
(noise) that will have an influence on the identified model. It is generally admitted that the imposed heat 
flux is generally fully known and that it is errorless. Thus, all the error is reported on the sensor signal. 
Obviously the objective is to have the model M that is more accurate than that obtained from the 
FEM with uncertainties on  and . 

 

 
Figure 3: thermal system identification procedure. 
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Once the thermal system has been identified, it can be used in order to solve the inverse problem, which is 
to estimate the heat flux from model M and temperature measurement at the sensors. The classical 
procedure is described in Figure 4. 

 
Figure 4: use of the identified system to solve the inverse procedure (estimating the heat flux). 

 
It means that if the identified system described well the thermal behaviour for the heat flux sequence 
represented in Figure 3, it is then expected to retrieve this sequence applying an inverse technique from 
the identified model M and temperature measurement represented in Figure 3. This is what suggests 
Figure 4. 
According to our previous description, it can be thus possible now to drawn the main advantages and 
drawbacks of this approach. 
Advantages 

! The system identification approach will be first interesting to obtain a reliable and accurate low 
order model that will require less computational time for simulation. 

! There is no need to know the thermal properties of the system (thermal conductivity, density, 
specific heat, heat exchange coefficients, thermal resistances at the interfaces, parameters related 
to thermal radiation…). 

! It is not required to know the sensor location inside the system. 
! It is not required calibrating the sensor. 
! The identification procedure is fast (this will be viewed later with the description of the different 

techniques). 
Drawbacks 

! The model identification must be achieved in the exactly same conditions as those encountered 
during the inversion (heat exchanges between the surrounding and the system must remain the 
same for the two configurations). 

! The prediction of the identified model rests on strong assumptions (in particular, it is better 
reaching the stationary behaviour during the system identification process). In general, the 
identified system is only valid for the time duration of the system identification process. 

ϕ (t)

Τ
m
 (t)

Τ
ext

jh

0ϕ =

0 1 2 3 4 5
0

20

40

60

80

100

time (sec)

ph
i (

W
/m
≤)

 

0 1 2 3 4 5
-5

0

5

10

15

20

25

30

35

time (sec)

Se
ns

or
 te

m
pe

ra
tu

re
 (∞

C
)

 

 

measured
simulated with the identified system

 

( ) ( ){ }mT t tϕ=M

identified

Measured

known

system



Advanced Spring School « Thermal Measurements & Inverse techniques », Domaine de Françon, Biarritz, 
March 1-6 2015 

http://metti.u-bordeaux.fr 11 

1.2 The system identification approach 

1.2.1 The impulse response 

The temperature  of the sensor is related to the heat flux density  thanks to the impulse 

response  on the form of the following convolution product that is a direct mathematical formulation 
of the Duhamel’s theorem: 

  (1.1) 

For monovariable linear systems, the impulse response fully characterizes the thermal behaviour. 
Therefore, any kind of inverse strategy can be based on the direct model expressed as the impulse 
response of the system. However, as we said in the first section, this response will depend on the 
following quantities:  and . According to the uncertainty that affects those 

quantities, the user could imagine measuring directly the impulse response from an experiment. It will 
consist in replacing the heat flux on the real problem by a known photothermal excitation, as a laser for 
example, and to measure the temperature of the sensor when the heat flux is delivered as a pulse. 
However, this approach is not reliable since the impulse response magnitude is very low, especially when 
one wants to preserve the linear behaviour of the system. As an illustration it is calculated the temperature 
of the sensor for the previous studied configuration with  where  is small 

enough to consider the excitation as a Dirac function. The simulation is presented in Figure 5. The 
maximum amplitude of the response is very low and it must considered additional further impact of the 
measurement error. 

 
Figure 5: simulation of the impulse response using the FEM. 

 
Another solution could consist in derivating the step response represented in Figure (at the right) to 
retrieve the impulse response. Again, it is not a reliable technique since the derivation will amplify the 
measurement error and will lead to a very inaccurate impulse response, especially at the short times. 
Several powerful techniques have been developed in the system identification and signal processing 
domains that lead to more accurate impulse response of the system. These techniques are classified in two 
sets of methods: the non parametric methods and the parametric ones. 
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1.3 The non parametric approach 

1.3.1 The deconvolution technique 

A very easy technique for the deconvolution of (1.1) is to consider the discrete form of this relation [2]: 

  (1.2) 

Assuming the duration of the experiment is , where  is the sampling time interval, relation 
(1.2) can be expressed on the form: 
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 (1.3) 

With  and . Assuming an additive measurement error of normal distribution 
(zero mean and constant standard deviation), the measurement temperature is expressed from the real one 
as: 

  (1.4) 

Given that , it is reasonable to truncate the series from  and thus relation (1.3) 
becomes: 
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 (1.5) 

Vector  can thus be estimated in the least square sense, in order to minimize  and it is 

obtained: 

  (1.6) 

However this procedure is quite long according to the value of Q and N and very sensitive to measurement 
errors. 
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1.3.2 The correlation technique 

A better and faster approach consists in identifying the impulse response ( )h t , from the cross correlation 

product of the system response that is the temperature  of the sensor and the heat flux ( )tϕ  [1]. 
Indeed, let us rewrite relation (1.1) taking into account of the measurement errors: 

  (1.7) 

Now let us multiply the two members of this equality by the heat flux  and integrates from t=0 to 
infinity. We obtain then: 

  (1.8) 

We see appearing the convolution product between each function as: 

 ( ), , ,
0

d
my m eC h t C Cϕ ϕ ϕ ϕτ τ

∞

= − +∫  (1.9) 

If one chose the excitation sequence  as a white noise: 

  (1.10) 

And finally, if one admits that the noise measurement is not correlated to the input signal ( ), one 
has: 

 ( ) ( )
my

C hϕ τ τ=  (1.11) 

It thus appears that the impulse response can be directly deducted from the correlation function between 
the temperature of the sensor and the heat flux. In practice the correlations functions are calculated using 
he Fast Fourier Transform of the signals (see next section and Matlab code in Appendix 1). 
The correlation analysis interest is the physical system identification possibility under less energy 
constraints density. Indeed in opposition to pulse analysis, the energy does not have to be deposited in an 
intense way during a very short time (closest to a Dirac function). An interesting feature of such an 
approach is that the linearity and stationarity assumptions are clearly satisfied and that the confidence 
domain of the estimated impulse response is the same all over the explored frequency range.  

1.3.3 Spectral technique 

Nevertheless, this approach is very sensitive to that noise measurement magnitude and practically it the 
better using the power spectral density instead of the correlation functions [4]: 
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( )mY f  and ( )fΦ  are the Fourier transforms of the temperature and the heat flux respectively as well as 

( )S fϕϕ  and ( )
my

S fϕ  are the auto and cross PSD. Then, by applying the Fourier transform on relation 
(1.9) it is immediately obtained: 

 ( ) ( ) ( ) ( )
my eS f H f S f S fϕ ϕϕ ϕ= +  (1.14) 

Finally, assuming that the noise measurement is not correlated with the heat flux ( ( ) 0eS fϕ = ), the 
expression of the transfer function is: 
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Since the length of the experiment is set to a fixed value τ , the real input signal is: 

 ( ) ( ) ( )t t tτϕ ϕΠ = Π  (1.16) 

In this relation, ( ) 1tτΠ =  when 0 t τ≤ ≤  and 0 elsewhere. Then applying the Fourier transform on the 
heat flux leads to: 
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It appears that the Fourier transform of the heat flux is convoluted by the sinus cardinal function. Usually, 
the heat flux is pre windowed by a specific function ( )g tτ  which decreases the influence of the function 

( )tτΠ  as: 

 ( ) ( ) ( )t t g tτϕ ϕΠ =  (1.18) 

For example, it is often used of the Hanning window [3][4] defined by: 
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 (1.19) 

It is also used an improved estimation of ( )
my

S fϕ  and ( )S fϕϕ  proposed by Welch [5]. The method 
consists in dividing the time series data into possible overlapping segments, computing the auto and cross 
power spectral densities and averaging the estimates. 

1.3.4 The parametric approach 

The principles of the system identification method are presented by Ljung [1]. Assuming a linear and 
stationary system, that means that the thermal properties of the system do not vary with temperature and 
time, the method consists in identifying the parameters involved in a linear relation between the heat flux 
( )tϕ  and the temperature ( )mT t  of the sensor, from measurements of these two quantities. Without any 

kind of physical consideration of the heat transfer process, it is assumed a general relationship of the 
following form: 

  (1.20) 

This kind of model is consistent with the behaviour of the dynamical systems and it is also in case of 
thermal systems since the heat diffusion equation rests on the first order derivative of the temperature for 
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all the points of the system. It is thus reasonable to admit that the temperature at time t must depend on the 
heat flux value at time t and also at previous times. On the other hand, since temperature at times before t 
depend on the heat flux at previous times also, it is not surprising that they appear in the model. 
Let us illustrate it on a simple configuration by considering the one dimensional heat transfer in a wall 
(thermal conductivity k and thermal diffusivity a) subjected to the heat flux density ( )tϕ  at 0x =  and 
insulated on the other face at x e= . The model thus: 

 ( ) ( )2

2

, ,T x t T x t
a

t x
∂ ∂
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, 0 , 0x e t< < >  (1.21) 

Boundary conditions are: 
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And the initial condition is chosen as: 

 ( ), 0T x t = ,0 , 0x e t≤ ≤ =  (1.24) 

Let us examine the temperature at x e=  and we note ( ) ( ),mT t T x e t= = . Using the Laplace transform 

{ }L  to solve previous problem it is obtained: 
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Replacing this expression in relation (1.25) it is found: 
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That can be also written as: 
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a function: 
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Given to the initial condition (1.24) it thus appear that relation (1.28) is equivalent to: 
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∑ =ϕ t( )  (1.30) 

It is therefore demonstrated that the heat transfer model expressing the temperature at x e=  according to 
the heat flux ( )tϕ  imposed at 0x =  can be put on the form of the relation (1.20). In fact the series in 
(1.30) can be significantly truncated and we will thus obtain a low order model. 
Using the discrete form of the derivatives an equivalent form of relation (1.20) that lead to express the 
temperature at time k tΔ  from the heat flux and the temperature at previous times as: 

  (1.31) 

Let us note that replacing the temperature at previous times with the measurement in relation (1.31)leads 
to the predictive model as: 

  (1.32) 

Relation (1.31) is called the output error model whereas relation (1.32) is called the predictive model. 
Identification of parameters  will significantly differ according to the choice of the model as 
represented in Figure 6. 

  
Figure 6: parameter identification according to the model representation (output error or 

predictive). 
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According to relation (1.31), it is obtained: 

  (1.35) 
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Where: 
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Solving relation (1.38) in the least square sense lead to: 

 ( ) 1T T−
ΔΘ= S S S E  (1.40) 

It is thus possible to obtain the optimal value of Θ  using an iterative scheme as: 

 1 1ν ν ν− −Θ =Θ + ΔΘ  (1.41) 

1.3.6 Predictive model 

Relation (1.32) can be put on the form: 

 ( ) ( ) ( )my k k e k= Θ +H  (1.42) 

Where 
   
ΘT = a1 ! an b0 ! bn

"
#$

%
&'  and H is the regression vector defined as: 
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H k( ) = −ym k −1( ) ! −ym k − n( ) ϕ k( ) ! ϕ k − n( )#

$%
&
'(

 (1.43) 

Let us imagine that measurements are collected from  up to . Therefore, relation (1.42) leads to: 

 N N N= Ψ Θ +Y E  (1.44) 

Where: 

   
YN
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"#

$
%&

, 
   
Ψ N
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$
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It is obtained an estimation of Θ  in the linear least square sense as: 

 µ ( ) 1T T
N N N N

−
Θ = Ψ Ψ Ψ Y  (1.45) 

Despite of the rapidity of the method, it must be noted that the estimation is biased. Indeed, let us replace 
the expression of the identified parameters, relation (1.45), in the model, relation (1.42). It is found: 

 
    
Θ! =Θ+ Ψ N Ψ N

T( )
−1
Ψ N

T EN  (1.46) 

It is demonstrated in the literature that: 

 
    
E Θ!{ } =Θ+ E H k( )H k( )T{ }"

#
$

%
&
'
−1

E H k( )T
e k( ){ }  (1.47) 

It thus appears that if ( )e k  is correlated with ( )kH  or if ( ){ }E e k  in not zero, the estimation is biased 

and 
  
E Θ!{ } ≠Θ . 

In order to accelerate the identification of Θ , it can be used a recursive scheme. The vector of parameters 
at instant t is estimated from parameters estimated previously at instant  according to: 
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where the initial values are: 
    
Θ! 0( ) = 0D  and , with  and  are zeros vector and ones 

matrix respectively with dimension . 
Remark: unbiased approaches are proposed in the literature that consist in whitened the sequence ( )e k  in 
relation (1.42). This is the instrumental variables method, and methods based on the change of the model 
structure (auto regressive with exogene input model, auto regressive with adjusted mean and exogene 
input model for example). 

n tΔ N tΔ
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( ) 60 10 D=P I D0 DI
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1.4 Application 

Let us consider the heat transfer problem presented above and let us generate a heat flux sequence on the 
form of the pseudo random binary sequence represented in Figure 7. The choice of such a sequence for the 
excitation is that it is quite easy to make in practice and it is also very close to a white noise in terms of the 
power spectral density as represented in Figure 8. 

 
Figure 7: image on the left – heat flux generated on the form of a PRBS; image on the right – 

measured temperature of the sensor and comparison with the simulation of the identified system. 

 
Figure 8: power spectral density of the heat flux generated as a PRBS. 

 
Using the correlation method described previously, it is obtained the impulse response represented in 
Figure 9. As viewed on this figure, the impulse response reconstructed using the correlation technique is 
very sensitive to noise measurement. 
In a second stage, we used the parametric approach in order to find the model on the form of the relation 
(1.32) that fits the experimental measurements (Figure 7) at the best. The choice of [ ],na nb=Λ  (na is the 
number of parameters ia  and nb is the number of parameters ib ) is made by collecting in a matrix all the 
values of Λ  to be investigated and looking on the value of the Aikake [1] criterion defined by 

 1
1
n N V
n N

+
Ψ =

−
, 1n na nb= + +  (1.49) 

where n is the total number of estimated parameters and V is the loss function defined by 
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1

N

k
k

V e
=

=∑  (1.50) 

Standard errors of the estimates are calculated from the covariance matrix of  Θ
! . If the assumptions of 

additive, zeros mean, constant variance 2σ  and uncorrelated errors are verified, the covariance matrix is 
expressed as 

 
    
cov Θ!( ) = HT H( )

−1
σ 2  (1.51) 

An estimate of the variance 2σ , denoted 2s , is: 

 2 1 Ts
N n

=
−
E E  (1.52) 

It is found the optimal set of parameters ( ),i ia b  as: 

Parameter value Standard 
deviation 

Parameter value Standard 
deviation 

0a  1 0 5a  0.0166 0.0054 

1a  0.2823 0.01364 0b  0.0007006 5.348e-006 

2a  0.2539 0.01368 1b  0.0006788 1.19e-005 

3a  0.2715 0.01375 2b  0.0004693 1.404e-005 

4a  0.2047 0.01427 3b  0.0002561 1.365e-005 
 
The loss function is V=0.000123859. 

 

Figure 9: real impulse response and impulse response found using the correlation method and the 
parametric method. 

Simulating the response with the heat flux sequence it is obtained a very good agreement with measured 
data as represented in Figure 7. Therefore it is simulated the impulse response from the identified system 
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and it is reported the results in Figure 9. It is found a very nice agreement with that calculated from the 
FEM. The main difference occurs at the short time. 

1.5 Let’s go a little further 

Let us consider again the configuration of heat transfer in a wall studied before but let us focus now on the 
temperature ( )mT t  at 0x =  where the heat flux is applied. Using the Laplace transform to solve the heat 
diffusion equation with associated boundary and initial conditions (relations (1.21) to (1.24)), it is 
obtained [10]: 

 ( ){ } ( ) ( )
( )

( ){ } ( )
( )

( )
cosh cosh
sinh sinhm m

e e
L T t s L t s

k e k e
β β

θ ϕ
β β β β

= = = Φ  (1.53) 

Where: s aβ = . The hyperbolic functions can be expressed as the following series: 

 
  
cosh z( ) = z2n

2n( )!n=0

∞

∑ and sinh z( ) = z2n+1

2n+1( )!n=0

∞

∑ , ∀z  (1.54) 

Replacing these expressions in relation (1.53) it is found: 
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β e( )2n

2n( )!n=0
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β e( )2n+1
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e2nsn
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∑

k e2n+1sn+1
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∞

∑
Φ s( )  (1.55) 

That can be also written as: 

 
  

αn sn+1

n=0

∞

∑ θm s( ) = βn sn

n=0

∞

∑ Φ s( )  (1.56) 

With: 
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2 1

1 2 1 !

n

n n
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a n
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+
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+
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n

n n
e

a n
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Given to the initial condition (1.24) and using the property (1.29) it thus appear that relation (1.99) is 
equivalent to: 

 
  
αn

dn+1Tm t( )
dtn=0

∞

∑ = βn

dnϕ t( )
dtn=0

∞

∑  (1.57) 

It is therefore demonstrated that the heat transfer model expressing the temperature at 0x =  according to 
the heat flux ( )tϕ  imposed at 0x =  can be put on the form of the relation (1.20). However, if one tries to 
fit experimental data by simulating the model in relation (1.101) it appears that it is necessary to keep a 
very important number of terms in the series in order to reproduce accurately the transient response at the 
short times. In that case relation (1.101) cannot be viewed as a lower order model and moreover, the 
identification of parameters { },n nα β  becomes inaccurate when n becomes large. It means that the model 
structure on the form of the relation (1.20) is not optimal for all the possible configurations. 
Let’s try first to understand such an observation and let’s try to find a better low order model structure 
that would approach the searched optimality. 
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The raison why model (1.20) is not available for describing the behaviour at the short times is given in the 
expression of the asymptotic behaviour at the short times. Indeed, relation (1.53) shows that: 

 ( )
( )

cosh 1lim
sinh

s

e s a

k a sk e s a e s a→∞ =  (1.58) 

On the other hand taking the same limit for relation (1.55) give: 

 

  

lims→∞

βn sn

n=0

∞

∑

αn sn+1

n=0

∞

∑
=
βn sn

αn sn+1 =
2n+1
ek a

1
s

 (1.59) 

It is thus obvious that relation (1.53) and equivalent relation (1.55) do not have the same asymptotic 
behaviour at the short times. In other words the exact asymptotic behaviour, described by relation (1.58), 
is that of the semi infinite medium ( 1 s∝ ) whereas that of the equivalent model describes a capacitance 
effect ( 1 s∝ ). It means that the contribution of an infinite number of derivatives is theoretically required 
to approach the semi infinite behaviour of the system. 
It is then possible to find a better low order model that will respect the asymptotic behaviour at the short 
times? The answer is fortunately yes thanks to the works of Liouville in the 19th century [11][12]. He 
demonstrated that the property: 

 
  
L

dν f t( )
dtν

"

#
$
$

%

&
'
'= sν F s( )− sn−k−1 dν f 0( )

dtνk=0

n−1

∑  (1.60) 

Remains exact even if ν  is real and more generally complex. ( ){ } ( )D d df t f t tν ν ν=  is called the 
derivative of real order ν  (often called the non integer derivative in order to discriminate from the 
classical derivative) and is defined as [13][14][15]: 

 ( ){ } ( ){ }{ } ( ) ( )D D I N, Re 0, 1 Ren nf t f t n n nν ν ν ν−= ∈ > − ≤ < (1.61) 

where the integral or real order ν is defined in the Liouville sense as: 

 
  
Iν f t( ){ } = 1

Γ ν( )
t −u( )ν−1

f u( )du
0

t

∫ ,   0Re >ν  (1.62) 

With: 

 
  
Γ ν( ) = uν−1 exp −u( )du

0

∞

∫  (1.63) 

Regarding to relation (1.58), it is now clear that: 

 ( ) ( ){ }1 1 21 1 1 IL s t
k a s k a

ϕ− ⎧ ⎫
Φ =⎨ ⎬

⎩ ⎭
 (1.64) 

Finally, we can assert that, instead of relation (1.20), an optimal structure of a low order model for heat 
transfer problem by diffusion must be of the following form: 
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αn Dn 2 Tm t( ){ }

n=0

∞

∑ = βn Dn 2 ϕ t( ){ }
n=0

∞

∑  (1.65) 

Let us demonstrate it on the 1D heat diffusion problem in a wall when ( )mT t  is the temperature at 0x = . 
We saw that we could not find an equivalence of the exact solution (1.53) on the form of relation (1.110). 
In fact it comes from the manner we have replaced the hyperbolic functions with their series. Let us use 
the expression of the hyperbolic functions from the exponential: 

 ( )
( )21

cosh
2 2

z zz z e ee ez
−− ++

= =  (1.66) 

And: 

 ( )
( )21

sinh
2 2

z zz z e ee ez
−− − +−

= =  (1.67) 

Replacing these expressions in relation (1.53) give: 

 ( )
( )

( )
2

2 1

e

m e

es s
k e

β

β
θ

β
= Φ

−
 (1.68) 

The series of the exponential is: 

 
  
ez =

zn

n!n=0

∞

∑ , ∀z  (1.69) 

Replacing this decomposition in relation (1.68) lead to: 
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With: 
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α β
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= =  (1.71) 

It is now well finding a consistent equivalent expression of the exact solution whose asymptotic behaviour 
at the short times ( z→∞ ) is exactly the relation (1.58). Going back to time, relation (1.70) becomes 
[16][17]: 

 
  
α 'n D n+1( ) 2 Tm t( ){ }

n=0

∞

∑ = β 'n Dn 2 ϕ t( ){ }
n=0

∞

∑  (1.72) 

Let us insist on the fact that relations (1.101) and (1.72) are both exact. The difference lies in the fact that 
an infinite number of terms are required in relation (1.101) to describe the response at the short times, 
when the system behaves as a semi infinite medium, whereas only one is necessary using relation (1.72). 
The Matlab code for the implementation of the technique is given in Appendix 1. It is used the recursive 
approach presented previously for the classical (with integer derivatives) parametric technique. 
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1.6 Application to heat fluxmeter system identification 

1.6.1 Real life context 

In high enthalpy plasma flows for aerospace applications but also in high power pulsed laser physics as 
well as in laser surface hardening monitoring, very high heat fluxes on the order of several MW/m2 have 
to be measured (see Figure 10). Only transient measurement techniques have been developed so far. 
Recently, fast transient heat flux measurements have been conducted using a novel calibration approach. 
In principle, these sensors can stay a very short time, of the order of milliseconds, in the harsh 
environment in order not to reach melting temperature. The transient response of the sensor recorded 
during this short time is used to estimate the heat flux. 

 

Figure 10: heat flux measurement in a plasma flow using a fluxmeter. 

One basic principle of such a heat flux sensor is to measure the temperature, usually with a thermocouple 
embedded inside an appropriate material which is part of the sensor, and to estimate the heat flux from 
inverse heat conduction calculation. Consequently, highest reliability in terms of measurement accuracy 
and local resolution within the sensor is reached when the distance between the temperature measurement 
and the heated surface is small (see Figure 11). Solving the inverse heat conduction problem requires a 
model, so-called direct model (DM) of the heat transfer from the heated surface of the sensor to the 
location of the thermocouple inside the sensor. Model presented in the literature generally assume that the 
sensor behaves like a semi-infinite wall. 
 

 

Figure 11: fluxmeter description 

Considering a particular sensor and linear heat transfer, i.e. constant material properties for the 
measurement time, the Duhamel’s theorem makes sure that the DM can be viewed as the impulse 
response. This is the transient temperature of the thermocouple due to a heat flux on the form of a Dirac 
function. Assuming the sensor behaves as a semi infinite wall, the impulse response is analytically 
expressed according to the thermal properties of the medium as well as the location of the thermocouple 
inside the sensor. However, in real configuration, the heat flux sensors involve several types of materials 

Plasma torche 100MW/m²
Fluxmètre conique

Pen  fluxmeter
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arranged in a more or less complicated way. The knowledge of their thermophysical properties as well as 
the thermal contact resistances at the interfaces have to be known if one wants to use the finite element 
method to solve a detailed DM. Furthermore, it appears that the thermocouple rise time can be greater than 
the sampling time interval during the acquisition process. This means that the thermocouple junction is not 
at a uniform temperature for each acquisition time. In other words, there exists a temperature gradient in 
the junction and one must also consider heat diffusion inside the junction. Obviously, it is not allowed 
applying the electrothermal conversion between the voltage drop and the temperature of the thermocouple 
since it rests on the assumption of a uniform temperature of the junction. 
In order to overcome these problems, the basic idea rests on the system identification of the heat flux 
sensor. It consists in calibrating the sensor by applying a measurable transient heat flux in the time domain 
of interest using a modulated laser source. Given that the identified system has to be accurate for all the 
swept frequencies, it is searched a heat flux waveform whose Power Spectral Density is comparable to 
that of a white noise. This calibration thus involves the realization of a specific experimental setup in 
laboratory which allows applying the heat flux on the form of a random or Pseudo Random Binary Signal 
(PRBS) and measuring it precisely as well as the voltage drop at the thermocouple. This approach does 
not require knowing the thermophysical properties of materials as well as the exact location of the 
thermocouple. Also the knowledge of the thermocouple inertia is circumvented since it is taken into 
account within the calibration. From a theoretical point of view, the identified system is the direct model 
when solving the inverse heat conduction problem. It means that the identified system and the voltage 
drop measurement at the sensor during the use of the sensor for a given application is sufficient to 
estimate the heat flux. This approach does not depend on a particular sensor geometry which then allows 
manufacturing also particular sensor geometries for particular applications. Major drawback of this 
approach is that the calibration must be realized in the same conditions than those encountered on the 
process during the use of the heat flux sensor otherwise a linear behavior has to be assumed. In other 
words, one must reproduces in the laboratory the same boundary conditions in terms of transient and 
magnitude of heat flux. 

1.6.2 System identification hardware 

The sensor consists of a cylindrical copper tube, where a thermocouple is integrated. The tip is of 
spherical form. The thermocouple is of type K with a junction diameter of 0.08 mm. As specified by the 
manufacturer, the rise time for the thermocouple is about 120 msec. However, nowadays the heat flux 
sensor has to be used on comparable time duration, but with 0.1 msec sampling interval. 
The Figure 12 shows the schematic view of the “scale 1” experimental setup for these calibration 
measurements. Since the null-point calorimeter is used to measure very high heat flux densities up to 100 
MW/m², the laser pulse energy has to be high in order to achieve a sufficiently resolvable signal of the 
thermocouple. The laser in use is a laser diode that can provide 2000 W at 980 nm wavelength. It is 
known in system identification, that the best results are achieved when laser pulses of variable length are 
generated in order to better distinguish each of the characteristic times of the system: the diffusion in the 
tip, the response of the thermocouple and the influence of the interfaces. The laser is driven using a 
function generator that can generate a Pseudo Random Binary Signal (PRBS) for example. On the Figure 
13, the Power Spectral Density (PSD) of such a signal is compared to that of a Dirac function and that of 
the Heaviside function. It is obviously found that the best representation of the frequencies is given with a 
perfect Dirac function which is very difficult to implement experimentally, particularly in terms of 
reproducibility. Concerning the two others, the best one is the PRBS because its PSD is superior to the 
Heaviside function PSD in the studied frequency range. 
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Figure 12: system identification hardware at scale 1 

 

Figure 13: Power Spectral Density of a Dirac function, a Heaviside function and a PRBS. 

A very small part (less than 2%) of the heat flux from the laser is recorded using a fast photodiode,. All 
data are recorded using a fast oscilloscope. Moreover, the thermocouple data is amplified with a constant 
gain of 250. The incident heat flux density for the laser is deduced from the calibration curve of the 
manufacturer based on blackbody absorption. The sensor is made off copper which has been oxidized in a 
furnace at 400°C during four hours in order to achieve high surface catalycity and to reach high 
absorptivity. Its emissivity has then been measured to 0.7 at the laser wavelength. 
The noise measurement at the thermocouple is recorded without heating the sensor by the laser and results 
(sampling time is 100 µsec) and the noise histogram taht shows that the noise has a Gaussian distribution 
are presented in Figure 14. On the other hand, the computation of the noise auto-correlation function is 
represented in Figure 15. This function is close to 0 from the second point and is thus equivalent to a Dirac 
function. In conclusion, all the assumptions concerning noise measurement have been checked and the 
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application of the least square algorithm in order to estimate the parameters of the non integer system is 
fully consistent. 

 

Figure 14: Noise measurement and noise distribution function. 

 

Figure 15: Autocorrelation function applied to the noise measurement. 

 
The uncertainty on the emissivity measurement is about 6%. Concerning the laser heat flux measured with 
a fan cooled broadband sensor, the constructor gives a calibration certificate and a relative precision of 
about 1%. Finally, the radius of the beam laser is measured manually and the uncertainty is estimated to 
be 5%. In conclusion, the uncertainties of the measured heat flux density absorbed by the sensor is 
approximately 17% which is high compared to the uncertainties involved by the parameter estimation 
method. 
For this tutorial it has been realized an experimental setup at scale 1/400. Indeed, the laser diode is 5W 
maximum power. It is driven through National Instrument card under Labview software. The other parts 
of the experiment remain identical to those of the experiment scale 1. 
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1.6.3 Heat transfer model in the fluxmeter 

Thermal properties of the fin are λ for the thermal conductivity, α for the thermal diffusivity, ρ for the 
density and Cp for the specific heat. Heat losses between the fin and the surrounding fluid are 
characterized by the heat exchange coefficient h. The section of the thin is denoted S and the 
circumference is denoted s. If the temperature depends only on the longitudinal direction, (Bi = h d/λ << 
0.1) carrying out a heat flux balance on a slice of the fin of width xΔ , we get: 

 d
de s p p
TC S x
t

φ φ φ ρ− − = Δ  (1.73) 

 
with: 

 ( )d ,
de

T x t
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x
φ λ= −  (1.74) 

 ( )d ,
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T x x t
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+ Δ
= −  (1.75) 

 ( )( ),p h s x T x t Tφ ∞= Δ −  (1.76) 
Substituting these relations into (1.73) we obtain: 
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Δ

 (1.77) 

that is, 

 ( )
( )( ) ( )2

2

d , d ,
,

dd p

T x t T x t
S x h s x T x t T C S x

tx
λ ρ∞Δ − Δ − = Δ  (1.78) 

Putting ( ) ( )'T x T x T∞= − , the above expression becomes: 

 ( )
( )

( )2

2

d ' , d ' ,
' ,

dd p

T x t T x t
S h sT x t C S

tx
λ ρ− =  (1.79) 

Applying the Laplace transform to 'T , we obtain: 

 
 (1.80) 

with 

 2 pC S p h s p h sk
S S

ρ

λ α λ

+
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The solution is: 
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 ( ) ( ) ( ), exp expx p A k x B k xθ = + − (1.82) 

When x→∞  we find A=0. Then: 

 ( )( )0 0,L T t T Bθ ∞= − = (1.83) 
and thus: 

 ( ) ( )0, expx p k xθ θ= −  (1.84) 

The heat dissipated by the semi-infinite fin is: 

 ( ) ( )
0

0

d ,
d

x

x p
p S

x
θ

ψ λ
=

= −  (1.85) 

that is, 

 ( ) ( )0,
p

x p
S k

ψ
θ

λ
=  (1.86) 

Relation (1.86) shows that thermal impedance of the fin is: 

 ( )exp
a

k x
Z

S kλ

−
= , p h sk

Sα λ
= +  (1.87) 

 

Figure 16: thermal impedance of the fin. 

1.6.4 Correlation and spectral techniques 

During the tutorial we will generate 2 kinds of heat flux sequence. 

(1) linear swept-frequency cosine signal 

We will consider first a heat flux on the form of a linear swept-frequency cosine signal: 

 ( ) ( )( )0 sin 2t f t tϕ π=  (1.88) 

The frequency varies linearly with time as: 

 ( ) 1 0
0

1

f ff t f t
t
−

= + , 10 t t≤ ≤  (1.89) 

0f  is the instantaneous frequency at time 0, and 1f  is the instantaneous frequency at time 1t  (see Figure 
17). 

θ
0

ψ
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Figure 17: example of linear swept-frequency cosine signal with 0 0.1Hzf =  and 1 10Hzf = . 

It will be used the Welch technique. The swept-frequency cosine heat flux waveform has two major 
interesting features. The first is that the offset must be easily removed from the experimental heat flux in 
order to fully satisfy the relation (1.89). The second feature is that the explored frequential domain, 
defined from the sensitivity analysis, is perfectly swept. Furthermore, the use of auto and cross power 
spectral density functions allows defining the so called coherence function as: 

 ( )
( )

( ) ( )
0

0

0 0

2

y
y

y y

S f
C f

S f S f
ϕ

ϕ
ϕϕ

=  (1.90) 

 
This function can be viewed as the correlation coefficient between the temperature and the heat flux and 
lies between 0 and 1. If it is 1 at a certain frequency, then there is perfect correlation between the two 
signals at this frequency. In other words, there is consequently no noise interfering at this frequency, what 
lead to: 

 ( ) ( ) ( )( )0 0 0
1e y y yS f S f C fϕ ϕ= −  (1.91) 

(2) PRBS signal 

In a second stage we will consider the heat flux sequence as a Pseudo Random Binary Signal (PRBS). 
“White noise” is the term given to completely random unpredictable noise, such as the hiss you hear on an 
untuned radio. It has the property of having components at every frequency. A pseudo-random binary 
sequence (PRBS) can also have this property, but is entirely predictable. A PRBS is rather like a long 
recurring decimal number- it looks random if you examine a short piece of the sequence, but it actually 
repeats itself every m bits. Of course, the larger m is, the more random it looks. You can generate a PRBS 
with a shift register and an XOR gate. Connecting the outputs of two stages of the shift register to the 
XOR gate, and then feeding the result back into the input of the shift register will generate a PRBS of 
some sort. Some combinations of outputs produce longer PRBSs than others- the longest ones are called 
m-sequences (where m means “maximum length”). A binary sequence (BS) is a sequence of N bits, aj for j 
= 0,1,...,N − 1, 
i.e. m ones and N − m zeros. A BS is pseudo-random (PRBS) if its autocorrelation function: 

 ( )
1

0

N

j j v
j

C v a a
−

+
=

=∑  (1.92) 
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 ( ) ( ), if 0 mod
,otherwise

m v N
C v

m c
≡⎧

= ⎨
×⎩

 (1.93) 

where 

 1
1

mc
N
−

=
−

 (1.94) 

is called the duty cycle of the PRBS. 

 

Figure 18: example of a PRBS sequence (X axis is the number of samples). 

A PRBS is random in a sense that the value of an aj element is independent of the values of any of the 
other elements, similar to real random sequences. 
It is 'pseudo' because it is deterministic and after N elements it starts to repeat itself, unlike real random 
sequences, such as sequences generated by radioactive decay or by white noise. The PRBS is more 
general than the n-sequence, which is a special pseudo-random binary sequence of n bits generated as the 
output of a linear shift register. An n-sequence always has a 1/2 duty cycle and its number of elements N = 
2k − 1. 

1.6.5 Parametric identification - AR models, theoretical background 

As expressed by relation (1.87) heat transfer in a fin is modelled as: 

 ( ) ( ) ( )
exp

,
k x

x p p
S k

θ ψ
λ

−
= , with p h sk

Sα λ
= +  (1.95) 

We can write that: 

 1p h s h s Sk p
S S h s

λ
α λ λ α

= + = +  (1.96) 

Using the series it is found: 

 ( )
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2 1 ! 11
2 ! 2
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∞

=
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∑  (1.97) 

On the other hand one has: 
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0

,
!

n
z

n

ze z
n

∞

=

= ∀∑  (1.98) 

Replacing k in the exponential function and this former with its series, it is found that on obtain an 
equivalent expression of relation (1.95) on the following form: 

 ( ) ( )1

0 0

n n
n m n

n n
s s s sα θ β

∞ ∞
+

= =

= Φ∑ ∑  (1.99) 

Where nα  and nβ  have complex but analytical expressions. 
Given to the initial condition (temperature is zero at each point of the domain) and using the property: 

 ( ) ( ) ( )1
1

0

d d 0
d d

n nn
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n n
k

f t f
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t t

−
− −

=
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∑  (1.100) 

it thus appear that relation (1.99) is equivalent to: 

 ( ) ( )1

0 0

d , d
d d

n n

n n
n n

T M t t
t t

ϕ
α β

+∞ ∞

= =

=∑ ∑  (1.101) 

Using the discrete form of the derivatives an equivalent form of relation (1.101) that lead to express the 
temperature at time k tΔ  from the heat flux and the temperature at previous times as: 

    Tk = b0ϕ k−nk +b1ϕ k−nk−1+!+bnbϕ k−nk−nb − a1 Tk−1 −!− anaTk−na ,
   
k = 1,!, N( )  (1.102) 

The method will be applied during the tutorial starting from the response to a PRBS sequence for the heat 
flux. 

1.6.6 NI models, theoretical background 

At very short times, heat losses are negligible face to the heat diffusion in the fin. Therefore: 

 
  

p
α
≫

hs
λ S

and k ≈ p
α

 (1.103) 

Since: 

 
  
θ x, p( ) =

−k x( )n

n!n=0

∞

∑
λ S k

ψ p( ) , with p h sk
Sα λ

= +  (1.104) 

Replacing k in this relation leads to: 

 
  

θ x, p( ) =
−xn

α n/2 n!
pn/2

n=0

∞

∑

λ ρCp S p1/2
ψ p( )  (1.105) 

That can be also written as: 

 
  
λ ρCp S p1/2θ x, p( ) = −xn

α n/2 n!
pn/2

n=0

∞

∑ ψ p( )  (1.106) 

Since we have shown in L8 course that relation: 
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remains true even if ν is a real number or more generally complex, we can express relation (1.106) in the 
time domain as: 

 ( ){ } ( ){ }2 2
0

0

D Dn n
m n

n
T t tα β ϕ

∞

=

=∑  (1.108) 

With: 

 0 /2and
!

n

p n n

xC S
n

α λ ρ β
α
−

= =  (1.109) 

It appears thus than model (1.101) will not be accurate enough to describe the transient behaviour at the 
short times. As said in lesson 8, an optimal structure of a low order model for heat transfer problem by 
diffusion must be of the following form: 

 ( ){ } ( ){ }2 2

0 0

D Dn n
n m n

n n
T t tα β ϕ

∞ ∞

= =

=∑ ∑  (1.110) 

1.7 Conclusion 

System identification is a powerful tool that allows the user to obtain a direct model to solve an inverse 
problem. In fact, this approach will consist in applying a known thermal excitation and to measure the 
temperature at the sensors in order to find a relationship between these two quantities. Obviously, this 
approach find an interest if the system is not well characterized in terms of its thermal properties (thermal 
conductivity, specific heat, density, heat exchange coefficient at the boundaries, thermal resistance at the 
interfaces). Moreover, this technique does not require knowing the exact locations of the sensors in the 
system as well as their dynamical behaviour. It means that it is not required making a calibration of the 
sensors since they are used both for the system identification and the inversion. The constraints 
encountered with such an approach are that the system must be identified in the same configuration in 
which it will be during the inversion. It means first that the time range for the system identification will 
define the time domain of use for the direct model. On the other hand, all of the boundary conditions 
experienced during the system identification must remain identical during the inversion. 
Finally, it must be emphasized than the computational times for the inversion will be decreased very 
significantly even if the thermal system is complex. It is a very interesting feature of this approach since 
the simulation of the identified system is faster than that based on a discretization of the heat equation.  
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1.9 Appendix 1: Matlab codes 

We denote z=[y u], the experimental data, where u is the input (heat flux) and y is the output (the 
temperature of the sensor) 

1.9.1 Correlation method 

function ir=correlation(z,M) 
% ir: the estimated impulse response 
% M: The number of lags for which the functions are computed 
 
Rft = covar(z,M+1); 
r(:,1) = (-M:1:M)'; 
r(M+1:2*M+1,2:3) = Rft([1 4],:)'; 
r(1:M,2:3) = Rft([1 4],M+1:-1:2)'; 
scir = Rft(4,1); sccf = sqrt(Rft(1,1)*Rft(4,1)); 
r(M+1:2*M+1,4) = Rft(2,:)'/sccf; 
r(1:M,4) = Rft(3,M+1:-1:2)'/sccf; 
ir = r(M+1:2*M+1,4)*sccf/scir; 
 
function R=covar(z,M) 
% Computes the covariance for z 
%   M: The maximum delay - 1, for which the covariance function is estimated. 
 
[Nft,nz]=size(z); 
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nfft = 2.^ceil(log(2*Nft)/log(2)); 
Yft=fft(([z(:,1)' zeros(1,Nft)]),nfft); 
Uft=fft(([z(:,2)'  zeros(1,Nft)]),nfft); 
YUft=Yft.*conj(Uft); 
UAft=abs(Uft).^2; 
YAft=abs(Yft).^2; 
RYft=fft(YAft,nfft); 
n=length(RYft); 
sumnft = sumnft+Nft; 
R=real(RYft(1:M))/n; 
 

1.9.2 Spectral method 

function H = TF(z,N,M) 
 
% The transfer function H is estimated at N equally spaced frequencies between 
0 (excluded) and pi. 
% A smoothing operation is performed on the raw spectral estimates using a 
Hamming Window, giving a frequency resolution of about pi/M. 
 
 
[Ncap,nz] = size(z); 
M = M/2; % this is to make better agreement with SPA. 
M1 = fix(l/M);sc=l/(2*N); 
u = z(:,2); 
y = z(:,1); 
nfft = 2*ceil(Ncap/N)*N; 
Yft = fft(y,nfft,1); 
Uft = fft(u,nfft,1); 
Yft = [Yft(l-M1+2:l,:);Yft]; 
Uft = [Uft(l-M1+2:l,:);Uft]; 
Yft = Yft.*conj(Uft); 
Uft = abs(Uft).^2; 
ha = .54 - .46*cos(2*pi*(0:M1)'/M1); 
ha = ha/(norm(ha)^2); 
Yft = filter(ha,1,Y); 
Uft = filter(ha,1,U); 
Yd = Yd+Yft(M1+fix(M1/2)+sc:sc:M1+fix(M1/2)+l/2,:,:); 
Ud = Ud+Uft(M1+fix(M1/2)+sc:sc:l/2+M1+fix(M1/2),:); 
H = Yd./Ud; 
 

(1) Parametric estimation 

function [n_ord,num,d_ord,den,rsdi,ecn,ecd] = 
ni_sid_ident_rec(u,y,time,num_def,den_def,adm,adg,teta0) 
% 
% Fonction ni_sid_ident_rec 
% 
% Identification of non integer model using recusive least square algorithm  
% 
% Input Argument 
% 
%   u,y: system input and output 
%   time: time vector 
%   num_def: numerator (first line orders and second line 0 for unknown 
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%   parameters else give the value) 
%   den_def: denominator (first line orders and second line 0 for unknown 
%   parameters else give the value) 
%   adm: Adaptation mechanism. adg: Adaptation gain 
%       adm='ff', adg=lam:  Forgetting factor algorithm, with forg factor lam 
%       adm='kf', adg=R1: The Kalman filter algorithm with R1 as covariance 
%           matrix of the parameter changes per time step 
%       adm='ng', adg=gam: A normalized gradient algorithm, with gain gam 
%       adm='ug', adg=gam: An Unnormalized gradient algorithm with gain gam 
%   teta0: initial value of the parameters 
% 
% Output Argument 
% 
%   num,den: denominator and numerator coefficent 
%   n_ord, d_ord: order of the numerator and denominator 
%   rsdi: residuals 
%   ecn, ecn: standard deviation for the estimated parameters 
% 
% Jean-Luc Battaglia 
% 
adm=lower(adm(1:2)); 
if ~(adm=='ff'|adm=='kf'|adm=='ng'|adm=='ug') 
 error('The argument ADM should be one of ''ff'', ''kf'', ''ng'', or ''ug''.') 
end 
if adm(2)=='g', grad=1;else grad=0;end 
% 
n_ord=num_def(1,:); d_ord=den_def(1,:);                             % 
derivation order 
d_ord_ukn=find(den_def(2,:)==0); n_ord_ukn=find(num_def(2,:)==0);   % orders 
associated to unnkown parameters 
d=length(d_ord_ukn)+length(n_ord_ukn);                              % number 
of unknown parameters 
d_ord_knw=find(den_def(2,:)~=0); n_ord_knw=find(num_def(2,:)~=0);   % orders 
associated to unnkown parameters 
% 
p=10000*eye(d); 
if nargin < 8, teta=eps*ones(d,1); else teta=teta0; end 
if adm(1)=='f', R1=zeros(d,d);lam=adg;end; 
if adm(1)=='k', [sR1,SR1]=size(adg); 
    if sR1~=d | SR1~=d 
        error(['The R1 matrix should be a square matrix with dimension ',... 
              'equal to number of parameters.']) 
    end; 
    R1=adg;lam=1; 
end; 
% 
Yf=dn(time(2)-time(1),y,d_ord); Uf=dn(time(2)-time(1),u,n_ord); % matrice de 
régression complète (pour tous les ordres) 
% 
phi=[-Yf(:,d_ord_ukn) Uf(:,n_ord_ukn)]; % regression vector 
% 
yn=[Yf(:,d_ord_knw) -Uf(:,n_ord_knw)]*[den_def(2,d_ord_knw) 
num_def(2,n_ord_knw)]'; 
% 
rsdi=0; 
for kcou = 1:length(u)-1, 
    yh=phi(kcou,:)*teta;        % ym(t+1) 
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    if ~grad,K=p*phi(kcou,:)'/(lam + phi(kcou,:)*p*phi(kcou,:)');% k(t+1) 
        p=(p-K*phi(kcou,:)*p)/lam+R1;   % p(t+1) 
    else K=adg*phi(kcou,:);end; 
    if adm(1)=='n', K=K/(eps+phi(kcou,:)*phi(kcou,:)');end; 
    epsi=yn(kcou)-yh;        % y(t+1)-ym(T+1) 
    rsdi=rsdi+epsi^2; 
    teta=teta+K*epsi;      % pmc(t+1)=pmc(t)+k(t+1)*(y(t+1)-ym(T+1)) 
end; 
rsdi=sqrt(rsdi/kcou); 
ec_teta=(rsdi/2).*sqrt(diag(p)); 
% 
% Transfert function parameter computation from teta vector 
den(d_ord_knw)=den_def(2,d_ord_knw); den(d_ord_ukn)=teta(1:length(d_ord_ukn)); 
ecd(d_ord_knw)=0;ecd(d_ord_ukn)=ec_teta(1:length(d_ord_ukn)); 
num(n_ord_knw)=num_def(2,n_ord_knw); 
num(n_ord_ukn)=teta(length(d_ord_ukn)+1:end); 
ecn(n_ord_knw)=0;ecn(n_ord_ukn)=ec_teta(length(d_ord_ukn)+1:end); 
 
function [dy,Erreur]=dn(time,x,n) 
  
% [dy,Erreur]=dn(time,x,n) 
% 
% This function computes the derivate of order n, with n complex vector, 
% of the data x ; time is the sampling period or the time vector 
% 
% Argument in : 
%   time : vector time of the vector x (scalar vector) or sample (scalar) 
%   x : data (complex matrix) 
%   n : order of the derivate (complex vector) 
% 
% Argument out : 
%   dy : data (complex matrix) 
% 
% 
S_time=size(time); 
S_x=size(x); 
S_n=size(n); 
  
%sampling time interval 
h=[time(2);time(2:end)]-[time(1);time(1:end-1)]; 
Ak=binome(n,S_x(1)); 
A=Ak; 
 
%derivative computation 
dy=zeros(S_x(1),S_x(2)); 
y=zeros(S_x(1),1); 
  
for col=1:S_x(2) 
    y=conv(x(:,col),A(:,col)); 
    dy(:,col)=y(1:S_x(1))./h.^n(1,col); 
end; 
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1.10 Appendix 2: the non integer calculus 

Let us consider ( )tf  an integrable function integrable, definite and bounded, on ( )∞,a  upon which we 
make n successive integrations. One obtains: 

 ( ) ( )
( )

( ) ( )
11

1
1 2

1I d d d d
1 !

nuut t
nn

a t n n
a a a a

f t u u f u u t u f u u
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−
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= = −
−∫ ∫ ∫ ∫L  (1) 

Since ( ) ( )nn Γ=− !1 , it is easier to generalize the previous relation to any number n real, and more 
generally complex, and then to define the integral of real order ν  ( 0Re >ν ), or more simply the non 
integer integral as: 

 
  
a It

ν f t( ) = 1
Γ ν( )

t −u( )ν−1
f u( )du

a

t

∫ ,   0Re >ν  (2) 

With ( )νΓ  the Eulerian function of second specie defined by: 

 ( ) ( )∫
∞

− −=Γ
0

1 exp duuuνν  (3) 

The non integer integral is similar to the convolution product between function 1−νt  and function ( )tf . It 
is usual to restrain the lower bound of the integral to 0=a , that corresponds to the initial time of the 
experiment. This leads to the definition of the non integer integral of order ν in the sense of Reimann-
Liouville and we note ( ) ( )tftf t

νν II 0= . The additive property upon the integration order is expressed as: 

 ( ) ( )tftf µνµν += III ,   ( )Re , 0ν µ∀ >  (4) 
This leads to the non integer derivative of order ν as: 
 ( ) ( ) ( ) ( )D D I N, Re 0, 1 Ren nf t f t n n nν ν ν ν−= ∈ > − ≤ < (5) 
From those definitions, it appears that the non integer derivation of function ( )f t  at time t is expressed 
according to the entire set of values of the function from the initial time until time t. This operator has 
therefore an infinite memory effect that distinguishes it fundamentally from the classical derivative of 
integer order. However, the values of the function previous to time t are weighted by a fforgotten factor 
that is as high as one approches the initial time. 
The discrete representation of the non integer derivative has been given by Grünwald and is expresses as: 

 ( ) ( )
0 ,limD 0 >

Δ
= → ν

ν

ν
ν

h
tf

tf h
h , (6) 

ν
hΔ  represents the non integer increase defined by: 

 ( ) ( ) ( ) hNthjtf
j

tf
N

j

j
h =−⎟⎟

⎠

⎞
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With : 

 ( ) ( )
!

11
j

j
j

+−−
=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ νννν !  (8) 

Let us note that the sampling time interval h must be necessary constant with this definition. 




