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Abstract: In this tutorial, a method based on the Ordinary Least Squares method (OLS) for 
optimizing the wavelength selection used for the multi-spectral temperature measurement of 
surfaces exhibiting non uniform temperature-depending emissivity is presented. The goal 
consists in minimizing the standard deviation of the estimated temperature (optimal design 
experiment). Two methods for wavelengths selection are presented, sequential and global with 
or without constraints on the spectral range. Then, the estimated temperature results obtained by 
a model taking into account up to a second-order polynomial global spectral transfer function of 
the overall system (including the emissivity) and for different number of parameters and 
wavelengths are compared. The model is based on the fluxes (Planck’s law and without fluxes 
ratio). Different selection criteria are presented. These points are treated from theoretical, 
numerical and experimental points of view. 

Keywords: Multi-spectral, thermometry, pyrometry, temperature measurement, multi-band, 
optical measurement, emissivity, optimal wavelengths, infrared thermography. 

Nomenclature 
 
n Flux density, W.m-2 
C1 Constant Planck's law,  
C2 Constant Planck's law, m.K 
T Temperature, K or °C 
Tij Temperature calculated from the  

wavelength filters 
   
λi , λj  

Greek symbols 
 ε  Emissivity 

 λ  Wavelength,  m  

 χ  Reduced sensitivity 

subscripts, superscripts and other symbols 

 λ  Spectral 
 m Mean  
i,j,k Number of filter  λ   
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10.1 Introduction 

The thermal characterization of weakly reflective opaque materials at high temperatures often uses optical 
methods for measuring space and/or time distributions of temperature [1]. It is usually done by infrared 
cameras, quantum detectors or photomultipliers (in the case of measurements at shorter wavelengths [2]). 
The difficulty with this type of measurement is the spatial and time variation of the emissivity of the 
material making it non-uniform over the sample surface, especially at high temperature where significant 
oxidation phenomena can occur. One solution is to make a measurement by the multi-spectral method [2-
7] (an exhaustive state-of-the-art has been made in [7], or lecture 5 presented by Krapez in this METTI-6 
School). Even if the idea is interesting, its implementation is tricky because of the difficulty to choose the 
adapted wavelengths   λi . Indeed, they must be chosen "close enough" to overcome emissivity variations of 
the material (and more generally, the global transfer spectral function of the overall system, including the 
emissivity), but not "too close" to obtain an uncertainty on the measured temperature lowest as possible. 
Note that in this paper we speak indifferently of emissivity or global transfer function (of the overall 
system, including the emissivity), because each transfer function taking values in the range [0;1], so their 
product with the emissivity will also bounded by 0 and 1. After a presentation of the theoretical principle 
of the multi-spectral method, our model will be validated through numerical simulations and experiments. 
The facility is presented in Section 5 and the considered typical variations of emissivity (or more 
generally, global transfer function) shown in Section 4. These simulated variations of emissivity (or global 
transfer function) versus wavelength will be used to validate our theoretical model for estimating 
temperature through an inverse technique based on an Ordinary Least Squares method. The cost function 
(10.2) will be used in order to estimate this temperature by inverse method. Based on the minimization of 
the standard deviation of the estimated temperature T, sequential and global selection methods will be 
presented to determine the optimal wavelengths to choose for optimizing the temperature measurement.  

10.2 The multi-spectral method 

The principle of multi-spectral methods which are based on the use of multiple wavelengths to obtain the 
value of different physical quantities have been presented by Krapez in the lecture 5 of this METTI-6 
School. Here, we focus our attention on a method using direct radiative heat fluxes in order to estimate the 
temperature of an oxidized cast iron sample.  
The estimation model used in this tutorial is an unbiased model (called TNL.Tabc model) based on the 
estimation of fluxes (10.1). This model consider a second-order polynomial model for modeling the 
overall spectral transfer function (including the emissivity) through three unknown parameters (a,b,c) to 
estimate. In (10.2),   ni

exp  represents the flux measured at the experimental wavelength   λi .  

 

     

ni T,a,b,c( ) = a + bλi + cλi
2( ) C1λi

−5

exp
C2

λiT

⎛

⎝
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⎞

⎠
⎟⎟⎟⎟
−1

∀i ∈ 1;Nf
!"# $%&  (10.1) 

The objective is to find the values of (T,a,b,c) that minimize the following cost function:  

   
J T,a,b,c( ) = ni

exp −ni(T,a,b,c)( )2
i=1

Nf

∑ = n1
exp −n1(T,a,b,c)( )2 + ........... + n4

exp −n4(T,a,b,c)( )2  (10.2) 
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10.3 Selection of the optimal wavelengths for minimum error on the 

estimated temperature 

In this section, criteria allowing us to define the methodology to follow to perform optimal measurements 
without amplifying the uncertainties will be first established. Then, a method to determine sequentially the 
best wavelengths will be presented. Even if this method is not optimal, it has an educational interest in 
showing what happens when the numbers of wavelengths is increasing. To finish, the results of a global 
optimization (with and without constraints) which gives the “optimal global wavelengths” will be shown. 
Even if the methods can be applied for any spectral emissivity variation, in order to simplify the 
interpretation of the results, a unitary emissivity (or global spectral transfer function) will be assumed for 
the simulation of the “experimental” fluxes used both for the sequential and global methods (cf.section 3). 
Finally, note that each theoretical optimal wavelength represents experimentally the central wavelength of 
the narrow filter which will be used with the infrared camera. 

10.3.1 Determination of the methodology of the measurement 

First, for mono-spectral measurements we will work on the increasing part of the Planck’s curve because 
the reduced sensitivities of flux to the temperature   χT  and to the wavelength  χλ  are greater at short 
wavelengths (10.3). Secondly, for bi-spectral measurements, we will try to have a flux ratio as large as 
possible to minimize the measurement uncertainty

 
on the flux (10.4) (assuming that 

   
enλi
≈ enλj

) [5]. In 

addition, our filters have to be chosen distant enough   Δλ  (10.5) to avoid amplification of measurement 
uncertainties but also close enough to minimize measurement uncertainty due spectral emissivity (or more 
generally spectral global transfer function including emissivity) variation. However, it can be shown that 
at very short wavelengths (UV), the relation (10.5) can be linearized and therefore it becomes possible to 
choose a constant distance between two successive wavelengths. Furthermore, note that the relative 
uncertainty on the temperature   eT /T  [5] is increasing with temperature (10.6). Even if the relations 
(10.4) and (10.5) have been obtained by differentiating a flux ratio [5] (classical bi-chromatic method, 
based on the Wien’s approximation), they are also valid for the propose method based on (10.1) with 
b=c=0. Finally, note that the relations (10.3) and (10.6) are obtained by differentiating (10.1) under 
Wien’s approximation and with b=c=0. 
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Δλ = λj −λi >
Tλj

2

C2 λi <λj

  (10.5) 

 

    

eT

T
=
λT
C2

eελ,T
ελ,T

 (10.6)  

10.3.2 Determination of best sequential wavelengths 

The criteria previously established can allow us to set up a methodology for wavelengths selection. 
Nevertheless, as they are given in term of inequalities, we are not able to know if the wavelengths choice 
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is optimal or not. As the method used for temperature estimation is based on the minimization of a 
functional through an Ordinary Least Squares method (OLS), the idea we propose in this work is to select 
optimal wavelengths by minimizing the standard deviation of the estimated temperature. In the OLS 
method, the statistical properties of the parameters (10.2) are given by the variance-covariance matrix, 
from which the standard deviations 

  
σβi  of estimated parameters and particularly of the temperature   σT  

can be determined. The model (10.1) being non-linear, we will use the approximate expression of the 
variance-covariance matrix of the Ordinary Least Squares method, which is given for a parameter vector 

   
β = T,a,b,c( ) , under assumptions of an additive noise, non-correlated, identically distributed (zero mean 
and constant variance), by: 

     

cov β( ) =

σT
2 cov T,a( ) cov T,b( ) cov T,c( )

cov T,a( ) σa
2 cov a,b( ) cov a,c( )
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(10.7) 

The sequential method consists in choosing the first optimal wavelength (
   
λopt1 ) (corresponding 

experimentally to the central wavelength of the narrow filter which will be used with the infrared camera) 
minimizing the standard deviation of the temperature, assuming that we perform only a mono-spectral 
measurement (thus with the only one unknown parameter T) (cf. Figures 1 and 2). Note that this value 
does not correspond to the maximum of the Planck’s curve. It can be shown that 

    
λopt1T = C2 / 6 ≈ 2400µm.K , to be compared with the Wien’s expression     λmaxT ≈ 2898µm.K . 

 

Figure 1. Reduced Sensitivity curves for unitary 

emissivity with nT(λ) given by (1) and for T0 = 

623K. 

 

 
Figure 2. Standard deviation of T for unitary 

emissivity with σT given by (9) and β=623 (just one 

wavelength and the parameter T). 

 

The value is slightly shifted to the left and appears as a compromise solution between a large sensitivity 
and a good signal over noise ratio. This result shows the interest of the Ordinary Least Squares method 
allowing us to define an optimal wavelength for the temperature measurement, contrary to the expression 
(10.6) that only takes into account the sensitivity aspect and gives for optimal wavelength    λ = 0  because 
the relative uncertainty on the temperature is null for this value. Figure 2 shows that there is a unique 
wavelength (

    
λopt1 ≈ 3.87µm ) that minimizes the standard deviation 

   
σT λ( ) (for the mono-spectral 

measurements). The increasing of the standard deviation when the wavelength is decreasing for 
    
λ < λopt1  
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can be explained by the fact that the signal over noise ratio is decreasing for    λ → 0 . The increasing of the 
standard deviation for 

    
λ > λopt1  is due to the fact that the sensitivities of flux to the temperature    nλ.χT  

(10.3) are decreasing with the wavelength (Figure 1). Indeed, for a mono-spectral measurement 

    
σT λ( ) = nλ.χT( )−1

 which is similar to the relative uncertainty on the temperature /Te T  (10.6). 

Then, in order to choose the value of the second filter,   λ1  is fixed to 
    
λopt1 ≈ 3.87µm , and we seek the 

shortest wavelength (
    
λopt21 ≈ 2.64µm here) that minimizes the local standard deviation of temperature in 

the model TNL.Ta (cf. Figure 3). The notation (cf. section 4 for more details) TNL.Ta means that in (10.1) 
and (10.2) only the parameters T and a are considered (i.e. b=c=0). 

   
λopt21  has been chosen instead of 

   
λopt22  because 

   
λopt22  is not in the spectral range of the detector and allows us to reduce the working 

spectral range. Furthermore, note that at 
    
λ2 = λopt1 ≈ 3.87µm  there is a vertical asymptote (   σT →∞ ). 

This can be explained by the fact that the numeric system to solve is ill conditioned and leads to infinite 
uncertainties. There are two unknowns (T and a) but only one equation, For 

    
λ2 < λopt21  and 

    
λ2 > λopt22  the 

standard deviation 
    
σT λ2( )  is increasing because the signal over noise ratio and the sensitivity to the 

temperature are decreasing, and for 
    
λopt21 < λ2 < λopt22 ,  

    
σT λ2( )  is increasing because the criteria (10.5) is 

less and less respected. 

 

Figure 3. Standard deviation of T for unitary emissivity with λ1=λopt1 fixed and λ2 free ; σT given by (9) 
and β=(623,1) (just one wavelength: λ2, and two parameters: T and a): Model (T,a). 

 
This procedure is followed for obtaining the fourth wavelength (

   
λopt41 ) which minimizes the standard 

deviation of the temperature in the model (T,a,b,c), with 
    
λopt1 ,λopt21 ,λopt31( )  fixed. With this process, we 

finally obtain as set of wavelengths: 
   
lopt_seq = 1.67 ; 2.05; 2.64 ; 3.87{ }µm  and     σT ≈ 4 K . 

Because of experimental constraints (availability of filters), we have chosen the following wavelengths 
filters: 

   
lexp = 2 ; 2.35 ; 2.85 ; 4{ }µm . With these wavelengths and ( )β0 623,1, 0, 0= , the theoretical 

standard deviation calculated is for 
    
β = T,a,b,c( ) :     σT ≈ 2.55 K  
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Comparing this value with the previous one (     σT ≈ 4 K ) obtained for 

    
λopt_seq = 1.67 ; 2.05; 2.64 ; 3.87{ }µm  we can see that the wavelengths values obtained through the 
sequential process are not optimal, but this method presents the advantage of illustrating that it's important 
to choose carefully the different wavelengths for multispectral measurements.  
The next part presents a global optimization of the wavelengths. 

10.3.3 Determination of global optimal wavelengths 

The determination of Nf=4 optimal wavelengths can be done using a global optimization algorithm such 
as “Nelder-Mead”, “Levenberg-Marquardt” or “Trust-Region”... Choosing as nominal parameters vector 

    
βo = 623 ; 1 ; 0 ; 0( ) , for an unconstrained estimation the minimization calculus of the standard deviation 

gives for 
    σnoise ≈ 8.9697.104W ≡ 7.43.10−3 %  of the Planck's law maximum (equivalent to the value of the 

experimental noise):  

- For 
    
β = T,a,b,c( ) , we find: 

    
λopt_global = 2.53 ; 4.70 ; 8.87 ; 26.18{ }µm  and     σT ≈ 0.07 K  

- For 
    
β = T,a,b( ) , we find: 

    
λopt_global = 2.67 ; 5.24 ; 12.57{ }µm  and     σT ≈ 0.05 K  

- For 
    
β = T,a( ) , we find: 

    
λopt_global = 2.94 ; 7.17{ }µm  and     σT ≈ 0.02 K  

For 
    
λopt_global = 2.94 ; 7.17{ }µm , the  Figure 4 shows that the minimum is unique (two symmetric 

solutions 
    
λ1 ; λ2{ } ≈ 2.94µm ; 7.17µm{ } ), and that these solutions are different but leads to better results 

than those obtain by sequential method 
    
λopt1 ; λopt22{ } ≈ 3.87µm ; 7.22µm{ } . 

 

Figure 4. Isovalues of standard deviation of T. 
 
Although this set of values are the best in terms of minimization of the standard deviation, performing 
measurements at these different wavelengths is difficult in practice because such a detector with a so wide 
spectral range does not exist. For this reason, we decide to choose our wavelengths only in the spectral 
range of the detector [1.5µm; 5.5µm]. If we perform the global optimization with this constraint, the 
results obtained are: 
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- For 
    
β = T,a,b,c( ) , we find: 

    
λopt_cam_spec-range = 2.14 ; 3.39 ; 4.76 ; 5.50{ }µm  and     σT ≈ 0.32 K  

- For 
    
β = T,a,b( ) , we find: 

    
λopt_cam_spec-range = 2.43 ; 4.21 ; 5.50{ }µm  and     σT ≈ 0.09 K  

- For 
    
β = T,a( ) , we find: 

    
λopt_cam_spec-range = 2.93 ; 5.50{ }µm  and     σT ≈ 0.03 K  

But the Wien's approximation being better at short wavelengths, we will force ourselves to choose our 
wavelengths only in the spectral range corresponding to the increasing part of the Planck curve. In this 
context, the global estimation with constraint     λ ∈ 1.5µm ; 2898 / T µm[ ]  gives: 

- For 
    
β = T,a,b,c( ) , we find: 

    
λopt_λmax_spec-range = 2.03 ; 3.11 ; 4.15 ; 4.65{ }µm  and     σT ≈ 0.52 K  

- For 
    
β = T,a,b( ) , we find: 

    
λopt_λmax_spec-range = 2.32 ; 3.79 ; 4.65{ }µm  and     σT ≈ 0.14 K  

- For 
    
β = T,a( ) , we find: 

    
λopt_λmax_spec-range = 2.82 ; 4.65{ }µm  and     σT ≈ 0.03 K  

Note that in the both global estimation with constraints, the last wavelength is always the upper bound, 
which means that the best wavelength is probably out of the interval. 

10.4 Numerical validation of models for temperature measurement in the 

infrared wavelength range 

To validate the model, thousand noised fluxes are simulated through the Monte-Carlo method (normal 
noise exhibiting the same level as standard deviation measured on the experimental thermographic images 
under the same conditions) (cf. Table 2) from four different variations/values of emissivity. We took care 
that the variations of order 2 and Drude models are significant on the IR spectral range of the study (and in 
agreement with the experimental behavior of different materials). The tables below show the results for 
the four filters chosen experimentally. The notation TNL means that the temperature is obtained from an 
"nonlinear least squares" estimation (10.2) using the regularized algorithm of "Levenberg-
Marquardt".TNL.Tabc (respectively TNL.Tab), means that we use (10.2) and the unknown parameters are 
(T,a,b,c) (resp. (T,a,b)). For TNL.Tab, the three shorter wavelengths will be used. 

 

Figure 5. Emissivity variation/values used for numerical validation. The “Chosen Values” are 

the fixed or calculated values of simulated emissivity at the experimental wavelengths in order 
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to have significant variations of emissivity compared to the linear variation. 

10.4.1 Simulations without noise 

lambda [m] = {2e-6; 2.35e-6; 2.85e-6; 4e-6} 
Texp = 623 K ;  Radiance law: Planck 

Noise Emissivity Model T [K] Absolute Error 
[K] Relative Error [%] Sigma [K] Sigma [%] 

W
ith

ou
t 

Constant TNL.Tabc (4bands) 623.00 0.00 0.00 - - 
TNL.Tab (3bands) 623.00 0.00 0.00 - - 

Linear TNL.Tabc (4bands) 623.00 0.00 0.00 - - 
TNL.Tab (3bands) 623.00 0.00 0.00 - - 

Order 2 TNL.Tabc (4bands) 623.00 0.00 0.00 - - 
TNL.Tab (3bands) 608.52 14.48 2.32 - - 

Drude TNL.Tabc (4bands) 636.91 13.91 2.23 - - 
TNL.Tab (3bands) 641.01 18.01 2.89 - - 

Table 1. Simulations for estimating the temperature (without noise). 

 
As models TNL.Tabc and TNL.Tab do not use Wien's approximation, no bias appears on estimated 
temperature except for emissivity variation of order 2 for TNL.Tab, and Drude for the models TNL.Tabc 
and TNL.Tab. The results of this table show that the model TNL.Tabc seems to be the better (lowest 
uncertainties). 

10.4.2 Simulations with noise 

AVERAGE TEMPERATURE OF 1000 ESTIMATES: lambda [m] = {2e-6; 2.35e-6; 2.85e-6; 4e-6} 
Texp = 623 K  ;  Radiance law: Planck  ;   Noise: constant  ;  Sigma Noise: 0.00743 % (max of Planck’s law) 

Noise Emissivity Model T [K] Absolute Error 
[K] Relative Error [%] Sigma [K] Sigma [%] 

W
ith

 

Constant TNL.Tabc (4bands) 623.02 0.02 0.00 1.13 0.18 
TNL.Tab (3bands) 623.00 0.00 0.00 0.52 0.08 

Linear TNL.Tabc (4bands) 623.01 0.01 0.00 0.70 0.11 
TNL.Tab (3bands) 623.00 0.00 0.00 0.32 0.05 

Order 2 TNL.Tabc (4bands) 623.02 0.02 0.00 1.05 0.17 
TNL.Tab (3bands) 608.52 14.48 2.32 0.30 0.05 

Drude TNL.Tabc (4bands) 636.91 13.91 2.23 0.74 0.12 
TNL.Tab (3bands) 641.01 18.01 2.89 0.38 0.06 

Table 2. Monte Carlo simulations for estimating the temperature (with noise). 

Table 2 shows that it is impossible by the method TNL.Tabc to accurately estimate the temperature 
because the problem seems to be ill-posed. This observation is confirmed by the best results given by 
TNL.Tab in the case of emissivities ranging up to order 2, which shows that it is possible to regularize the 
problem by reducing the number of parameters. Nevertheless, it is important to note that the standard 
deviations of the estimations are significant, suggesting that it will be necessary to have lot of points (high 
spatial resolution allowing a local averaging) or to use larger integration times if we want to increase the 
measurement accuracy. From these results, we will choose the TNL.Tabc model as estimation model for 
the experiments. 
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10.5 Experimental results 

10.5.1 Description of the experimental bench 

The schematic diagram of the facility is shown in Figure 6. An oxidized cast iron sample on which “FT 
25" is carved (its surface being varied, so it is for the emissivity) is placed in a tube furnace at a 
temperature of 623K controlled by a PID with a great stability (no oscillations in temperature recording 
due to furnace regulation). The temperature of the sample is obtained using a thermocouple placed on its 
rear face. The spatial radiative flux emitted by the sample is measured through a high sensitive Broad-
Band InSb infrared matrix camera working in the spectral range [1.5µm; 5.5µm]. Four monochromatic 
filters: { }λ 2 ; 2.35 ; 2.85 ; 4exp µm=  are mounted in the filters wheel of this camera in order to measure 

the emitted flux coming from the sample at four different wavelengths. The signal is digitized through a 
14 bits Analog/Digital card. Each pixel is associated to a Digital Level (DL) corresponding to the spectral 
radiance of a surface area of the sample. The camera has previously been calibrated in the temperature 
range [573K-673K] using a 4''x4'' extended area blackbody.  

 

Figure 6. Facility for IR measurements. 

10.5.2 Measurement methodology, data processing and results 

Using a tubular furnace, the sample is heated at three different temperatures levels {T1 = 573K, T2 = 
623K, T3 = 673K}. For each temperature, a recording of 1000 images for each filter is performed. Before 
each acquisition, great care is taken to check whether thermal equilibrium is reached. To get free of the 
reflection through the non-blackbody sample that is not negligible at this level of temperature due to 
presence of the hot furnace walls in this vicinity, we use the average image made with 4 filters at 573K 
and 673K to correct the existing offset between our measurements at these two temperatures and the flux 
that a blackbody at these same temperatures would emit. Calling ( )exp

i
jM Tl

 the experimental heat flux 

measured for each pixel at the wavelengths   λi  and at the temperature jT , and iK  a variable to correct the 
offset between the measured flux and the blackbody flux, we have a set of 8 equations with 8 unknowns 
(the four couples 

    
εi ; Ki( ) ) to solve. The system is as follows: 

Camera

Tubular 
furnace

Sample
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exp Tj( ) = εiMλi
o + Ki ,∀i ∈ 1 ; 4!"# $%& and ∀j ∈ 1 ; 3{ }

⇔
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⎧

⎨
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⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

 (10.8) 

The 8 unknowns 
    
εi ; Ki( )  (for each pixel) are estimated by a regularized ordinary least square method 

(Levenberg-Marquardt). Using the  Ki  (assuming the reflected part of the heat flux as constant in the 
temperature range 573K-673K), our experimental flux can be corrected to get rid of the reflection. Finally, 
the experimental flux is corrected for each pixel through the following relation: 

 
     
n
λi

exp Tj( ) = M
λi

exp Tj( )−Ki , ∀i ∈ 1 ; 4!"# $%& and ∀j ∈ 1 ; 3!"# $%&  (10.9) 

The aim is now to estimate using adjusted flux emitted by each pixel, the temperature field of the sample 
when the furnace is at T2=623K. For this, we will find for each pixel the value of temperature T that 
minimizes the cost function (10.2).  
Figures 7-10 show the averaged (1000 Images) thermographic images recorded by the camera through the 
four monochromatic filters 

    
λexp = 2 ; 2.35 ; 2.85 ; 4{ }µm . The inscription "FT25" is indistinguishable at 

2µm due to the low flux emitted but appears more and more clearly up to 4µm. The result of the 
temperature estimation by inversion of Planck's law (assuming unit emissivity) is given in Figure 11 for 
4µm wavelength. As expected, we note that this simple estimation assuming a uniform emissivity does not 
correct the emissivity field because the pattern "FT25" is still visible on the calculated temperature field. 
Moreover, the estimation uncertainty of temperature is large (experimental temperature is about 623K), 
while the estimated temperature is about 587K (approximately 6% uncertainty or 40K) with a standard 
deviation of about 1.5K. Finally, Figure 12 shows the result of the estimated temperature (of about 625K) 
field given by the TNL.Tabc model (minimization of the cost function (10.2)). We note that the pattern has 
totally disappeared and that the temperature uncertainty is about 2K (0.3%) with a standard deviation of 
4K. We have tried different models but the best results are given by the model TNL.Tabc, which allows us 
to take into account the emissivity variation over the wavelength range [2µm-4µm]. 
 

 
Figure 7. Flux 2µm. 

 
Figure 8. Flux 2.35µm. 
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Figure 9. Flux 2.85µm. 

 
Figure 10. Flux 4µm. 

 
Figure 11. Estimated temperature: TCN 4µm. 

 
Figure 12. Estimated temperature: Tabc. 

 

10.6 Conclusion 

First, the results given by the unbiased model TNL.Tabc (10.1) (using fluxes without Wien’s 
approximation and without fluxes ratio) and summarized in Table 2 are very satisfactory for emissivity 
variations of order between 0 and 2 (Drude model is a more difficult case). The inverse problem being 
numerically ill-conditioned, if the relative variation of the emissivity (or global spectral transfer function, 
including the emissivity) is known, it is preferable to use the lowest number of parameters allowing to 
model emissivity variations. However, in the absence of a priori knowledge about the emissivity, the 
TNL.Tabc model seems to be the best compromise. 
Next, two different methods for selecting "optimal" wavelengths has been proposed: one through a 
sequential procedure and the other based on a global minimization with constraints which gives the best 
results. Although the iterative procedure is less efficient than the global minimization in term of 
temperature standard deviation, it presents the advantage to show the important of the choice of the 
different wavelengths.  
To finish, the experimental results obtained using the TNL.Tabc model from the filters available 
experimentally { }λ 2 ; 2.35 ; 2.85 ; 4exp µm=  (close to theoretical optimal filters 

{ }λ 2.03 ; 3.11 ; 4.15 ; 4.65opt µm= ) are also very encouraging with an uncertainty of about 2K (0.3%) 

and a standard deviation of 4K.  
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