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Abstract: A new experimental method for thermodynamic characterization of solid-
liquid and shape-stabilized Phase Change Materials (PCM), through enthalpy-
temperature function estimation, is described in this paper. The simplicity of the 
experimental setup is comparable to that of a hot plate and it allows fast and accurate 
characterization of large size samples. The heat transfer model corresponding to the 
experimental device is written as a constant parameters heat conduction model with a 
temperature dependent source term which contains all the information related to the 
phase change phenomenon. The enthalpy-temperature function is estimated by using 
an efficient inversion technique which only requires the measurement of the 
temperature at a point in the PCM. Through dimensionless and numerical tests, the 
capabilities and the limits of the proposed method have been investigated. A simple 
way to optimize the experimental conditions has been also proposed. An experimental 
test for characterization of a PCM composite is finally carried out to illustrate the 
appropriateness of those developments. 
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Nomenclature 
 

Latin letters    

 a  Thermal diffusivity   m
2.s−1  /G PCM  

Graphite 
foam/Phase 

Change 
Material 

composite 

( )−  

c  Specific heat at constant 
pressure 

1 1. .J kg k− −  IL  Insulated layer −( )  

f  Liquid fraction ( )−  k  Known −( )  

H  Volumetric enthalpy   J .m−3  l  Liquid phase −( )  

H  Heaviside function ( )−  m  Measured −( )  

J  Cost function   K 2   PCM  Phase Change 
Material −( )  

k  Thermal conductivity   W .m−1.K −1  ref  Reference −( )  
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L  Length, thickness m  Superscript   
fL  Latent heat 1.J kg −   Dimensionless ( )−  

n  Number of nodes ( )−  −  Mean ( )−  

tn  Number of time steps ( )−  .  Derivative ( )−  

cP  Dimensionless specific heat ( )−   Transpose ( )−  

kP  Dimensionless thermal 
conductivity ( )−  :  Estimated ( )−  

q  Prescribed heat flux 2.W m−  Greek letters   

Ste  Stefan number ( )−  α  Weighting 
function ( )−  

t  Time variable s  β  Weighting 
function ( )−  

T  Temperature K  K    
z  Space variable m  θ  Dimensionless 

temperature ( )−  
Subscripts TΔ  Melting range K  

∞  Environment / infinite 
horizon ( )−  µ  Regularization 

parameter 
−( )  

0  Initial ( )−  ρ  Density 3.kg m−  
f  Melting ( )−  σ  Source 1.K s−  

s  Solid phase ( )−  τ  Dimensionless 
time variable ( )−  

u  Unknown ( )−  ϕ  Dimensionless 
heat flux ( )−  

   ψ  Dimensionless 
source term ( )−  

 
  

*

T
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2.1 Introduction 

Phase Change Materials (PCM) could play an important role for an effective and economic use of thermal 
energy in the industrial sector (i.e. waste heat recovering, storage and reuse), as well as in power 
generation based on new conversion techniques (i.e. co-generation) and renewable energy resources (i.e. 
solar concentrating technologies). Moreover, PCM integration in lightweight buildings is expected to be a 
useful way to smooth indoor temperature variations and reduce overall heating or cooling demand. 
Greatest asset of PCM is their capacity to store or release thermal energy over a narrow range of 
temperature, as well as latent heats ranging typically from 100 to 1000  kJ.kg-1  for PCM undergoing solid-
liquid transformations. Recently, much work has been done on shape-stabilized PCM development. Such 
materials are generally made of an inert matrix (polymer, wood, concrete, graphite etc.) whose porosity is 
completely or partially filled with a solid-liquid phase change material. The inert matrix allows structural 
stability and retains the PCM when in liquid state. In addition, when made of a highly conductive material 
(i.e. graphite), it serves to enhance the PCM thermal conductivity. 
Characterization of shape-stabilized PCM usually involves measurement of thermal conductivities and 
heat capacities of the solid and liquid phases, as well as transition temperatures and latent heat.  
Some thermal properties can be estimated by quite standard methods. For instance, thermal conductivity 
and thermal diffusivity can be measured, respectively, by the hot plate method [1] and the flash method 
([2], [3]). Dynamic hot probes methods allow simultaneous determination of thermal conductivity and 
capacity ([4]-[7]). As for specific heat and latent heat, specific DSC (Differential Scanning Calorimetric) 
tests are usually used ([8], [9]). Transition temperatures are better determined using DTA (Differential 
Thermal Analysis) methods. 
The estimation of the enthalpy-temperature function is more difficult. It can be obtained using DSC in 
isothermal step mode ([10], [11]) but such tests generally require very small samples (some few 
millilitres), so that they become inappropriate for testing heterogeneous materials with large-size 
representative volumes. This problem could be partially overcome using the T-History method ([12], 
[13]), a cheap and easy way for the determination of latent heats and specific heats. Unfortunately, T-
History method is unable to provide reliable estimations of transition temperatures and enthalpy-
temperature functions ([14], [15]). Another problem is the very long testing times (from one day to one 
week) required to obtain the enthalpy-temperature function by DSC.  
To overcome such problems, an experimental method for complete characterization (thermal properties 
and enthalpy-temperature function) of PCM has been developed recently ([16]-[18]). The simplicity of the 
proposed experimental device is comparable to that of T-History method: a cylinder of PCM which is 
heated/cooled in a furnace following specific temperature patterns (steps, isotherms and ramps) and 
temperature measurements at one-single point within the PCM. The enthalpy-temperature function is 
retrieved by inversion of an appropriate heat transfer model instead of by simple energy balance 
techniques. It has been proven that, contrary to the T-History method, the proposed method allows 
unbiased estimations of the enthalpy-temperature functions. However, the method is intrusive and the 
testing time required remains significant (one day) even if shorter than in “isothermal step mode” DSC 
tests. 
In this paper, we propose a non-intrusive method for complete thermal characterization of PCM based on 
a smaller and simpler experimental device. The objective is to be able to estimate the enthalpy-
temperature function of a PCM (including highly heterogeneous PCMs) in few minutes. This function is 
retrieved by solving a problem of time-dependent sources estimation by inversion of a linear heat 
conduction model. In this paper it will be shown that those sources are the output of a linear and invariant 
state model whose inputs are the measured temperatures. Enthalpy-temperature function is thus calculated 
by a simple time integration. 
The paper describes i) the proposed setup and the experimental protocol, ii) the associated heat transfer 
model and iii) the inverse method mentioned above. It also includes a numerical study that shows the 
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capabilities and the limits of the experimental method proposed and provides recommendations to design 
the setup. Finally, an experimental test for characterization of a graphite foam/PCM composite is carried 
out to illustrate the appropriateness of our developments. 
 

2.2 Experimental setup and heat transfer modelling 

This section includes a description of the experimental device and the experimental protocol and it 
establishes modelling assumptions and governing equations. The thermal behaviour of the shape-
stabilized PCM during melting-solidification is described as a constant-parameters heat conduction 
problem with a temperature dependent source term which contains all information related to the phase 
change phenomenon. 

2.2.1 Experimental setup 

The proposed experimental device looks like hot plate setups usually used for thermal conductivity 
measurement (see [19] and [20] for example). It is a layered structure in which the sample of the PCM to 
be tested is sandwiched between a heating element and an insulation layer with known thermal properties. 
From the bottom to the topside, it comprises (see Fig. 1): a) a Peltier element to heat/cool the sample; b) 
the PCM sample with known thickness (LPCM); and c) and insulation layer of thickness LIL and whose 
thermal properties is known. A thin flat sensor for heat flux measurements is placed at the interface 
between the Peltier element and the sample. A temperature sensor (thermocouple type K) is placed 
between the sample and the insulation layer in order to measure the thermal response of the PCM at its top 
face ( Tm ). A second thermocouple (type K) is placed at the top of the insulation layer to measure the 

temperature at this boundary (T∞ ).    

 

Figure 1: Scheme of the experimental setup 

2.2.2 Experimental protocol 

As sketched in Figure, three main periods can be distinguished in the experiments: 
a- Start-up period (from times   t = t0 = 0  to  1t t= ), where the device is at uniform temperature in 

thermal equilibrium with its environment ( 1T T∞= ) and the Peltier element is off.  
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b- Melting period (from 1t t=  to 3t t= ), where a uniform and constant heat flux ( maxq ) is applied on 

the bottom face of the sample. The temperature mT  at the top side of the sample increases up to a 

temperature 3T  above the melting temperature fT . 

c- Solidification period (from 3t t=  to  4t t= ), where the heat flux is reversed ( maxq q= − ) and mT  

decreases from 3T  to a temperature 4T  close to T∞   to observe the thermal behaviour of the studied 
material during solidification. 

 

 

Figure 2: Sketch of the experimental protocol and corresponding measured temperature mT  

Throughout the experiment, the collected data are: the heat flux applied at the bottom face of the sample, 
q(t), the temperature at the top face of the sample, Tm(t), and the temperature at the top of the insulation 
layer, T∞(t). As discussed later, data recorded from 1t  to 2t  before the melting of the sample ( fT T< ), can 
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be used to estimate the thermal conductivity and the thermal capacity of the PCM in solid state [21]. On 
the contrary, the estimation of the enthalpy function is carried out using all data recorded from 0t  to 4t . 

2.2.3 Modelling assumptions 

Basic assumptions employed for shape-stabilized PCM melting/solidification modelling, valid across a 
significant number of systems, are: 
a) The PCM can be seen as a continuous medium at the macroscopic scale. The volume averaging method 
has been recently used [18] to derive macroscopic energy equations within PCM infiltrated matrices. 
Formal relationships between effective macroscopic and local properties and functions (i.e. enthalpy-
temperature function) have been established. It’s also assumed as an isotropic material. 
b) Convective heat exchanges within the PCM are negligible. One notices that porosity of shape-stabilized 
PCM is usually controlled to prevent PCM leakage when in liquid state. 
c) The thermal properties (heat capacity and thermal conductivity) of the PCM are constant within each 
phase but heat capacity could be discontinuous between the solid and liquid. On the contrary, thermal 
conductivity is assumed to be independent of the PCM state. 
d) Phase change occurs at constant pressure. It can take place at a single temperature and constant 
composition (i.e. pure substances, eutectic mixtures…) or over a range of temperatures (i.e. alloys, impure 
materials…). In the first case, a sharp melting/solidification front separates liquid and solid phases within 
the domain; while in the second case, a two-phase zone (“mushy region”) appears between the solid and 
liquid sub-domains. 
e) Under-cooling is negligible, or at least of non-random nature. This is generally true for organic PCM 
(i.e., paraffin, fatty acids, esters etc.). For inorganic PCM (i.e. salts) significant under-cooling can be 
observed. However, it is often reduced (or at least stabilized) using nucleation agents. 
f) For multi-component phase change materials undergoing transformation over a range of temperatures, 
no segregation during solidification is also assumed. This means that the density of the solid phase is 
closed to that of the liquid phase. 
Moreover, the form factor (height/width) of the device is small enough so that one dimensional heat 
transfer can be assumed. 

(1) Energy equations 

According to the previous hypothesis, energy conservation equation in a one dimensional case can be 
written as: 

 
  

∂H z,t( )
∂t

= k z( )
∂2T z,t( )
∂z2 ∀z ∈ (0, L),∀t > 0  (2.1) 

Where 
  
H z,t( ) and 

  
T z,t( ) are respectively the volumetric enthalpy and the temperature of the system at 

z  and at  time t . k  is the thermal conductivity at the point z . 
The relation linking the enthalpy and the temperature is:  

 
  
H = 1− f( )ρcs + f ρcl

#
$

%
&T + ρLf f  (2.2) 

Where ρ , xc  and fL  represent the density, the specific heat in liquid ( )x l=  or solid ( )x s=  state and 

the latent heat of the PCM. On the other hand, f  is the liquid fraction. For PCM undergoing 

melting/solidification at a single temperature, the liquid fraction is given by ( )ff T T= −H  , where H  

represents the Heaviside function and fT  is the phase change (melting or solidification) temperature. For 
melting/solidification taking place over a range of temperatures, differential scanning calorimetric 



Advanced Spring School « Thermal Measurements & Inverse techniques », Domaine de Françon, Biarritz, 
March 1-6 2015 

http://metti.u-bordeaux.fr 45 

measurements are usually required to determine the relationship existing between the liquid fraction and 
the temperature. In order to simulate all kind of behaviours, a model of liquid fraction can also be used. 
We can consider for example: 

 
  
f = 1

2
1− tanh

Tf −T
ΔT

#

$
%%

&

'
((

)

*
+
+

,

-
.
.
 (2.3) 

where TΔ  is the range of temperature where the phase change occurred 
 
ΔT =Tliquidus −Tsolidus( ) . We note 

that for solidusT T< , 0f ≈  ; while for liquidusT T> , 1f ≈ . The interval ,solidus liquidusT T⎡ ⎤⎣ ⎦  defines the 

« mushy region » with the coexistence of the liquid and solid state 
  
0 < f <1( ) . In addition, the equation 

(2.3) allows the simulation of the two distinct behaviours: for 0TΔ →  the transformation is close to a 
monovariant one and 0TΔ >  emulate a transformation over an interval of temperature. Concerning the 
insulated layer, there is no phase change phenomenon: T∀ , 0f = . and equation (2.2) becomes 

s ILH c T c Tρ ρ= = , where ILcρ  represents the specific heat of the layer. 
 
Using the equation (2.2), equation (2.1) becomes: 

 
  

∂T z,t( )
∂t

=
k z( )
ρcs z( )

∂2T z,t( )
∂z2 +σ z,t;T( ) ∀z ∈ (0, L),∀t > 0  (2.4) 

with 

 
  
σ z,t;T( ) = 1

ρcs

∂ ΔρcT z,t( )+ ρLf( ) f z,t;T( )
∂t

 (2.5) 

and l sc c cρ ρ ρΔ = − . Equation (2.4) is written like a constant parameters heat conduction problem with a 

temperature dependent source term ( ), ;z t Tσ  that contains all information related to the phase change 

phenomenon. We notice that ( ), ; 0z t Tσ =  for the insulated layer and for the PCM in solid or liquid 

phase. We also observe that the knowledge of the source term ( ), ;z t Tσ  allows obtaining the enthalpy-
temperature function of the PCM. As: 

 ( ) ( ) ( )
, ,

, ;s

H z t T z t
c z t T

t t
ρ σ

∂ ∂⎡ ⎤
= −⎢ ⎥∂ ∂⎣ ⎦

 (2.6) 

We obtain, by a simple time integration: 

 
  
H z,t( )−H z,0( ) = ρcs T z,t( )−T z,0( )( )− σ z,τ ;T( )dτ

τ=0

t
∫&

'(
)
*+

 (2.7) 

The continuity equation at the interface between the PCM and the insulated layer is written: 

 

  

−kPCM

∂T z,t( )
∂z

z=LPCM

= −kIL

∂T z,t( )
∂z

z=LPCM

∀t > 0  (2.8) 
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where PCMk  and ILk  represent the thermal conductivities of the phase change material and the insulated 
layers, respectively. 
According to the experimental device, the upper Dirichlet boundary condition is: 

 
  
T z,t( )

z=L
=T∞ t( ) ∀t > 0  (2.9) 

where  
T∞ t( )  represents the prescribed temperature, controlled by the thermocouple 2 (See Figure 1). The 

lower side of the PCM is submitted to a prescribed heat flux, denoted q , generated by a heating element: 

 
  
−kPCM

∂T z,t( )
∂z

z=0

= q t( ) ∀t > 0  (2.10) 

As for initial conditions, we assume: ( ), 0 , (0, )T z t T z L∞= = ∀ ∈ . 

(2) State-space model 

Since no general theory is currently available for the analytic solution of partial differential equations, 
approximate numerical solutions are the only practical alternative to which scientists engineers usually 
resort in order to solve this type of equations. The spatial discretization (finite volume method in this 
paper) of equations (2.1) and (2.8)-(2.10) leads to a finite dimensional formulation of the general form: 

 ( ) ( ) ( )
d t

t t
dt

= +
H

AT BU  (2.11) 

For each time step, H  ( )1n×  is the vector of enthalpies at the n  nodes of discretization grid. Matrix A  

( )n n×  describes heat exchanges among the finite volumes within the multilayer and matrix B  ( )2n×  

ensures the thermal connection between the device and its environment: U  ( )2 1×  is the vector of the 

boundary conditions (prescribed temperature and heat flux).  Both A  and B  are constant matrices whose 
elements depend of thermal conductivities and space steps values (PCM and insulated layer). The 
conversion of the enthalpy to the temperature, or temperature to enthalpy, is done using equations (2.2) 
and (2.3). The measured temperature at the interface between the PCM and the insulated layer can be 
written: ( ) ( )m t t=T JT , where J  is the ( )2 n×  appropriate matrix of zeros and scalars dependent on the 
thermal conductivity of  each layer. For a numerical study purpose, the results obtained by this state-space 
are considered in the following as the exact ones. 
Concerning the enthalpy-temperature function estimation, the used model is: 

 ( ) ( ) ( ) ( )1 1 ;
d t

t t t T
dt

− −= + +
T

C AT C BU σ  (2.12) 

T  ( )1n×  is the vector of temperatures at the n  nodes of discretization grid and σ  ( )1n×  is the vector 

of sources. Matrix C  ( )n n×  contains the specific heat of the PCM in solid phase and the one of the 

insulated layer. As previously, the measured temperature field mT  is given by ( ) ( )m t t=T JT . 
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2.3 Inverse method for PCM characterization 

In this section is presented the inversion method for thermodynamic characterization of a shape-stabilized 
PCM from a one-single experiment and a one-single measurement point of temperature. The thermal 
properties of the insulated layer as the boundary conditions, i.e. the heat flux and the temperature of the 
environment for the Dirichlet condition on the upper side of the device, are assumed well known. The 
thermal properties of the PCM, PCMk  and ,s PCMcρ , are assumed as known or estimated by a classical way 
(see the previous section). 

2.3.1 Enthalpy-temperature functions estimation 

The enthalpy-temperature function is estimated from the measured temperature field ( )mT t  at the 

interface between the PCM and the insulated layer. It's assumed that the solicitations ( )U t  ( ( )T t∞  and 

( )q t ) as well as thermal parameters ( scρ and k ) of both layers, are well-known or estimated using the 

first part of the experimental protocol. The unknowns of the problem are the thermal fields ( ),T z t within 

each layer of the device and the source terms ( );t Tσ . If we are able to estimate ( ),T z t  and ( ), ;z t Tσ , 
equation (2.7) leads to the enthalpy-temperature we are looking for. Hence, let us consider the problem of 
estimating the thermal field ( ),T z t  and the source term ( ), ;z t Tσ  in equation (2.4) from the measured 

data ( )mT t  and the known boundary conditions ( )U t . This is an ill-posed inverse problem in the sense 
of Hadamard [22], because the solution may be not unique or not continuous with respect to the given 
data. To overcome such a difficulty a large variety of techniques have been proposed ([23]-[27]). 
Tikhonov, Alifanov, and others from the Russian school proposed to cast the ill-posed inverse problem 
into an optimisation problem with a regularised objective function. Hence, the problem we have can be 
mathematically formulated as a problem of finding ( ), ;z t Tσ  that minimises the quadratic criterion:  

 
    
J =

1
2

α !Tm t; !σ( )−Tm t( )$
%

&
'

2
dt

t=0

tend∫ +
µ
2

β !σ 2 M ,t;T( )dt
t=0

tend∫  (2.13) 

where 0µ >  is a Tikhonov regularization parameter [27], α  and β  are continuous weighting functions. 
After spatial discretization ( n  nodes), equation (2.13) becomes: 

 
     
J =

1
2

J !T t; !σ( )−Tm t( )#
$

%
&

T
Q J !T t; !σ( )−Tm t( )#
$

%
&dt

t=0

tend∫ +
µ
2

!σ T t( )R !σ t( )dt
t=0

tend∫  (2.14) 

where Q  ( )2 2×  and R  ( )n n×  are positive definite matrices. They come from the discretization of the 

weighting functions α  and β .    !σ (t)   
n×1( )  is the discrete version of the unknown source term field, also 

used to calculate the temperature field 
    
!T t; !σ( )  ( )1n×  through model (2.12). 

Taking into account the linear nature of equations (2.4), (2.9) and (2.10), superposition principle allows 
writing:  

 ( ) ( ) ( ); ;k ut t t= +T T Tσ σ  (2.15) 
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The known part ( )k tT  of the thermal field ( );tT σ  is the system response to the boundary conditions 

( )tU  and the unknown part ( );u tT σ  represents its response to ( )tσ . In the same way and with similar 

subscripts, we can write ( ) ( ) ( ); ;k ut t t= +JT JT JTσ σ  and ( ) ( ) ( ), ,m m k m ut t t= +T T T . 

Thus, the cost function J  can be written: 

 
     
J =

1
2

J !Tu t; !σ( )−Tm,u t( )#
$

%
&

T
Q J !Tu t; !σ( )−Tm,u t( )#
$

%
&dt

t=0

tend∫ +
µ
2

!σ T t( )R !σ t( )dt
t=0

tend∫  (2.16) 

where ( ),m u tT  is the unknown part of the observations ( )m tT  and 
    J
!Tu t; !σ( )  is the unknown part of the 

estimated observation field 
    
!T t; !σ( ) . 

Applying Lagrange's theory and calculus of variation rules, it can be show that the minimum of the cost 
function J  is achieved for the solution 

  
!σ t( )  of the three following problems [28]: 

 
a) Direct problem 

 
    
!"Tu t; !σ( ) = A !Tu t; !σ( )+B !σ t( )  (2.17) 

A  is the matrix ( )n n×  describing the conductive transfers within the system and B  is the matrix 

( )n n×  describing coupling of the system with the source term. 
 
b) Adjoint problem  

 
    −
!λ t( ) = ATλ t( )+ J TQJ "Tu t; "σ( )− J TQTm,u t( )  (2.18) 

( )tλ is the co-state vector of 
    
!Tu t; !σ( ) .  

c) Stationarity condition 

 
    
!σ t( ) = −R−1BTλ t( )  (2.19) 

Introducing the stationarity condition (2.19) into the direct problem (2.17), we obtain the system of 
ordinary differential equations given by: 

 

    

!"Tu t; !σ( ) = A !Tu t; !σ( )−BR−1BTλ t( )
− "λ t( ) = ATλ t( )+ J TQJ !Tu t; !σ( )− J TQTm,u t( )

$

%
&

'
&

 (2.20) 

This system can be easily solved using the "sweep method" ([28], [29]) which assumes that 
    
!Tu t; !σ( )  and 

( )tλ  satisfy relation like: 

 
    λ t( ) = S t( ) !Tu t; !σ( )+υ t( )  (2.21) 

for an unknown matrix function   S t( )  and vector function  
υ t( ) . The solution of the inverse problem is 

the given by: 
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!σ t( ) = −K t( ) !Tu t; !σ( )− R−1BTυ t( )  (2.22) 

with 

 

    

!"Tu t; !σ( ) = A−BK t( )#
$

%
& !Tu t; !σ( )−BR−1BTυ t( )

− "υ t( ) = A−BK t( )#
$

%
&

T
υ t( )− J TQTm,u t( )

(

)
*

+
*

 (2.23) 

and 
    
!Tu 0( ) =T0  and ( ) 0ft =υ . The time-varying matrix ( )tK  is called Kalman gain. It is given by: 

 
   K t( ) = R−1BT S t( )  (2.24) 

where ( )tS  is the unique solution of the Riccati equation: 

 
    −
!S t( ) = AT S t( )+ S t( ) A− S t( )BR−1BT S t( )+ J TQJ  (2.25) 

For a long enough time interval [ ]0, endt  (infinite horizon problem), the solution of the Riccati equation 

above converges to a limiting solution ∞S : 

     0 = AT S∞ + S∞A− S∞BR−1BT S∞ + J TQJ  (2.26) 

The system (2.23) become : 

 

     

!"Tu t; !σ( )
− "υ t( )

$

%

&
&
&

'

(

)
)
)
=

A−BK∞( ) −BR−1BT

0 A−BK∞( )T

$

%

&
&
&

'

(

)
)
)

!Tu t; !σ( )
υ t( )

$

%

&
&
&

'

(

)
)
)
+

0
J TQ

$

%
&
&

'

(
)
)
Tm,u t( )

!σ t( ) = −K∞ −R−1BT$
%&

'
()

!Tu t; !σ( )
υ t( )

$

%

&
&
&

'

(

)
)
)

+

,

-
-
--

.

-
-
-
-

 (2.27) 

with 1 T−
∞ ∞=K R B S . The solution of the inverse problem is simply obtained by time integration of a 

state model where solicitations are the measurements.  
 
Step-by-step, the inverse problem solving involves: 

1. Calculation of the time-invariant matrices ∞S  and ∞K . We note that they are independent on the 
system state trajectory, so they can be calculated off-line. 

2. Calculation of ( )tυ  by time-integration of the equation 

    
− !υ t( ) = A−BK t( )#

$
%
&

T
υ t( )− J TQTm,u t( ) , with ( ) 0endt =υ . We note that the time is measured 

backwards from the final time endt  to the initial time 0 0t = . However, by defining a new time 

variable endt tτ = − , the corresponding τ  domain becomes from 0τ =  to endt . 
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3. Calculation of 
    
!Tu t; !σ( )  by time-integration of the equation 

    
!"Tu t; !σ( ) = A−BK∞ t( )$

%
&
' !Tu t; !σ( )−BR−1BTυ t( ) , with ( ) 00u =T T . 

4. Calculation of the unknown field: 
    
!σ t( ) = −K∞

!Tu t; !σ( )− R−1BTυ t( ) . 

 
Solving this inverse problem allows the estimation of the source term ( )tσ  in every time step and in 
every node of discretization. 
Knowing 

    
!T t; !σ( ) =Tk t( )+ !Tu t; !σ( ) , 

    
!Tu t; !σ( )  was calculated in above step 3), and 

  
!σ t( )  (step 4), it's 

possible to calculate the enthalpy-temperature function 
    
!H t; !σ( )  we want to determine: 

 
    

!H t; !σ( ) = ρcs
!T t; !σ( )+ !σ t( )dτ

t=0

t f

∫
%

&
'
'

(

)
*
*  (2.28) 

The enthalpy-temperature function, like the source term, is estimated for all time steps and nodes of 
discretization. We can also notice that its possible to estimate ( )tσ  only for the nodes of discretization 

within the PCM, indeed, ( )t = 0σ  at the nodes corresponding to the insulated layer: 

 
    

!HPCM t; !σ PCM( ) = ρcs,PCM
!T

PCM
t; !σ

PCM( )+ !σ
PCM

t( )dτ
t=0

t f

∫
%

&
'
'

(

)
*
*  (2.29) 

Thus, 
    
!HPCM t; !σ PCM( )  is a ( )PCM tn n×  matrix with PCMn  the number of nodes of discretization of the 

PCM layer and tn  the number of time steps. The representation of  
    
!HPCM t; !σ PCM( )  against the 

corresponding elements of 
    
!TPCM t; !σ PCM( )  leads to PCMn  enthalpy-temperature functions. In order to 

obtain only one enthalpy-temperature function, representative of the studied PCM,  we calculate the mean 

   
HPCM

!TPCM( )  of those PCMn  estimated functions in each elements of 
    
!TPCM t; !σ PCM( ) . One notices that 

the choice of PCMn  for enthalpy-temperature estimation is independent of the PCMn  devoted to the 

simulation of the thermal fields (Eq. (2.11)). In this work, 2PCMn =  for enthalpy-temperature function 

estimation and 20PCMn =  for the simulation. 
Concerning the Tikhonov regularization parameter µ , it must be chosen carefully: a too low value or a 
too high one leads to a bad estimation of the enthalpy-temperature function. A very convenient tool to 
chose this parameter is the “L-curve” representation [30]. Thus, the Frobenius norm 

    
!Tm t; !σ ,µ( )−Tm t( )  

is plotted for different values of µ  against the norm of the estimated source term field 
  
!σ t( ) . mT  is the 

measurement and 
    
!Tm t; !σ ,µ( )  is calculated, trough the model (2.12), using the estimated 

  
!σ t( )  for a 

given µ . The best value of the regularization parameter is thus directly obtained at the minimum of the L-
curve (Figure-a). 
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a)       b) 

Figure 3:  a) Representation of a L-curve b) rms  of the enthalpy-temperature function for different 

regularization parameters. Dashed circle: localization of the best regularisation parameter 

The proposed estimation is very fast and a large range of regularization parameters can be tested without 
significant loss of calculation time. In this paper, 15 different values of µ  covering a range from 121.10−  
to 1 are examined. 
The quality of the estimated enthalpy-temperature function 

    
HPCM t; !σ PCM( )  is evaluated as: 

 
    
rms = 1

nt

HPCM
!TPCM( )−HPCM TPCM( )( )

2

1

nt

∑  (2.30) 

where   
HPCM TPCM( )  represents the true enthalpy-temperature function (calculated using equations (2.2) 

and (2.3)). We observe (Figure-b) that the rms  is minimum for the value of µ  obtained using the L-
curve. Thus, the L-curve provides a powerful tool for an easy and accurate estimation of the enthalpy-
temperature function. 

2.4 Numerical design of the device 

In this section, the dimensionless form of the previous problem is studied in order to establish some limits 
of the proposed experimental device and to provide recommendations to design it. After a presentation of 
the dimensionless model, a large range of configurations is simulated through different sets of 
dimensionless parameters. 

2.4.1 Dimensionless problem 

Some change of variables are applied in the problem described in the previous section: 

 

  

θ =
T −Tref

ΔTref

, Pcs =
ρcs

ρcref

, Pcl =
ρcl

ρcref

, Ste =
ρcrefΔTref

ρLf

,

Pk =
k

kref

, τ =
aref t
Lref

2 , z* =
z

Lref

, ϕ =
q Lref

ΔTref kref

 (2.31) 
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where  
aref = kref ρcref . 

The introduction of those parameters in equations (2.4)-(2.10), leads to the dimensionless form of the one 
dimensional problem: 

 
  

∂θ z*,τ( )
∂τ

=
Pk z*( )
Pcs z*( )

∂2θ z*,τ( )
∂z*2 +ψ z*,τ ;θ( ) ∀z* ∈ (0, L*),∀τ > 0  (2.32) 

with 

 
  
ψ z*,τ ;θ( ) = 1

Pcs

∂ ΔPc θ +
Tref

ΔTref

&

'
((

)

*
+++ Ste−1

&

'
(
(

)

*
+
+ f * θ( )

-

.

/
/

0

1

2
2

∂τ
 (2.33) 

where c cl csP P PΔ = − . 
The liquid fraction is represented by: 

 
  
f * θ( ) = 1

2
1+ tanh θ

Δθ

#

$
%

&

'
(

)

*
+

,

-
.  (2.34) 

where Δθ  is the dimensionless range of temperature where the phase change occurred. 
The dimensionless form of the enthalpy-temperature function is given by: 

 
  
H * θ( ) =

H θ( )
ΔTref ρcref

= 1− f * θ( )( )Pcs + f * θ( )Pcl
%
&

'
( θ +

Tref

ΔTref

)

*
++

,

-
..+ Ste−1 f * θ( )  (2.35) 

The continuity equation at the interface between the PCM and the insulated layer is written: 

 

  

−Pk , PCM

∂θ z*,τ( )
∂z*

z*=LPCM
*

= −Pk , IL

∂θ z*,τ( )
∂z*

z*=LPCM
*

∀τ > 0  (2.36) 

where   
Pk ,PCM  and   

Pk ,IL  represent the dimensionless thermal conductivities of the phase change material 

and of the insulated layer, respectively. 
Then, the upper Dirichlet boundary condition is: 

 
  
θ z*,τ( )

z*=L*
=θ∞ τ( ) ∀τ > 0  (2.37) 

where θ∞ τ( )  represents the prescribed temperature. The lower side of the PCM is submitted to a 

prescribed heat flux as: 

 
( )

( )
*

*

, *

0

,
0k PCM

z

z
P

z
θ τ

ϕ τ τ
=

∂
− = ∀ >

∂
 (2.38) 

As for the initial condition, we assumes: 
  
θ z*,τ = 0( ) =θ∞ ,∀z* ∈ (0, L*) . 

The enthalpic form will be used in the following to simulate the exact dimensionless thermal fields: 
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( ) ( ) ( )* * 2 *

* * *
*2

, ,
(0, ), 0k

H z z
P z z L

z
τ θ τ

τ
τ

∂ ∂
= ∀ ∈ ∀ >

∂ ∂
 (2.39) 

Therefore, the measured thermal response  θm  is used for dimensionless temperature 
   
!θ z*,τ( )  and source 

terms fields 
   
!ψ z*,τ ;θ( )  estimation. The corresponding dimensionless enthalpy-temperature function is 

calculated using: 

 
   

!H * θ( ) = !Pcs
!θ τ( )+ !ψ !θ( )dξ

τ=0

τ end

∫
&

'
((

)

*
++  (2.40) 

The quality of the estimated enthalpy-temperature function    
!H *

PCM  is evaluated as: 

 
   
rms = 1

nτ
!H *

PCM θ( )−H * θ( )( )
2

1

nτ

∑  (2.41) 

where   H
*

PCM  represents the exact dimensionless enthalpy-temperature function calculated using 
equations (2.34) and (2.35). 

2.4.2 Numerical design 

In this numerical study, the thermal response of the device for different sets of 4 dimensionless parameters 
( ,k ILP , ,c ILP , *

ILL  and ϕ ) will be simulated using model (2.39) to obtain the measured dimensionless 

temperature mθ . 
The Table 1 summarizes the chosen reference parameters (see (2.31): 
 

Reference parameters Value  

refcρ  ,s PCMcρ   J.m
-3.K-1  

refk  PCMk   W.m-1.K-1  

refL  PCML   m  

refT  fT   °C  

refTΔ  1  °C  

Table 1: Reference parameters 

Table 2 includes the values of studied sets of dimensionless parameters related to the device and the 
simulation. 
 

Dimensionless 
parameter PCM Insulated layer Simulation 

kP  1 410− , 310− , 210− , 110− ,0.5 ,1  
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cP  1, 1.2cs clP P= =  310− , 210− , 110− ,1,10   

*L  1 0.5 ,1, 2 ,5 ,10   

1Ste−  50 ,200    

fT  0    

θΔ  1   

maxϕ    0.2 ,0.5 ,1, 2 ,5 ,10  

θ∞    20−  

( ), 0Mθ τ =    20−  

dτ    0.05  

Number of nodes 20  10   

Table 2: Dimensionless parameters for each layer and for the numerical simulations 

It can be noticed that dimensionless parameters are chosen in order to cover a large range of possible 
scenarios, using a standard database of materials, about 250 from metals to insulated materials. With the 
choice of an insulated layer for the upper part of the device, all kP  ratios bigger than 1 are rejected as the 

corresponding cP  ratios. Thus, the studied parameters kP  and cP  (Table 2) cover more than 99% of the 
possible ratios between two thermal conductivities values or two specific heats values, respectively. 

 

Figure 4: Thermal conductivity and specific heat for different materials and representations of all 

corresponding possible ratios 
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In a same way, the studied Stefan numbers cover a large range of scenarios (based on 126 different PCM) 
taking into account both values of latent heat and specific heat: 
 

 

Figure 5: Latent heat and specific heat for different materials and representation of all corresponding possible 

ratios of   Ste−1  

Finally, adding the tested dimensionless heat flux and thicknesses, a total of 1800 different scenarios were 
simulated. 

2.4.3 Numerical results 

To estimate a complete enthalpy-temperature function, the measured thermal response  θm  has to reach 

  θm3 = 20  and   θm4 = −20  during the period from 0τ  to 4τ . Thus, if one of those temperatures is not 
achieved for a given configuration, the scenario is rejected. After simulation of the 1800 different 
scenarios, 694 of the tested configurations were rejected with this constraint. On the other hand, the 
quality of the estimated enthalpy-temperature functions is evaluated on the dimensionless temperature 
range  −15≤θ ≤15 . If the rms  (Eq. (2.41)) is less than   Ste−1 100 , the estimation is considered to be 
accurate. Figure 6 shows the less accurate kept results for each tested Stefan numbers: 
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Figure 6: Less accurate enthalpy-temperature functions (  Ste−1 = 50,200  and   rms = 0.47,1.99 , 

respectively) 

In Figure 7, the results are shown for all the tested configurations (  Ste−1 = 50, 200 ). The 694 rejected 
scenarios are represented in black. In the set of the 1106 other scenarios, the inaccurate results are in grey 
and the accurate ones are in white: 
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Figure 7: Results of the simulations and accuracy of the enthalpy-temperature functions estimations (

  Ste−1 = 50,200 ) 

Some general remarks can be formulated studying those results. Obviously, the insulated layer has to be 
chosen to have the lowest as possible thermal properties with respect to the PCM ones. Ratios of 210−  and 

110− , or less, for thermal conductivities and specific heats, respectively, are a good choice when coupled 
with a ratio of thicknesses bigger than 1. Concerning the heat flux, the proposed inverse method is 
dependent on the thermal gradient in the PCM sample [17], i.e. the estimation of the enthalpy-temperature 
function is more accurate when this thermal gradient is low and therefore when the heat flux is low. Figure 
8, depicting the rms  as a function of different dimensionless heat flux or maximum thermal gradients 

between the two faces of the sample 
  
max θ front −θm( ) , illustrates this dependence: 
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Figure 8: Accuracy of the inverse method with a) the dimensionless heat flux, and  with b) the maximum of 

the thermal gradient within the sample (
  
Pk ,IL =10−2 , 

  
Pc,IL =10−1  and   LIL

* = 2 ) 

Experimentally, to overcome such a problem, a solution consists in controlling the temperature of the front 
face of the sample, adding a thermocouple between the heating element and the sample, to not exceed a 
given thermal gradient. Figure 10 represents a zoom on the rms  obtained with the 1800 tested scenarios: 
 

 

Figure 9: Zoom on the rms  versus the corresponding maximum of thermal gradient within the sample with 

the limits of accuracy   Ste−1 100  (  Ste−1 = 50,200 ) 

 



Advanced Spring School « Thermal Measurements & Inverse techniques », Domaine de Françon, Biarritz, 
March 1-6 2015 

http://metti.u-bordeaux.fr 59 

One observes that when the maximum of the thermal gradient doesn’t exceed 1.5, the estimation of the 
enthalpy-temperature function is accurate. However, when the information on the thermal gradient is not 
available or when the obtained enthalpy-temperature function is not accurate, it is always possible to 
extract some relevant parameters from this estimation. 
For example the less accurate result (  rms = 40.27 ), shown in Figure 9, allows some basic estimations: the 
dimensionless specific heats in solid and liquid states through the slopes calculated before and after the 
melting point and the inverse of the Stefan number by evaluation of the gap between those two states. One 
notices that all those parameters can be obtain for both melting and cooling steps.  

 

Figure 10: Less accurate enthalpy-temperature function and corresponding dimensionless specific heat 

representation (  Ste−1 = 200 , 
  
Pk ,IL =10−3 , 

  
Pc,IL =10−3 ,   LIL

* = 2  and  ϕ =10 ) 

In this example as in the following, the slopes giving the dimensionless specific heats in solid and liquid 
states estimations are calculated for the temperature range   −15≤ !θ ≤ −12  and   12 ≤ !θ ≤15 , respectively. 
They are obtained by simple linear regressions. On the other hand, the inverse of the Stefan number is 
evaluated through an apparent specific heat representation, i.e. by integration of the peak obtained after 
derivation respect to the time of the enthalpy-temperature function (see Figure 10). 
For the previous example, the estimated parameters are recapitulated in the Table 3: 
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Estimated parameter Value Error (%) 

Melting 
,cs PCMP  1.004 0.4 

,cl PCMP  1.197 0.3 
1Ste−  200.27 0.13 

Cooling 
,cs PCMP  0.995 0.5 

,cl PCMP  1.2 0 
1Ste−  200.3 0.15 

Table 3: Estimated parameters ( 1 200Ste− = , 3
, 10k ILP −= , 3

, 10c ILP −= , * 2ILL =  and 10ϕ = ) 

Finally, despite of a bad estimation of the enthalpy-temperature function, the thermodynamic parameters 
can be evaluated accurately. In summary, a device dedicated to the enthalpy-temperature function 
estimation has to be designed with some intuitive precautions, 

  
Pk ,IL ≤10−2 , 1

, 10c ILP −≤ , * 1ILL ≥  and 

5ϕ < . Moreover, for a reasonable imposed dimensionless heat flux ( )10ϕ < , if the phase changing 

occurs, i.e. if mθ  reaches 3 20mθ =  and 4 20mθ = − , a good evaluation of the thermodynamic properties is 
always possible. 

2.5 Experimental device and results 

Considering the conclusions of the previous dimensionless numerical study, a device was designed to 
characterize a shape stabilized PCM. A Peltier element insure the heating-cooling of the sample and a heat 

flux sensor (
 
19.5µV. W.m-2( )

-1
 of sensitivity) allows the control of this prescribed heat flux. Two type K 

thermocouples are used to record the thermal evolutions of the PCM and the ambient temperature. A good 
insulated layer with suitable mechanical properties is placed above a graphite foam filled with a PCM. The 
PCM has a melting point at about 40°C. A large piece of foam 

 
4cm×4cm×1.015cm( )  is filled by 

imbibition with the PCM in liquid phase. The porosity of the foam (70%) is filled at 93% by the PCM. 
The data of the two layers are summarized in Table 4. 
 

Parameters   

ILk  0.023  W.m-1.K-1  

ILcρ  50000  J.m
-3.K-1  

ILL  0.0255  m  

/G PCMk  100  W.m-1.K-1  

/G PCML  0.01015  m  

/G PCMρ  1010  kg.m-3  

PCMρ  1046  kg.m-3  

Table 4: Properties of the insulated layer and of the graphite/PCM composite 
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A cycle of melting – crystallization is performed in a range of temperature between 25 to 54°C in order to 
ensure a complete melting and crystallization of the PCM. Figure  11 presents the thermal response of the 
PCM ( mT ) devoted to the enthalpy-temperature function estimation, and the prescribed boundary 
conditions in flux and temperature. 

 

Figure 11: Thermal evolution ( )mT t of the sample and boundary conditions ( ( )q t  and ( )T t∞ ) 

As this material presents an important undercooling, the estimation of the enthalpy-temperature function is 
done in the first part of the experimental protocol, i.e. during the heating of the sample, in accordance with 
the proposed inverse method. To initialize the calculus, the thermal conductivity of the composite is 
assumed equal to the graphite foam one and the specific heat in solid phase is arbitrarily 61 10× . The 
corresponding Tikhonov regularization parameter has been determined at 0.05µ = . 
 

 

Figure 12: Estimated enthalpy-temperature function 
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The specific heats in solid and liquid states are calculated for the temperature ranges 25 30mT≤ ≤  and 

48 53mT≤ ≤ , respectively. As already pointed out, they are obtained by simple linear regressions. The 

latent heat fLρ  is evaluated by integration of the peak obtained in apparent specific heat representation of 

the enthalpy-temperature function (  d
!H d !T , see Figure  13). It can be noticed that melting occurs, as 

expected, at about 40°C. 

 

Figure 13: Apparent specific heat representation of the estimated enthalpy-temperature function 

After the experiment, a piece of the tested sample was characterized using a standard DSC. The results 
obtained by the two methods are summarized in Table 5. 
 

Parameters DSC Estimated Error (%)  

, /s G PCMcρ  61.27 10×  61.28 10×  0.79 3 1. .J m K− −  

, /l G PCMcρ  61.63 10×  61.7 10×  4.3 3 1. .J m K− −  

fLρ  75.02 10×  75.15 10×  2.6 3.J m−  

Table 5: Estimated thermodynamic properties of the graphite/PCM composite using a standard DSC and the 

proposed method 

, /s G PCMcρ , , /l G PCMcρ  and fLρ  coming from the DSC have been calculated assuming no variation of 
density of the composite in solid and liquid phases. The results obtained by the proposed method are in 
very good agreement with the standard measurements. Two important skills of the method have to be 
considered. In a first time, due to the time integration (see eq. (2.7)), the estimated enthalpy-temperature 
function is not significantly affected by the measurement noise. The second skill is an “auto-correction” of 
a bad initialization of the specific heat in solid phase (here 61 10×  instead of 61.27 10× ) through the 
estimation of the source term. Finally, one notices that enthalpy-temperature function estimation needs, in 
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this case, an experiment of less than 500 seconds, a testing time to compare with several days estimation 
with a standard DSC. 

2.6 Conclusion 

A new device for enthalpy-temperature function estimation of shape-stabilized PCM has been proposed. 
The simplicity of the experimental device is comparable to a hot plane one:  a multilayer composed by a 
heating element, the studied PCM and an insulating layer. A heat transfer model has been used to obtain 
the enthalpy-temperature function from one temperature measurement point. A powerful inversion 
technique has been proposed for that. The main advantage of this technic is that it allows non-parametric 
identification of enthalpy-temperature functions. These functions are retrieved by solving a problem of 
time-dependent, moving sources estimation by inversion of a constant-parameters heat conduction model. 
It is shown that unknown sources are the output of a linear and invariant state model whose input is 
measured temperature on the upper side of the PCM. Enthalpy-temperature functions are thus calculated 
in a simple and fast way. 
Using a dimensionless problem, many numerical tests carried out have shown the possibilities and limits 
of the proposed device. The main difficulty comes from the influence of the thermal gradient within the 
PCM, a large one forbidding accurate enthalpy-temperature function estimation but a simple 
thermodynamic characterization remain possible. The main advantages of the proposed method with 
regard to standard methods like DSC are that it yields complete thermodynamic characterization of PCM 
with large-size representative volumes in a testing time significantly reduced: some few minutes instead of 
several days as required for enthalpy-temperature function measurement when using DSC in isothermal 
step mode. 
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