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Abstract. The solution of an inverse problem within the Bayesian framework is recast 
in the form of statistical inference from the posterior probability density. Such a 
density is obtained through Bayes' theorem and is proportional to the product of the 
likelihood function, which models the measurement errors, by the prior distribution, 
which models the information known before the experimental data is available. The 
focus of this tutorial is on Markov Chain Monte Carlo (MCMC) methods, but its 
application to state estimation problems with Bayesian filters is not treated here. Basic 
concepts, as well as practical issues regarding the implementation of MCMC methods, 
are presented in this tutorial. Computational examples, involving the application of the 
Metropolis-Hastings algorithm to the solution of inverse heat transfer problems, will be 
made available in the presentation to be given during the METTI school. 

 

7.1 Introduction 

The term Bayesian is commonly used to refer to techniques for the solution of inverse problems that fall 
within the framework of statistics developed by the Presbyterian minister Rev. Thomas Bayes ( 1702 - 
†1761) [1]. Such framework was actually established after Bayes' death, when his friend, Richard Price, 
published Bayes' famous paper, which dealt with the following problem: "Given the number of times in 
which an unknown event has happened and failed: Required the chance that the probability of its 
happening in a single trial lies somewhere between two degrees of probability that can be named."[2]. On 
the other hand, it is attributed to Laplace the mathematical formulation that is known today as Bayes' 
theorem [3]. The term Bayesian was first used by R. A. Fisher, but in a pejorative context. Although born 
more than 120 years after the death of Bayes, Fisher was Bayes biggest intellectual rival [3]. The major 
issue by Fisher against Bayes and Laplace was that they used the concept of a prior probability, which 
represents the information about an unknown quantity before the measured data is available [3]. Fisher's 
theory relies solely on the measured data and on modelling of their associated uncertainty, aiming at 
unbiased inference and/or decision; therefore, it is usually referred to as the frequentist framework for 
statistics [1,3,4]. On the other hand, within the Bayesian framework, credit is also given to previous 
beliefs in addition to that given to the measured data. Such previous information can even be qualitative, 
but need to be represented in terms of a probability distribution function, and regretfully induce bias in the 
results [1,3,4]. Nevertheless, the use of prior information in the Bayesian framework does not mean that it 
completely overtakes the information provided by the measured data that represents the physical process 
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under picture, unless the last one is too uncertain to be really taken into account. One may also argue that 
life is Bayesian: think about life as a sequential process and notice that, at any day, our previous beliefs 
are combined with new measured data, in order to provide at the end of the day a better understanding 
about different things of our interest, like physical/chemical phenomena, industrial processes, persons, or 
even the faster way to go to work. 
Although not always considered in such a way, the solution of an inverse problem can be appropriately 
formulated in terms of statistical inference [5]. Statistical inference refers to the process of drawing 
conclusions or making predictions based on limited information, that is, beyond the immediate data [4]. 
Note that this is exactly what is aimed with the solution of inverse problems, which can be broadly defined 
as those dealing with the estimation of unknown quantities appearing in the mathematical formulation of 
any kind of process, by using measurements of some dependent variable of the problem (observable 
response of the system) [5-27]. There are many techniques for the solution of inverse problems, but the 
most general ones are usually related to the minimization of an objective function that involves the 
difference between measured and estimated responses of the physical problem [5-27]. If the objective 
function is derived based on statistical hypotheses for the measurement errors and unknown 
parameters/functions, the minimization procedure can be related to statistical inference, thus resulting in 
point estimates for the unknowns that allow for estimations of their associated uncertainties [5,8]. 
Unfortunately, such is generally not the case, in special when the objective function is penalized with 
regularization terms.  
The solution of the inverse problem within the Bayesian framework is recast in the form of statistical 
inference from the so-called posterior probability density, which is the model for the conditional 
probability distribution of the unknown parameters given the measurements. The measurement model 
incorporating the related uncertainties is called the likelihood, that is, the conditional probability of the 
measurements given the unknown parameters. The model for the unknowns that reflects all the uncertainty 
of the parameters without the information conveyed by the measurements, is called the prior model 
[5,8,20,22,25-28]. The prior information can be combined with the likelihood to form the posterior 
distribution by using Bayes' theorem [5,8,20,22,25-28].  
The objective of this tutorial is to introduce some basic concepts regarding the solution of inverse heat 
transfer problems within the Bayesian framework. Special emphasis is given to the use of Markov Chain 
Monte Carlo (MCMC) methods, since they can be applied for cases that do not involve an analytical 
posterior distribution [1,4,5,20,22,25-28]. Monte Carlo methods are also designated as Stochastic 
Simulation techniques, since values simulated (sampled) from the distribution of interest, which in general 
is not completely known, are used for the computation of its statistics [28]. Simulation techniques rely on 
probability results, such as the law of large numbers, which ensures that the approximate statistics 
approach the actual ones as the number of simulated values increase [28].    
This tutorial is not aimed at a literature review about the subject, which would certainly include a large 
number of papers ranging from statistical, mathematical and computational aspects, to practical 
engineering applications. Indeed, an analysis of recent conferences on inverse problems clearly shows a 
trend of increasing number of papers that make use of solution techniques within the Bayesian framework, 
as faster computers become available. This tutorial also does not cover Bayesian filters for the solution of 
state estimation problems. The major source for the solution of inverse problems within the Bayesian 
framework is the book by Kaipio and Somersalo [5]. The reader is referred to the book by Gamerman and 
Lopes [28] for deeper details about Markov Chain Monte Carlo methods and to the books by Lee [1] and 
Winkler [4] for fundamental material on Bayesian statistics.                                      

7.2 General Considerations 

Consider the mathematical formulation of a heat transfer problem, which, for instance, can be linear or 
non-linear, one or multi-dimensional, involve a single or coupled heat transfer modes, etc.  We denote the 
vector of parameters appearing in such formulation as 
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PT = P1, P2 ,..., PN

!" #$   (7.1) 

where N is the number of parameters. These parameters can possibly be thermal conductivity components, 
heat transfer coefficients, heat sources, boundary heat fluxes, etc. They can represent constant values of 
such quantities, or the parameters of the representation of a function in terms of known basis functions. 
For example, we can consider a heat source term gp(t) as a function of time, parameterized as follows: 

 
  
g p (t) = PjC j (t)

j=1

N

∑   (7.2) 

where ( )jC t , j = 1,…,N, are linearly-independent basis functions that generate the space of the projected 

gp(t). Note that ( )jC t  can also be functions with local support, such as  

 

  

C j (t) =
1 , for t j < t < t j+1

0 , elsewhere

!
"
#

$#
  (7.3) 

where the parameter jP  then represent the local value of the function in the time interval 1j jt t t +< < , that 

is, 
  
g p (t j ) = Pj , as illustrated by figure 1. 

 

Figure 1. Parameters representing local values of a function that varies in time 

Consider also that transient measurements are available within the medium, or at its surface, where the 
heat transfer processes are being mathematically formulated. The vector containing the measurements is 
written as:  

     
YT =

!
Y1 ,
!
Y2 , ... ,

!
YI( )   (7.4) 

where   
!
Yi contains the data of M sensors at time ti, i = 1, …, I, that is,  

 
   
!
Yi = Yi1 , Yi2 , ... , YiM( )  for  i=1,…,I (7.5) 
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so that we have D =MI measurements in total. Note that in practice the measured data are not limited to 
temperatures, but could also include heat fluxes, radiation intensities, etc.  
Throughout this tutorial, the measurement errors are assumed to be additive, that is, 

  Y =T(P) +ε   (7.6) 

where T(P) is the solution of the mathematical formulation of the physical problem, obtained with the 
vector of parameters P, that is, 

     T
T (P) = [

!
T1(P) ,

!
T2(P) ,",

!
TI (P)]   (7.7) 

where 

     
!
Ti(P) = [ Ti1(P) , Ti2(P) ," , TiM (P)]  for i=1,…,I (7.8) 

The mathematical formulation is supposed to perfectly represent the physical problem of interest. 
Similarly, the solution T(P) is supposed to be extremely accurate from the computational point of view. 
Anyhow, modelling errors can be appropriately taken into account within the Bayesian framework [5].  
By further assuming that the measurement errors, ε , are Gaussian random variables, with zero means, 
known covariance matrix W and independent of the parameters P, their probability density function is 
given by [5,8,20,22,25-28]: 

 1/2/2 11( ) (2 ) exp
2

D Tπ π
−− −⎧ ⎫= −⎨ ⎬

⎩ ⎭
ε W ε W ε  (7.9) 

Due to the additive model for the measurement errors given by equation (7.6), equation (7.9) can be 
rewritten as  

 1/2/2 11( ) ( ) (2 ) exp [ ( )] [ ( )]
2

D Tπ π π
−− −⎧ ⎫= = − ⎨ ⎬

⎩ ⎭
ε Y P W Y-T P W Y-T P   (7.10) 

which is the likelihood function for the present case. The likelihood function gives the relative probability 
density of different measurement outcomes Y with a fixed P [5,8,20,22,25-28].  
A very common approach for the solution of inverse problems dealing with the estimation of the 
parameters P with the measurements Y, is to maximize the likelihood function. This can be accomplished 
through the minimization of its exponent, resulting in the maximum likelihood objective function: 

 [ ] [ ]1( ) ( ) ( )T
MLS

−= − −P Y T P W Y T P   (7.11) 

The least squares norm can be obtained as a particular case of Eq. (7.11), if the measurements are 
uncorrelated and with constant variances σ 2 [8]. In this case, the covariance matrix W is given by: 

 2σ=W I   (7.12) 

where I is the identity matrix. Then, the minimization of Eq. (7.11) is equivalent to the minimization of  

 [ ] [ ]( ) ( ) ( )T
OLSS = − −P Y T P Y T P   (7.13) 

Therefore, in order to make use of the minimization of the least squares norm for obtaining point estimates 
of the parameters P that have some statistical meaning (for example, that allow to obtain estimates of the 
covariances of the estimated parameters), all the hypotheses stated above need to be valid [8]. Such a fact 
is quite usually overlooked when an objective function is defined for the solution of an inverse problem 
via optimization techniques. Different methods can be used for the minimization of equations (7.11) or 
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(7.13), after an analysis of the sensitivity coefficients of the parameters and an appropriate experimental 
design [8-26]. For a nonlinear case, the iterative procedure of Gauss' method is given by:     

 1 1 1 1( ) [ ( )]k k T T k+ − − −= + −P P J W J J W Y T P   (7.14) 

where the superscript k denotes the number of iterations and J is the sensitivity matrix. The covariance 
matrix, cov( )P , of the values estimated for the parameters P with the minimization of (7.13), is given by 
[8]: 

 1 1cov( ) ( )T − −=P J W J   (7.15) 

which is exact for the linear case, but an approximation for the nonlinear case. 

7.3 Bayesian Framework  

The solution of inverse problems within the Bayesian framework is based on the following principles [5]:  
1. All variables included in the mathematical formulation of the physical problem are 

modelled as random variables;  
2. The randomness describes the degree of information concerning their realizations;  
3. The degree of information concerning these values is coded in probability distributions;  
4. The solution of the inverse problem is the posterior probability distribution, from which 

distribution point estimates and other statistics are computed.  
Therefore, techniques for the solution of inverse problems within the Bayesian framework can be 
summarized in the following steps [5]: 

1. Based on all information available for the parameters P before the measured data Y is 
available, select a probability distribution function, π(P), that appropriately represents the 
prior information. 

2. Select the likelihood function, π(Y|P), that appropriately models the measurement errors, that 
is, the relation between the observations and the mathematical model of the physical 
problem under picture (see, for example, equation (7.10)).  

3. Develop methods to explore the posterior density function, which is the conditional 
probability distribution of the unknown parameters given the measurements, π(P|Y). 

 The formal mechanism to combine the new information (measurements) with the previously 
available information (prior) is known as the Bayes’ theorem [5,8,20,22,25-28]. Let P and Y be 
continuous random variables. Then, we can write [4]: 

 ( , )( )
( )

π
π

π
=

P YP Y
Y

  (7.16) 

that is, the conditional density of the random variable P given a value of the random variable Y is the joint 
density of P and Y divided by the marginal density of Y, where 

 
   
π (Y) = π (P,Y)dP

RN∫   (7.17) 

The joint density ( , )π P Y  is not generally known, but it can be written in terms of the likelihood and the 
prior as [4]  

 ( , ) ( ) ( )π π π=P Y Y P P   (7.18) 

By substituting (7.18) into (7.16), we then obtain Bayes' theorem, which is given by 
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( ) ( )

( ) ( )
( )posterior

π π
π π

π
= =

Y P P
P P Y

Y
  (7.19) 

where πposterior(P) is the posterior probability density, π(P) is the prior density, π(Y|P) is the likelihood 
function and π(Y) is the marginal probability density of the measurements, which plays the role of a 
normalizing constant. Since the computation of π(Y) with equation (7.17) is in general difficult, and 
usually not needed for practical calculations as will be apparent below, Bayes' theorem is commonly 
written as 

 ( ) ( ) ( ) ( )posteriorπ π π π= ∝P P Y Y P P   (7.20) 

7.4 Maximum a Posteriori Objective Function 

Consider a case with a Gaussian prior density model for the unknown parameters in the form: 

 1/2/2 11( ) (2 ) exp ( ) ( )
2

N Tπ π
−− −⎡ ⎤= −⎢ ⎥⎣ ⎦

P V P -µ V P -µ   (7.21) 

where µ  and V are the known mean and covariance matrix for P, respectively. By assuming normally 
distributed measurement errors, with zero means and known covariance matrix W, additive and 
independent of the parameters P, the likelihood function is given by equation (7.10). By substituting 
equations (7.10) and (7.21) into Bayes’ theorem given by Eq. (7.20), we obtain: 

 [ ] [ ]1ln ( | ) ( ) ln 2 ln | | ln | | ( )
2 MAPD N Sπ π∝ − + + + +P Y W V P   (7.22) 

where 

 [ ] [ ]1 1( ) ( ) ( ) ( ) ( )T T
MAPS − −= − − + − −P Y T P W Y T P P V Pµ µ   (7.23) 

Equation (7.22) reveals that the maximization of the posterior distribution can be obtained with the 
minimization of the objective function given by equation (7.22), denoted as the maximum a posteriori 
(MAP) objective function [5,8,20,22,25-28]. Equation (7.23) shows the contributions of the likelihood and 
the prior distributions in the objective function, given by the first and second terms on the right-hand side, 
respectively. It is now interesting to notice that the maximum likelihood objective function (equation 
(7.11)) is not a Bayesian estimator, since it does not contain information provided by the prior distribution 
for the parameters. Conspicuously, the least squares norm (equation (7.13)) and other objective functions 
derived from equation (7.11), even those containing penalization terms (e.g., Tikhonov's regularization), 
are not Bayesian estimators, since they only explore the information provided by the measurements and, 
eventually, some characteristics of the parameters, like smoothness. Although the right hand side of Eq. 
(7.23) is a quadratic form and resembles Tikhonov’s regularization, there is a fundamental difference 
between the two approaches. Tikhonov’s regularization focuses in obtaining a stabilized form of the 
original objective function and is not designed to yield error estimates that would have a statistical 
interpretation. In contrast, Bayesian inference assumes that the uncertainties in the likelihood and prior 
models reflect the actual uncertainties. Only if this condition is fulfilled, the uncertainties that are 
computed from equation (7.23) correspond to the actual posterior uncertainties [5].  
Such as for the maximum likelihood objective function, different methods can be used for the 
minimization of equation (7.23) in order to obtain point estimates for the unknowns. For nonlinear 
problems, the Gauss method results on the following iterative procedure [5,8,20,22,25-28]:  

 1 1 1 1 1 1[ ] { [ ( )] ( )}k k T T k k+ − − − − −= + + − + −P P J W J V J W Y T P V Pµ   (7.24) 
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Note in equation (7.24) that with the MAP estimator, the conditioning of the matrix 1T −J W J  is improved 
with the matrix 1−V , which is the inverse of the covariance matrix of the Gaussian prior information for 
the parameters. Therefore, the estimation of the parameters can be stabilized by using prior information 
with small covariances. Despite such desired effect for the regularization of the estimation procedure, the 
MAP estimator is biased and the expected value of P is µ  [8]. Such a fact clearly shows the important 
requirement of modeling the prior information as accurately as possible, for the success of the inverse 
analysis within the Bayesian framework. The covariance matrix,cov( )P , of the values estimated for the 
parameters P with the minimization of (7.23), is given by [8]: 

 1 1 1cov( ) ( )T − − −= +P J W J V   (7.25) 

which is exact for the linear case, but an approximation for the nonlinear case. 

7.5 Markov Chain Monte Carlo (MCMC) Methods 

The Gaussian likelihood and the Gaussian prior examined in section 4 resulted in an expression for the 
posterior (equation (7.22)) from which a MAP point estimate can be obtained for the parameters, provided 
that the minimum of equation (7.23) exists. In this particular case (Gaussian likelihood and Gaussian 
prior), the prior is conjugate to the likelihood [1,4,5,28]. A class Π of prior distributions is said to form a 
conjugate family if the posterior density is in the class Π for all P, whenever the prior density is in Π [1]. 
Although, this property is valid for many cases that involve continuous distributions, in special those that 
belong to the exponential family [1,28], if non-conjugate prior probability densities are assumed for the 
parameters, the posterior probability distribution may not allow an analytical treatment. Moreover, 
whereas the computation of the MAP estimate is an optimization problem, that is,  

 
   
PMAP = argmax

P∈RN
π (P | Y)   (7.26) 

other point and confidence estimates from the posterior distribution typically require numerical 
integration. For example, one common point estimate is the conditional mean defined as [5]: 

 
   
PCM = E(P) = Pπ (P | Y)dP

RN
∫   (7.27) 

where E(.) denotes the expected value. In general, the dimension N of the parameter space is large enough 
to make the numerical integration in equation (20) impractical. Besides that, the computation of the 
normalizing constant in the denominator of ( | )π P Y  (see equations (7.16) and (7.17)) already constitutes 
a challenging problem by itself.  
For those cases that the posterior is not analytical and/or numerical integrations required for estimates are 
not practical, Markov Chain Monte Carlo (MCMC) methods can provide a solution of the inverse 
problem, so that inference on the posterior probability becomes inference on its samples [1,4,5,20,22,25-
28]. For example, the Monte Carlo integration of equation (7.27) can be approximated by [5]: 

 
   
PCM = E(P) = Pπ (P | Y)dP

RN
∫ ≈

1
n

P(t )

t=1

n

∑   (7.28) 

where ( )tP  , for t = 1,…, n, are samples from ( | )π P Y . Markov Chain Monte Carlo methods are used to 
obtain such samples. 
Due to the simplicity in the application of MCMC methods, such a technique for the solution of inverse 
problems has been recently becoming quite popular, being applied even for cases where a MAP estimate 
could be feasible. One clear disadvantage on the application of Monte Carlo methods is the large 
computational times required. On the other hand, errors on the use of computationally fast reduced models 
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for the physical problem can be appropriately accounted for within the Bayesian framework [5], so that 
the application of MCMC methods to many practical problems is nowadays possible. 
Concepts and properties of Markov chains are presented in this section, which is then finished with a 
powerful, simple and popular MCMC algorithm. Some practical aspects, as well as speedup techniques, 
for the implementation of MCMC methods are delayed to other sections further below.      

7.5.1 Markov Chains 

The Markov chain is named after the Russian mathematician A. A. Markov, who developed such concept 
by investigating the alternance of vowels and consonants in a Russian poem. Poincaré also dealt with 
sequences of random variables that were in fact Markov chains [28]. A Markov chain is a stochastic 
process that, given the present state, past and future states are independent. The collection of the random 
quantities ( ){ : }t t T∈P  is said to be a stochastic process with state space S and index set T. The state 
space is a subset of RN, that is, the support of the parameter vector, while here T is the set of Natural 
numbers that will index the states of the Markov chain [28].  
The stochastic process is a Markov chain if it satisfies the Markov condition [1,4,5,20,22,25-28]: 

     q(Pt+1 = y | Pt = x,Pt−1 = x t−1,…,P0 = x0 ) = q(Pt+1 = y | Pt = x)  for all 1 0, , , ,t S− ∈y x x xK (7.29) 

where q is a transition probability. Some concepts regarding Markov chains are now presented. The reader 
shall consult references [1,4,5,20,22,25-28] for further details.  
If the transition probability does not depend on t, that is, if  

 1 1( | ) ( | )t m t m t tq q+ + + += = = = =P y P x P y P x  for all m T∈  (7.30) 

the Markov chain is said to be homogenous [22]. 
A distribution p* is said to be a stationary distribution of a chain if, once the chain is in distribution p*, it 
stays in this distribution. Suppose now that ( ) *tp p→  as t→∞  for any (0)p , where ( )tp  is the 
distribution at state t of the chain. Then, p* is the equilibrium distribution of the Markov chain and the 
chain is said to be ergodic.  
 
Consider the sequence of states 1 2 t→ → → →x k k k yL  so that the transition probabilities 

    q(k1 | x) ≠ 0, q(k 2 | k1) ≠ 0, … , q(y | k t ) ≠ 0 . Then, there is a sequence of states from x to y with a 
nonzero probability of occurring in the Markov chain. It is said that x and y communicate. If y and x also 
communicate through nonzero transition probabilities, it is said that these two states intercommunicate. If 
all states in S intercommunicate, then the state space is said to be irreducible under q. A Markov chain is 
reversible if ( ) ( | ) ( ) ( | )p q p q=x y x y x y .  

The period of a state x, denoted by dx, is the largest common divisor of the set ( ){ 1: ( ) 0}mm p≥ >x,x . A 
state x is aperiodic if dx = 1. A chain is aperiodic if all of its states are aperiodic.  
The reason for the introduction of the above concepts about Markov chains is for the statement of 
following result regarding the Metropolis-Hastings algorithm [22]: Let p be a given probability 
distribution. The Markov chain simulated by the Metropolis-Hastings algorithm is reversible with respect 
to p. If it is also irreducible and aperiodic, then it defines an ergodic Markov chain with unique 
equilibrium distribution p.   
Unfortunately, it might not be possible to prove that the chain is irreducible and/or aperiodic for practical 
cases. In fact, parameters with linearly-dependent sensitivity coefficients generally result on periodic and 
correlated chains and an equilibrium distribution is not reached. Similarly to classical methods of 
parameter estimation, where the sensitivity coefficients directly influence the topology of the objective 
function based on the likelihood (see equation (7.11), for example) and a global minimum might not exist, 
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such coefficients directly influence the posterior distribution, which is now sought via the implementation 
of a Markov chain. Therefore, the sensitivity coefficients need also to be carefully examined if the 
solution of the inverse parameter estimation problem is to be obtained within the Bayesian framework. In 
classical methods based on the maximum likelihood objective function, parameters with small and linearly 
dependent sensitivity coefficients are usually deterministically fixed, based on values known from 
previous experience and/or literature. In approaches within the Bayesian framework, uncertainties on such 
kind of parameters can be appropriately taken into account through their prior distribution functions. On 
the other hand, the analysis of the sensitivity coefficients reveals that parameters with small and/or 
linearly dependent sensitivity coefficients require informative prior distributions for the success of the 
estimation procedure.   

7.5.2 Metropolis-Hastings Algorithm 

The most common MCMC algorithms are the Gibbs Sampler and the Metropolis-Hastings algorithm 
[1,4,5,20,22,25-28]. The Gibbs Sampler is not presented here for the sake of brevity.  The Metropolis-
Hastings algorithm was first devised by Metropolis et al. [29] in 1953, who aimed at the calculation of the 
properties of substances composed of interacting molecules. It was, therefore, a work focused on statistical 
mechanics, not in statistics itself. Although the paper has five co-authors [29], only the name of the first 
author became popular to designate the developed algorithm, which was lately generalized by Hastings in 
1970 [30]. In fact, there are some controversies about who actually contributed on the work by Metropolis 
et al. [29,31]. 
The Metropolis-Hastings algorithm draws samples from a candidate density, such as in acceptance-
rejection sampling [1]. The acceptance-rejection method is used to generate samples from a density 

   p(P) = f (P) / K , where the normalizing constant K might be unknown, such as in the posterior 
distribution given by equation (7.19). Instead of sampling from ( )p P , assume that there exists a 
candidate density ( )h P  that is easy to simulate samples from, where    f (P) ≤ c h(P)  and c is a constant. 

The following steps are then used to obtain a random variable P̂  from density ( )p P  with the acceptance-
rejection method [1]: 

1. Generate a random variable *P  from the density ( )h P ; 
2. Generate a random value ~ U(0,1)U , which is uniformly distributed in (0,1); 

3. If ( ) / ( )U f ch≤ P P , let 
*ˆ =P P . Otherwise, return to step 1. 

The implementation of the Metropolis-Hastings algorithm starts with the selection of a candidate or 
proposal distribution * ( )( | )tq P P , which is used to draw a new candidate state *P , given the current state 
( )tP of the Markov chain. Remind that, for the solution of the inverse problem within the Bayesian 

framework, one aims at simulating the posterior distribution ( ) ( ) ( )posteriorπ π π∝P Y P P  (see equation 
(7.20)). Hence, the balance (reversibility) condition of the Markov chain of interest is given by: 

   ( ) * ( ) * ( ) *( ) ( | ) ( ) ( | )t t t
posterior posteriorq qπ π=P P P P P P   (7.31) 

In order to avoid eventual cases that ( ) * ( ) * ( ) *( ) ( | ) ( ) ( | )t t t
posterior posteriorq qπ π>P P P P P P , that is, the 

process moves from ( )tP  to *P more often than the reverse, a probability * ( )( | )tα P P  is introduced in 
equation (7.31), so that [1]: 

   ( ) * ( ) * ( ) * ( ) *( ) ( | ) ( | ) ( ) ( | )t t t t
posterior posteriorq qπ α π=P P P P P P P P   (7.32) 

Therefore, 
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* ( ) *

* ( )
( ) * ( )

( ) ( | )
( | ) min 1,

( ) ( | )

t
posteriort

t t
posterior

q
q

π
α

π

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

P P P
P P

P P P
  (7.33) 

where * ( )( | ) 1tα =P P  when the balance condition is satisfied. Equation (7.33) is called the Metropolis-
Hastings ratio. Notice that, for the computation of equation (7.33), there is no need to know the 
normalizing constant that appears in the definition of the posterior distribution (see equations (7.16) and 
(7.17)).  
Equation (7.32) shows that the probability of moving from the current state ( )tP  to *P is now given by

* ( ) * ( )( | ) ( | )t tq αP P P P . In the Metropolis-Hastings algorithm, a candidate *P  is accepted, such as in the 

acceptance-rejection method described above, based on the probability * ( )( | )tα P P . The Metropolis-
Hastings algorithm can then be summarized in the following steps [1,4,5,20,22,25-28]: 

1. Let 1t =  and start the Markov chain with the initial state (1)P . 
2. Sample a candidate point *P from a proposal distribution * ( )( | )tq P P . 

3. Calculate the probability * ( )( | )tα P P  with equation (7.33). 
4. Generate a random value ~ U(0,1)U , which is uniformly distributed in (0,1). 

5. If * ( )( | )tU α≤ P P , set ( 1)t+P = *P . Otherwise, set ( 1)t+P = ( )tP . 

6. Make 1t t= +  and return to step 2 in order to generate the sequence     {P(1) ,P(2) ,…,P(n)} . 
 
In this way, a sequence is generated to represent the posterior distribution and inference on this 
distribution is obtained from inference on the samples     {P(1) ,P(2) ,…,P(n)} . We note that values of ( )tP
must be ignored until the chain has converged to equilibrium (the burn-in period).  
The proposal distribution plays a fundamental role in the success of the Metropolis-Hastings algorithm. 
Typical choices for * ( )( | )tq P P  are presented below. 

(i) Random Walk:  In this case * ( )t= +P P Ψ , where Ψ  is a vector of random variables with distribution 

1( )q ψ . Therefore, * ( )
1( | ) ( )tq q=P P Ψ . If the proposal distribution is symmetric, that is, 

1 1( ) ( )q q= −ψ ψ  or * ( ) ( ) *
1( | ) ( | )t tq q=P P P P , equation (7.33) reduces to 

    
*

* ( )
( )

( )
( | ) min 1,

( )
posteriort

t
posterior

π
α

π

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

P
P P

P
  (7.34) 

Thus, for this choice of the proposal density, equation (7.34) shows that in step 5 of the Metropolis-
Hastings algorithm, the candidate point *P  is always accepted if the move leads to a region of higher 
posterior probability. Furthermore, the candidate point can also be accepted if 

* ( )( ) ( )tposterior posteriorπ π<P P  with probability * ( )( | )tα P P , thus allowing that the state space be highly 
explored.  
Uniform and Gaussian distributions are commonly used for 1( )q ψ . Consider one single component jP  of 

the vector P . For the uniform random walk proposal one can write: 

    * ( ) (2 1)t
j j jP P w r= + −   (7.35) 

where r  is a random number with uniform distribution in (0,1), that is, ~ U(0,1)r , while jw  is the 

maximum variation for the parameter jP .  
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For the Gaussian random walk proposal we have 

    * ( )t
j j jP P e= +   (7.36) 

where je  is a Gaussian random number with zero mean and standard deviation js .  
 
(ii) Independent Move:  This choice for the proposal density is of the kind  

* ( ) *
2( | ) ( )tq q=P P P , that is, it does not depend on the current state ( )tP . In this case, the proposal 

density * ( )( | )tq P P can be conveniently selected as the prior density *( )π P . Then, by also utilizing  
equation (7.20), equation  (7.33) is rewritten as      

    
* ( ) * * * ( )

* ( )
( ) * ( ) ( ) ( ) *

( ) ( | ) ( | ) ( ) ( )( | ) min 1, min 1,
( ) ( | ) ( | ) ( ) ( )

t t
posteriort

t t t t
posterior

q
q

π π π π
α

π π π π

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦⎣ ⎦

P P P Y P P PP P
P P P Y P P P

 (7.37) 

Hence, the Metropolis-Hastings ratio is given by the ratio of the likelihoods, that is, 

    
*

* ( )
( )

( | )( | ) min 1,
( | )

t
t

π
α

π
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Y PP P
Y P

  (7.38) 

Similar to the random walk proposal, candidates moving to regions of higher probability (in this case the 
likelihood) are always accepted. Candidates in regions of lower likelihoods can be accepted with 
probability * ( )( | )tα P P . 
A Metropolis-Hastings algorithm with an adaptive proposal distribution was presented by Haario et al 
[32]. 

7.6 Practical Issues regarding Markov Chain Monte Carlo (MCMC) 

Methods 

The objective of this section is to bring to the reader's attention some important aspects in the 
implementation of Markov Chain Monte Carlo methods. Although the discussion about likelihood and 
prior distributions is not limited to MCMC methods and is pertinent to Bayesian techniques in general, it 
was delayed until this section for the sake of organization of the text. Such is also the case regarding 
hierarchical models. In addition to these two concepts, this section is also devoted to the analysis of the 
outputs of Markov chains.  

7.6.1 Likelihood and Priors 

The posterior distribution is proportional to the product of the likelihood function and the prior 
distribution (equation (7.20)). As discussed in section 2, the likelihood function involves the solution of 
the mathematical formulation of the physical problem under analysis, that is, the solution of the direct or 
forward model, as well as the measurements and their related uncertainties. Measurement errors are 
modelled after the calibration of sensors and instruments used to collect the experimental data. The 
likelihood in section 2 was considered as Gaussian and given by equation (7.10). Such a model is in 
general appropriate for temperature measurements taken with thermocouples and infrared cameras.  For 
example, figure 2.b presents the histogram of the readings (see figure 2.a) of a plate maintained at the 
constant temperature of 23 oC, obtained with a SC7600 Flir infrared camera. This histogram clearly 
approximates a Gaussian distribution. For other likelihood models appropriate to different physical 
phenomena the reader is referred to [5].   
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(a) 

 

(b) 

Figure 2. (a) Thermal image with an infrared camera of an isothermal plate; (b) Histogram of the 

temperature measurements [33]. 

A Gaussian prior was also considered in section 4, given by equation (7.21) for a multivariate case, with 
mean µ and covariance matrix V, denoted as ~ ( )NP µ,V . For one single parameter jP , a Gaussian 

prior with mean jµ and variance 2
jσ , 2~ ( , )j j jP N µ σ , is given by     

    
2

22

( )1 1( ) exp
22

j j
j

jj

P
P

µ
π

σπσ

⎡ ⎤−
= −⎢ ⎥

⎢ ⎥⎣ ⎦
 in  jP−∞ < <∞  (7.39) 

Random variables modelled by the Gaussian prior have support in R; hence, may assume negative values, 
although this might happen with small probabilities depending on the values of jµ and 2

jσ . On the other 
hand, several physical parameters only allow positive values, such as, for example, thermal conductivity, 
specific heat and density. For those cases, a very simple prior that allows lower and upper bounds for the 
parameter values is the uniform distribution ~ ( , )jP U a b   given by 

    
1 ,

( )( )
0 ,

j
j

a P b
b aP

elsewhere
π

⎧ < <⎪ −= ⎨
⎪
⎩

  (7.40) 

Mean and variance for the uniform distribution are given by 
1 ( )
2
a b+  and 21 ( )

12
b a− , respectively. In 

the uniform distribution, any value in ja P b< <  is equally probable. If in this interval values around a 
known mean are more likely to occur than elsewhere, like in a Gaussian distribution, but the probability 
density is zero in jP a≤  and jP b≥ , one possible prior can be obtained by combining equations (7.39) in 
(7.40), which is called truncated Gaussian distribution, that is,   
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2

22

( )1 1exp ,
2( ) 2

0 ,

j j
j

jj j

P
a P b

P

elsewhere

µ

σπ πσ

⎧ ⎡ ⎤−
− < <⎪ ⎢ ⎥⎪

= ⎢ ⎥⎨ ⎣ ⎦
⎪
⎪⎩

  (7.41) 

Other distributions that satisfy positive constraints are available. For example, the Rayleigh distribution 
~ ( )j jP R σ  is given by  

    
2

2

1( ) exp
2

j j
j

j j

P P
Pπ

σ σ

⎡ ⎤⎛ ⎞
⎢ ⎥= − ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 for  0jP >  (7.42) 

and depends only on the scale parameter jσ . The mean and the variance of Rayleigh's distribution are 

given by 
  
σ j

π
2

 and 
  
4−π

2
σ j

2 , respectively. 

The Gamma distribution with parameters α and β , denoted as 
  
Pj ~ G(α,β ) , has the following density 

    11( ) exp
( )

j
j j

P
P Pααπ

β α β
−

⎛ ⎞
= −⎜ ⎟⎜ ⎟Γ ⎝ ⎠

 for  0jP >  (7.43) 

with mean αβ and variance 2αβ , where ( )αΓ  is the gamma function. For 1β =  , the so-called one-
parameter gamma distribution is obtained. The density that results by making 1α =  is called exponential 
distribution. 
 
The Beta distribution 

  
Pj ~ Be(α,β )  has support in   

0 < Pj <1 . The density of this distribution is given 

by 

    1 1( ) ( )( ) (1 )
( )j j jP P Pα βα β

π
α β

− −Γ Γ
= −
Γ +

 in   
0 < Pj <1  (7.44) 

with mean 
α

α +β
and variance

 

αβ
(α +β )2(α +β +1)

.  

Figure 3 illustrates the probability distributions described above, namely   U (0,1) ,   N (0.5,0.52 ) ,   R(0.5) , 

  G(1.5,1.5)  and   Be(1.5,1.5) . These distributions were normalized by their maximum values to allow 
comparison among them.  
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Figure 3. Probability distributions 

The probability distributions given by equations (7.39) to (7.43) were written for one single random 
variable, but they can be easily extended for multivariate cases [1,4,5,8,28]. The multivariate Gaussian 
distribution is given by equation (7.21).  
A multivariate prior is usually required for the solution of inverse problems in situations where the 
parameters represent point values of a function. Such is the case illustrated by figure 1 for time varying 
functions. Another typical case involves spatially distributed functions, like a thermophysical property that 
varies within the medium, where the parameter jP can be associated to an average value of the function in 
a finite volume resulting from the discretization of the spatial domain. Markov Random Fields can be used 
to generate priors for these situations [5]. A collection    {P1, P2 ,…, PN }  is a Markov Random Field if the 

full conditional distribution of jP  depends only on its set of neighbors [28].  
A common use of a Markov Random Field is for priors that resemble Tikhonov's regularization [5], 
written in the following general form 

    
   
π (P)∝ exp −

1
2
γ D(P - !P)

2%

&
'

(

)
*   (7.45) 

 
where ||.|| denotes the L2 norm. The constant γ  is a parameter associated with uncertainties in the prior 

and   !P  is a reference value for P . The matrix D  is such that each line of    D(P - !P)  involves the 
parameter jP  corresponding to that line and its neighbors, in order to characterize a Markov random field. 

For cases that P  represent point values of a one-dimensional function (such as a function varying in time 
or in one single spatial coordinate), matrices like those used in Tikhonov's regularization serve well for 
this purpose. For example, one may use  
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 with size ( 1) xN N−  (7.46) 

or  

    

   

D =

1 −2 1
1 −2 1
! ! !
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"

#

$
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$

%

&

'
'
'
'

 with size ( 2) xN N−  (7.47) 

Equation (7.45) can be rewritten as 

    
    
π (P)∝ exp −

1
2
γ (P - !P)T Z(P - !P)

%

&
'

(

)
*   (7.48) 

where 

    T=Z D D  (7.49) 
Equation (7.48) is in a form similar to that of a Gaussian distribution. For this reason, it is also called a 
Gaussian Markov Random Field [28] or a Gaussian Smoothness Prior [5]. By comparing equation (7.48) 
with the canonical Gaussian multivariate distribution, one can notice that the mean and the covariance 
matrix of this prior are given by   !P  and   γ

−1Z−1 , respectively. Therefore, we can write the Gaussian 
Smoothness Prior as 

    
    
π (P) = (2π )−N /2γ N /2 Z−1 −1/2

exp −
1
2
γ (P - !P)T Z(P - !P)

$

%
&

'

(
)   (7.50) 

An important remark about this prior is that, with D  given by equations (7.46) and (7.47), its variance is 
unbounded, since the matrix Z  is singular and 1−Z  does not exist. Densities with unbounded variances 
are denoted as improper [5,28]. 
We now discuss another Markov Random Field prior which gives high probabilities for piecewise regular 
solutions with sparse gradients. The Total Variation (TV) prior satisfies these characteristics, being quite 
appropriate for spatially varying functions that contain large variations at few boundaries within the 
domain and with small variations within the regions limited by such boundaries [5]. The TV prior is given 
by [5]: 

        
   
π (P)∝ exp −γTV (P)%& '(   (7.51) 

where  

        
   
TV (P) = Vj

j=1

N

∑ (P)  
   
Vj (P) = 1

2
lij Pi − Pj

i∈N j

∑  (7.52) 

being jN  the set of neighbors to jP  and ijl  the length of the edge between neighbors.  
The TV prior is improper, such as the Gaussian smoothness prior. The representation of equation (7.51) in 
terms of a canonical probability density would require the derivation of an expression for the normalizing 
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constant 
   

π (P)dP
RN∫ , or, at least, practical means for its computation. Although improper priors need to 

be used with caution, they do not pose difficulties for the application of the Metropolis-Hastings 
algorithm, since the normalizing constants of such densities are cancelled when    α(P* | P(t ) )  is computed 
with equation (7.33). On the other hand, both the Gaussian smoothness prior and the TV prior involve an 
additional parameter γ  that needs to be specified for the application of MCMC methods. The 
specification of a value for such parameter can be made my numerical experiments, by using simulated 
experimental data that serve as a reference for the inverse problem under analysis. On the other hand, 
within the Bayesian framework, if a parameter is not known it shall be regarded as part of the inference 
problem, leading to the use of hierarchical (hyperprior) models, as described below.    

7.6.2 Hierarchical Models 

The parameter γ  appearing in the Gaussian smoothness prior given by equation (7.50) can be treated as a 
hyperparameter, that is, be estimated as part of the inference problem [5]. Consider, for example, the 
hyperprior density for γ  in the form of Rayleigh distribution (see equation (7.42)), where the scale 
parameter 0γ  can be chosen as sufficiently large in order to avoid any restriction on possible values for γ . 
Therefore, the posterior distribution, with the Gaussian likelihood given by equation (7.10), can be written 
as: 

       

    

π (γ ,P Y)∝γ ( N+2)/2 exp −
1
2

[Y - T(P)]T W−1[Y - T(P)]− 1
2
γ (P - !P)T Z(P - !P)− 1

2
γ
γ0

%

&
'

(

)
*

2+
,
-

.-

/
0
-

1-
(7.53) 

On the other hand, the parameter γ  appearing in the TV prior given by equation (40) cannot be treated as 
a hyperparameter. Such is the case because the normalizing constant of such prior is of difficult 
calculation and also depends on γ . Therefore, without the computation of this normalizing constant for 
this case, the effects of γ  as a hyperparameter would not be correctly accounted for in the posterior 
distribution.  

7.6.3 Output Analysis  

We basically follow reference [22] for the material presented in this section. We consider the analysis on a 
single component jP of the vector of parameters P . Let 

   
{P

j

(1) , P
j

(2) ,…, P
j

(n)}  be a realization of a 

homogeneous and reversible Markov chain. A function 
  
f (P

j
)  from the sample 

   
{P

j

(1) , P
j

(2) ,…, P
j

(n)}  is 

called a statistic if it does not depend on any other unknown parameters. Some useful statistics are: 

        Minimum Value: 
   
f (P

j
) = P

j ,min =min{P
j

(1) , P
j

(2) ,…, P
j

(n)}  (7.54) 

        Maximum Value: 
   
f (P

j
) = P

j ,max =max{P
j

(1) , P
j

(2) ,…, P
j

(n)} (7.55) 

        Median: 
   
f (P

j
) = !P

j
=med{P

j

(1) , P
j

(2) ,…, P
j

(n)}  (7.56) 

        Mean:  
  
f (P

j
) = P

j
= E(P

j
) = 1

n
P

j

(t )

t=1

n

∑  (7.57) 



Advanced Spring School « Thermal Measurements & Inverse techniques », Domaine de Françon, Biarritz, 
March 1-6 2015 

http://metti.u-bordeaux.fr 127 

        Variance:  
  
f (P

j
) = var(P

j
) = 1

n−1
P

j

(t ) − P
j( )

2

t=1

n

∑  (7.58) 

Since 
   
{P

j

(1) , P
j

(2) ,…, P
j

(n)}  are realizations of a random variable, a statistic is itself a random variable as 

well. A statistic of the sample will be a good representation of a statistic of the population if the sample is 
a good representation of the population. This certainly depends on the size n and on the independence of 
the individuals of the sample. Furthermore, since the sample 

   
{P

j

(1) , P
j

(2) ,…, P
j

(n)}  is obtained from a 

Markov chain, the chain should already have reached equilibrium before statistics can be computed for the 
solution of the inverse problem. For this reason, states of the Markov chain are discarded before the chain 
reaches equilibrium, which is called the burn-in period. If m states are needed for the chain to reach 
equilibrium, the sample used for the computation of the statistics is 

   
{P

j

(m+1) , P
j

(m+2) ,…, P
j

(n)}. The index of 

this sample is changed from    t = m+1,…,n  to    r =1,…,s  for simplicity in the notation, where s n m= −  
is the number of samples used for the computation of the statistics. 
 

The mean of the sequence 
   
f (P

j

(r ) ) ≡ f (P
j

(1) ), f (P
j

(2) ),…, f (P
j

(s) ){ }  is       

        ( ) ( )

1

1( ) ( )
j j

s
r r

s
r

f P f P
s =

= ∑  (7.59) 

If the chain is ergodic, this mean based on the chain values 
  
f (P

j

(r ) )  provides a strongly consistent 

estimate of the mean of the limiting distribution, that is, 

        ( )( ) ( ) as
j j

r
sf P E f P s⎡ ⎤→ →∞⎣ ⎦  (7.60) 

This result is the equivalent of the law of large numbers for a Markov chain.  

If 
   

f (P
j

(1) ), f (P
j

(2) ),…, f (P
j

(s) ){ }  are independent samples, then the variance of the mean 
  
fs(P

j

(r ) )  is  

        
  
var[ fs(P

j

(r ) )]=
var[ f (Pj

(r ) )]
s

 (7.61) 

where 
  
var[ f (Pj

(r ) )]  is the variance of 
   

f (P
j

(1) ), f (P
j

(2) ),…, f (P
j

(s) ){ } . On the other hand, since the 

samples are in general correlated, equation (46.a) is rewritten as 

        
( )

( ) var[ ( )]
var[ ( )]

j

r
jr

s

f P
f P

s
τ

=  (7.62) 

where τ is the integrated autocorrelation time (IACT), which represents the number of correlated samples 
between independent samples in the chain  

   
f (P

j

(1) ), f (P
j

(2) ),…, f (P
j

(s) ){ } .  Therefore, the effective chain size, which gives the number of 

independent samples in the chain, is   
seff = s / τ . 
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The autocovariance function of lag k of the chain for 
   

f (P
j

(1) ), f (P
j

(2) ),…, f (P
j

(s) ){ }  is defined by: 

        
  
C ff (k) = cov[ f (Pj

(r ) ), f (Pj
(r+k ) )]  (7.63) 

Clearly, the variance of 
  
f (P

j

(r ) )  is 
  
var[ f (Pj

(r ) )]=C ff (0) . 

The normalized autocovariance function of lag k is given by 

        
( )

( )
(0)

ff
ff

ff

C k
k

C
ρ =  (7.64) 

so that   
ρ ff (0) =1, which means that 

  
f (P

j

(r ) )  is perfectly correlated with itself. The calculation of the 

normalized autocovariance function is straightforward, since several computational packages have 
functions available for such a purpose. In the Matlab®, the function xcov(x) with the option ' coeff ' 
returns ( )ff kρ  of the vector x.     
The integrated autocorrelation time is related to the normalized autocovariance function by 

        
1

1 2 ( )ff
k

kτ ρ
∞

=

= + ∑  (7.65) 

For the calculation of τ , the summation in equation (7.65) needs to be truncated at a finite number of 
terms *s s≤ . In fact, ( )ff kρ  is expected to tend to zero as k  increases, but it will be dominated by noise 

for large k . Therefore,   s*  can be selected by increasing k  until ( )ff kρ  is first approximately zero, thus 

avoiding the terms that are dominated by noise in ( )( )
j

rf P .  

 

For s  sufficiently large and for an uniformly ergodic chain, the distribution of 

  

fs(P
j

(r ) )− E f (P
j
)"

#
$
%

var[ fs(P
j

(r ) )]
, 

where ( )var[ ( )]
j

r
sf P  is given by equation (7.62), tends to a standard Gaussian distribution, with zero 

mean and unitary standard deviation. One can write 

        

  

fs(P
j

(r ) )− E f (P
j
)"

#
$
%

var[ fs(P
j

(r ) )]
→

d

N (0,1) as s→∞  (7.66) 

where  →
d

 indicates that the distribution of the random variable on the left tends to the distribution on the 
right. Equation (7.66) is an statement of the central limit theorem of the distribution of ( )( )

j

r
sf P . 

A statistic of great interest is the mean of 
   

P
j

(1) , P
j

(2) ,…, P
j

(s){ } . Therefore, by assuming that the 

appropriate assumptions are satisfied, equation (7.66) shows that  
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(r ) − E P
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#

$
%

var[P
j

(r ) ]
→

d

N (0,1) as s→∞  (7.67) 

where 

        
  
P

j

(r ) =
1
s

P
j

(r )

r=1

s

∑ ;  
  
var[P

j

(r ) ]=
τ var[Pj

(r ) ]
s

  ;  
  
var[P

j

(r ) ]= 1
s−1

P
j

(r ) − P
j

(r )( )
2

r=1

s

∑  (7.68) 

are the mean of 
   

P
j

(1) , P
j

(2) ,…, P
j

(s){ } , the variance of this mean and the variance of 
   

P
j

(1) , P
j

(2) ,…, P
j

(s){ } , 

respectively. 
The main result of equation (7.67) is that it provides a reasonable manner of presenting the solution of the 
inverse problem of estimating the parameter 

j
P , from inference over the Markov chain 

   
P

j

(1) , P
j

(2) ,…, P
j

(s){ } , as 
  
P

j

(r ) ±C var[P
j

(r ) ] , where C  is a constant that defines the approximate 

confidence interval of ( )
j

rP . For a 99% confidence interval,   C = 2.576 .  

The convergence of the Markov chain to an equilibrium distribution can be verified by plotting the chains 
of each parameter 

   
{P

j

(1) , P
j

(2) ,…, P
j

(n)} , j = 1,…,N, and the posterior distribution 
   
π posterior (P(t ) ) , 

   t =1,…,n . Geweke [34] proposed a method for convergence diagnosis based on means computed with 
different ranges of the Markov chain. Let 

        ( )

1

1 a

j j

s
a r

ra

P P
s =

= ∑   and  ( )

*

1
j j

s
b r

r sb

P P
s =

= ∑  (7.69) 

where   

        * 1bs s s= − + ;     0.1as s= ;    0.5bs s=  (7.70) 

Geweke [34] has demonstrated that 
  

P
j

a − P
j

b( )→ 0  as the chain 
   

P
j

(1) , P
j

(2) ,…, P
j

(s){ }  approaches 

equilibrium. 
It is also a good practice to repeat such procedures for convergence analysis by generating Markov chains 
from different initial states. A method for inference from multiple chains was developed by Gelman and 
Rubin [35].    

7.7 Reduction of the Computational Time for Markov Chain Monte Carlo 

(MCMC) Methods 

For many cases, the computation of the direct problem solution, needed for the solution of the inverse 
problem, is very time-consuming. Limitations are then imposed on the number of states of the Markov 
chain that can be computed within a feasible time, which can make the use of standard MCMC methods 
impractical, specially when the number of unknown parameters is large.  One possible way to overcome 
such difficulties is to use model reduction or surrogate techniques, instead of the complete model, for the 
computation of the direct problem solution at each state of the Markov chain.  
Since reduced or surrogate models do not exactly reproduce the associated complete models, different 
approaches have been developed in order to improve the solution of inverse problems obtained with 
approximate forms of the original mathematical formulation. Among such approaches, we have the 
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Delayed Acceptance Metropolis-Hastings (DAMH) algorithm [36] and the Approximation Error Model 
(AEM) [5,37-41]. In the DAMH algorithm [5], the Metropolis-Hastings (MH) algorithm is regularly 
applied with the reduced model. If a proposal state is accepted with the reduced model, another test of 
Metropolis-Hastings is performed with the complete model, to finally decide if such proposal should be 
accepted or not. In this sense, the DAMH can be seen as two nested Metropolis-Hastings algorithms, 
where the outer loop acts as a filter to pre-evaluate proposal candidates with the reduced model. In the 
AEM approach [5,37-41], the statistical model of the approximation error is constructed from the prior 
information and then represented as additional noise in the measurement model, for the solution of the 
inverse problem.  It should be noted that there is a principle difference between the DAMH and the AEM 
approaches, as the AEM uses the posterior modified by the error of the reduced model, whereas the 
DAMH generates samples from the correct posterior. Such two approaches were successfully applied to a 
three-dimensional inverse heat conduction problem in reference [42]. 

7.7.1 Delayed Acceptance Metropolis-Hastings (DAMH) Algorithm 

The DAMH algorithm can be summarized as follows [36]: 
 

1. Let 1t =  and start the Markov chain with the initial state (1)P . 
2. Sample a candidate point *P from a proposal distribution * ( )( | )tq P P . 

3. Calculate the probability * ( )( | )tredα P P  by using the reduced model, where 

 
* ( 1) *

* ( )
( 1) * ( 1)

( | ) ( | )( | ) min 1,
( | ) ( | )

t
t red

red t t
red

q
q

π
α

π

−

− −

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

P Y P PP P
P Y P P

 (7.71) 

4. Generate a random value ~ U(0,1)redU . 

5. If * ( )( | )tred redU α≤ P P , proceed to step 6. Otherwise, return to step 2. 
6. Calculate a new acceptance factor with the complete model 

 
* ( 1) *

* ( )
( 1) * ( 1)

( | ) ( | )( | ) min 1,
( | ) ( | )

t
t

t t

q
q

π
α

π

−

− −

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

P Y P PP P
P Y P P

 (7.72) 

7. Generate a new random value ~ U(0,1)U . 

8. If    U ≤α(P* | P(t ) )  set ( 1)t+P = *P . Otherwise, set ( 1)t+P = ( )tP . 

9. Make 1t t= +  and return to step 2 in order to generate the sequence     {P(1) ,P(2) ,…,P(n)} . 
 
where ( | )redπ P Y and ( | )π P Y  are the posterior distributions with the likelihoods computed with the 
reduced model and with the complete model, respectively.  
With the DAMH algorithm, it is expected to take advantage of the fast computations of the reduced model 
in order to find, in step 5, possible candidates to be accepted with the complete model, in step 8. The 
DAMH algorithm can be quite effective, especially in the case of a low acceptance ratio of the 
Metropolis-Hastings algorithm. Therefore, depending on how fast the solution of the reduced model is as 
compared to that of the complete model, as well as on the acceptance ratio, the use of the DAMH 
algorithm might result in significant reductions in computational times, as compared to those from the 
regular Metropolis-Hastings algorithm applied to the complete model. 
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7.7.2 Approximation Error Model (AEM) Approach 

In the approximation error model (AEM) approach, the statistical model of the approximation error is 
constructed and then represented as additional noise in the measurement model [5,37-41]. With the 
hypotheses that the measurement errors are additive and independent of the parameters P, one can write 

 ( )= +Y T P ε (7.73) 

where ( )T P  is the sufficiently accurate solution of the complete direct (forward) model. The vector of 
measurement errors,ε , are assumed here to be Gaussian, with zero mean and known covariance matrix 
W, so that the likelihood function is given by equation (7.10). 
If the solution of a reduced model, ( )redT P , is used for the solution of the inverse problem in place of the 
solution of the complete model, ( )T P , equation (7.73) becomes 

 ( ) [ ( ) ( )]red red= + − +Y T P T P T P ε  (7.74) 

By defining the error between the complete and the reduced model solutions as 

 ( ) [ ( ) ( )]red= −e P T P T P  (7.75) 

equation (7.74) can be written as 

 ( ) ( )red= +Y T P η P  (7.76) 

where 

 ( ) ( )=η P e P + ε (7.77) 

One difficult with such an approach is to model the error ( )η P , which includes the direct problem 
solution errors, ( )e P , as well as the experimental errors, ε . A simple, but very effective approximation 
error approach, is to model such an error as a Gaussian variable [5,37-41]. Another important point for the 
implementation of the approximation error model is that the statistics of ( )η P , like its mean and 
covariance matrix, are computed before the estimation procedure, with basis on the prior distribution 
[5,37-41]. Therefore, the use of the approximation error model with improper priors is no possible, since 
they exhibit unbounded variances. Consider, for instance, a Gaussian prior and a Gaussian likelihood, 
given by equations (7.21) and (7.10), respectively. By using the approximation error model approach, the 
posterior distribution is given by [37]: 

 
    
π (P Y)∝ exp −

1
2

[Y−Tred (P)−η]T !W−1[Y−Tred (P)−η]− 1
2

P−µ( )T
Γ−1 P−µ( )

&
'
(

)
*
+

 (7.78) 

where  

  
η = ε + e +ΓηPΓ

-1(P−µ)  (7.79) 

 
   
!W = We +W−ΓηPΓ

-1ΓPη  (7.80) 

and ε
 
and e  are the means of ε  and e, respectively, while eW  is the covariance of e and ηPΓ  is the 

covariance of η  and P.  Equations (7.79) and (7.80) give the complete error model [37]. We note that, 
with the standard hypotheses regarding the measurement errors made above, 0=ε . By further neglecting 
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the dependency of η  and P, that is, 0=ηPΓ , equations (62.a,b) simplify to the so-called enhanced error 
model: 

  η ≈ e  (7.81) 

    
!W ≈ We +W  (7.82) 
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