JRC

Joint Research Centre (JRC)

Thermométrie Ultrasons: Retours d'Expérience et Prospectives

M. Laurie, D. Magallon, J. Rempe, S.C. Wilkins, J. Pierre, C. Marquié, S. Eymery, R. Morice

IE - Institute for Energy

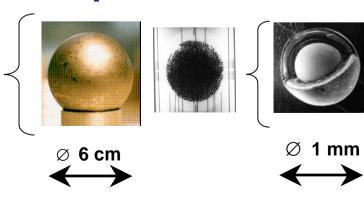
Petten - The Netherlands

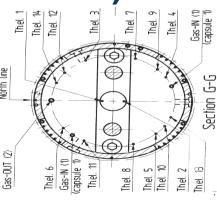
http://ie.jrc.ec.europa.eu/

http://www.jrc.ec.europa.eu/

- Besoins expérimentaux
- Technologie des TUS
- Applications: Europe et US
- Développements pour usages futurs

Besoins expérimentaux

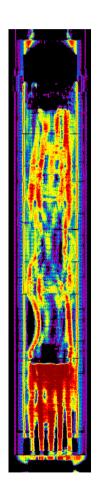



Journée SFT, 29 Juin 2010

3

Application nucléaire dans le cadre des irradiations expérimentales: "Expérimentation combustible HTR"

- Long dispositif expérimental (>5 m)
- Diamétre restreint (<70 mm)
- Diamétre extérieur des TC's (max. 1,5 mm)
- Hautes températures (jusqu'à 1420 K)
- Flux neutronique important
- Environnement aggressif (carburation)
- Expérimentation longue (jusqu'á 2 ans)


Besoins expérimentaux

Journée SFT, 29 Juin 2010

4

Utilisé dans des environnements plus pénalisants: "PHEBUS FP FPT1"

- Expérimentation à haute température (jusqu'à 2500 K)
- Emballements thermiques (300 K/ min)
- Contact avec le bain d'UO2
- Conditions accidentelles représentatives du REP

Grappe FPT1 á l'issue de la phase dégradation

Besoins expérimentaux

Journée SFT, 29 Juin 2010

5

Irradiations HTR

Mesure centre Combustible: RNR

Combustible: PWR

Accidents graves

Accidents graves

A70K

Type N / K

Dérive à haute température et mortalité due aux faibles dimensions

Mo - Nb thermocouples

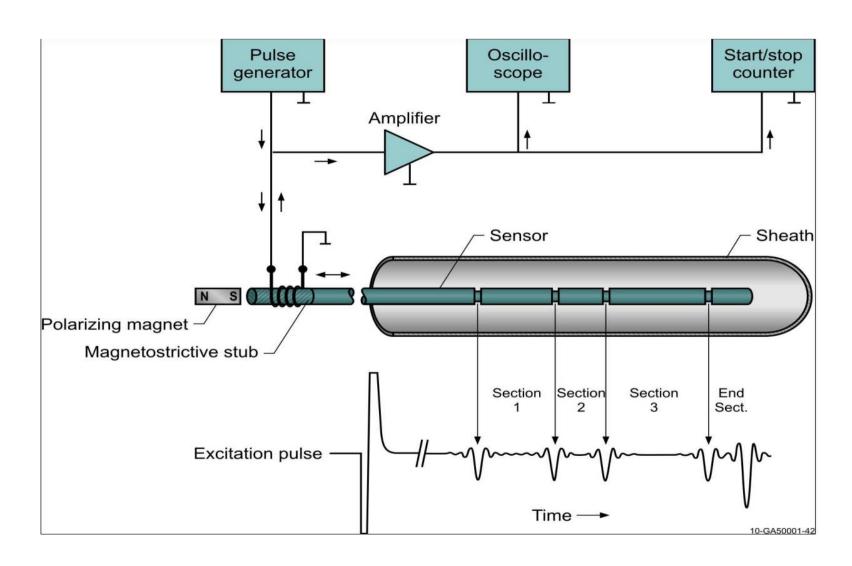
Thermocouples innovants Production confidentielle

Type C Dérive neutronique

Thermométre á ultrason

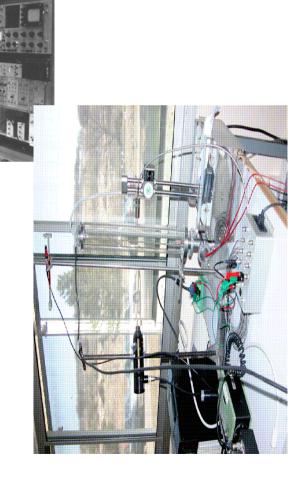
Tungsténe thorié

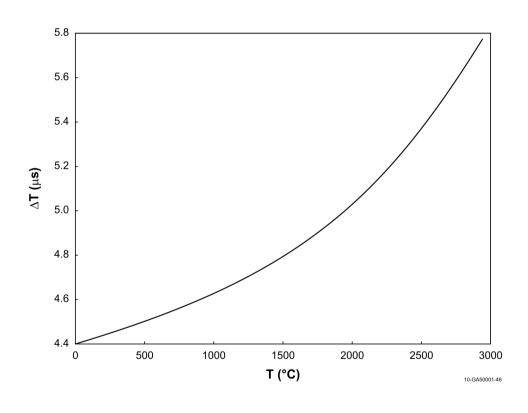
Acier


Titane

Journée SFT, 29 Juin 2010

6





Journée SFT, 29 Juin 2010

7

Méthodes de calibration

Journée SFT, 29 Juin 2010

8

Matériaux prometteurs pour la partie sensible

(qui ne présentent pas de caractéristiques physiques rédhibitoires, de courbes de calibration erratiques (platine, vanadium, graphite) ou d'atténuation excessive...)

- Rhenium a été détecté comme possédant de bonnes caractéristiques acoustiques (transmutation du rhénium en Osmium)
- Titane, acier, rhodium, rhenium, and tungsténe thorié ont été identifiés comme des matériaux adéquats dans une certaine gamme de température
- Molybdéne semble prometteur pour des applications nucléaires
- <u>Tungsténe thorié</u> est le matériau de référence pour les applications au-delá de 2600 °C
- Saphir (single-crystal alumina) considéré pour des applications TUS avec résonnance

Journée SFT, 29 Juin 2010

9

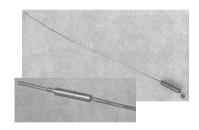
Principales causes d'erreurs à 2400 ℃:

- Précision du pyrométre optique (émissivité du W) : ±25 ℃
- Gradient de température lors de l'étalonnage :±20℃
- Instabilités électroniques et distorsions (±20 ℃)
- Dérive des TUS à l'issue de cycles thermiques (non significatif si la mesure s'effectue dans un laps de temps inférieur à 3 heures)
- Précision de la courbe polynomiale déduite ±15 ℃

On en déduit une précision de ±50℃

European applications

RRADIATION EXPERIEM

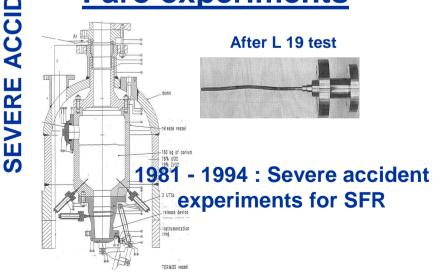

Journée SFT, 29 Juin 2010

n

Dragon reactor

1967-1968 : Pulsed and resonant UT's

Petten reactor


1973-1978 : CARSON, RETSON and TRESON experiments

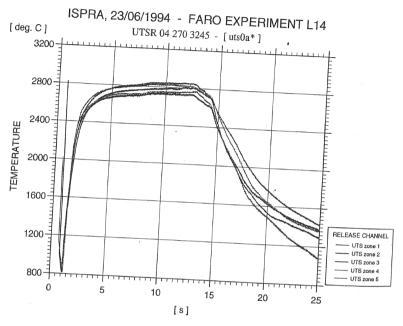
Phebus FP program

Faro experiments

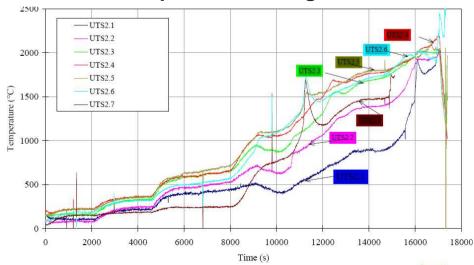
in reactor core

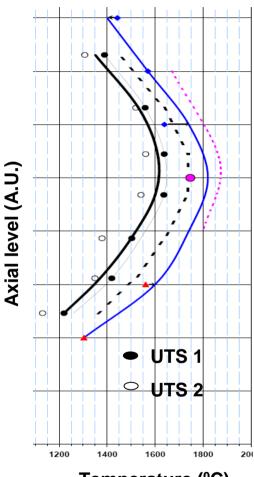
Main contributors :

- = Pr. BELL MOSBY
- * TASMAN (ITU Karlsruhe)
- JORZIK ANSELMI (Ispra)



European applications




Journée SFT, 29 Juin 2010

11

Bundle temperature during PHEBUS FPT1

Temperature (°C)

Bundle temperature profile during PHEBUS FPT3

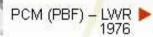
US applications

Journée SFT, 29 Juin 2010

12


United States Applications Applied UTS InPile for Wide Range of Reactor Fuel Investigations

▼ WDC (ETR) - SFR 1972

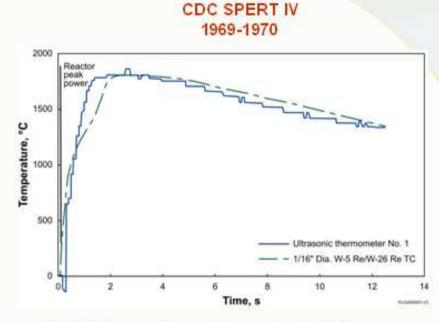


HRB (HFIR) – GCR 1972

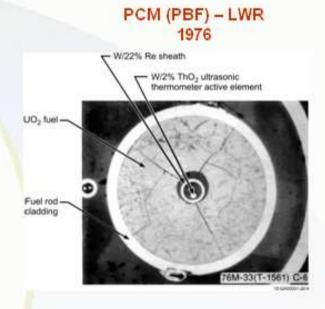
Key Contributors

- Arave
- Carlson • Lynnworth
- Plein
- Shepard
 Wilkins

US applications



Journée SFT, 29 Juin 2010

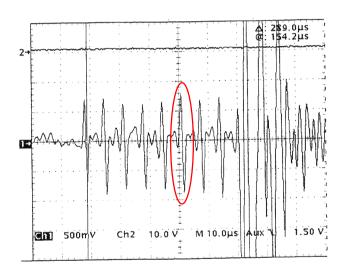

13

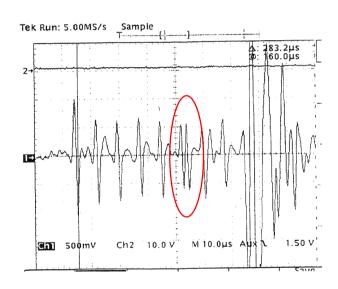
United States Applications Demonstrate UTs Offer Accurate Temperatures with Several Advantages

UT/TC Comparisons Demonstrate UT Accuracy and Short Response Time

UT and TCs in fuel element after testing

US and European applications




Journée SFT, 29 Juin 2010

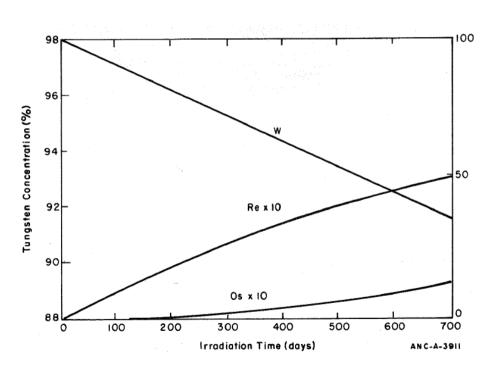
14

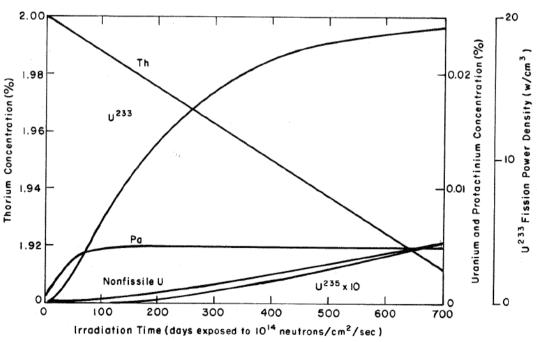
Principales dificultés rencontrées

Sticking effect

Expériences de courte durée

US and European applications


ANC-A-3910


Journée SFT, 29 Juin 2010

15

Principales dificultés rencontrées

Dérive neutronique (Tungsténe thorié)

European latest developments

Journée SFT, 29 Juin 2010

16

Afin d'utiliser les TUS sur une plus grande échelle, de la R&D a été entreprise afin de limiter les problemes de fiabilité et de précision de mesure:

- En fonction de l'historique de dévelopement des TUS en Europe (ITU Karlsruhe, JRC ISPRA, CEA Cadarache), les utilisateurs finaux sont devenus détenteurs des procédés : amélioration de l'électronique, capitalisation des connaissances sur les procédures de montage [2002-2005]
- Campagnes de mesures d'intercomparaison (différents pyrométres avec une lampe) et calibrations – [2005-2006]

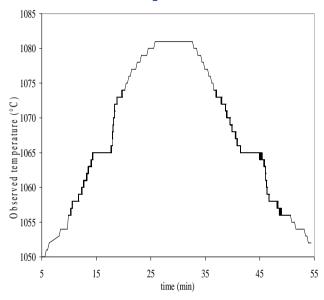
Prospective for future use

Journée SFT, 29 Juin 2010

17

Proposed Future Efforts to Adapt UTs to Meet Current InPile Testing Needs

- Optimize material and geometry to obtain high resolution, small diameter, sensor capable of detecting temperature at multiple locations.
- Optimize signal processing to incorporate new technology (not previously used with UTs).


Prospective for future use

Journée SFT, 29 Juin 2010

18

Cellule point fixe

Ré-étalonnage en ligne

- Expérimentation long terme (hors pile)
- Développement à finalité nucléaire (Acier et Molybdene)
- Utilisation de cellule(s) point fixe haute température embarquées