
Advanced Spring School « Thermal Measurements & Inverse techniques », Domaine de Françon, Biarritz, 
March 1-6 2015 

http://metti.u-bordeaux.fr 135 

 

T8 Inverse Heat Conduction Problem using thermocouples 

deconvolution: application to heat flux estimation in a Tokamak 

JL. Gardarein, J. Gaspar, F. Rigollet 

IUSTI UMR 7343, Aix-Marseille University, Marseille Cedex13, France 

E-mail: jean-laurent.gardarein@univ-amu.fr 
E-mail: jonathan.gaspar@univ-amu.fr 
E-mail: fabrice.rigollet@univ-amu.fr 

 
 

Abstract. This tutorial is especially designed to the beginners in inverse techniques in 
heat conduction. Internal components of magnetic confinement fusion machines are 
subjected to significant heat fluxes. In order to estimate the surface input heat flux on 
these plasma-facing components, some temperature measurements like embedded 
thermocouples are used. Through this experimental example, we propose to detail a 
heat flux estimation procedure associating deconvolution and regularization method 
(Tikhonov). After a brief presentation of the experimental context, the inversion 
procedure will be used on an experimental signal produced during the tutorial. The 
numerical codes used will be accessible to the participants. 

8.1 Introduction 

Internal components of magnetic confinement fusion machines are subjected to significant heat fluxes. As 
an example, in the Joint European Torus (JET), several MW are coupled to plasma facing components for 
about 10 seconds [1]. A large part of this power is directed towards inertially cooled carbon tiles. In JET 
experiments, for better understanding and control of the heat transfer from the plasma to the surrounding 
wall, it is very important to measure the surface temperature of the target tiles and to estimate the imposed 
heat flux. That will be even more important for the protection of the internal components of the 
International Thermonuclear Experimental Reactor (ITER). In the JET tokamak, an infrared system and 
several embedded thermocouples are used to measure respectively the surface and bulk temperatures of 
the carbon composite tiles [2]. In the JET experiment and in most of the Tokamaks using carbon plasma 
facing components (PFC), the eroded carbon is circulating in the plasma and is redeposited elsewhere. 
During the plasma operation, this leads at some locations to the formation of thin or thick carbon layers 
usually poorly attached to the PFC. These surface layers complicate the calculation of the heat flux from 
IR surface temperature measurements. The advantage of using the temperature data of embedded 
thermocouples is that they are not sensitive to the surface layer and the surface optical properties. Their 
disadvantage is that they have poor spatial resolution. We overcome this limitation with the help of 
another diagnostic giving the spatial shape of the heat flux. In the case of thermocouples, the temperature 
measurement is distant from the tile surface then, heat flux estimation becomes an inverse problem [3]. 
So, we need to use more complicated numerical methods to solve the heat conduction equation.  
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Figure 1. IR and visible view of the JET Tokamak. 

The first part of the tutorial is devoted to the experimental set-up and the problematic of the heat flux 
estimation in a Tokamak. Then, we describe the using methodology to estimate a heat flux with an 
embedded measurement. We apply first the method in the case of a 1D material submitted to a known heat 
flux and then to experimental data produced during the tutorial with thermocouples embedded in a 
material insulated with a hot lamp. Finally, we come back on our problematic in the Tokamak JET to 
estimate a heat flux depending on time and space with only one thermocouple measurement and 
information on the spatial shape.  

8.2 Experimental Set-Up, Problematic 

8.2.1 Experimental Set-Up 

In JET, most of the plasma facing components is tile-like structures (see Figure 2,3 and 4) made of carbon 
fibber composite (CFC). The tile studied in this paper and the thermocouple location are presented in 
Figure 3 and 4, x represents the poloïdal direction, y the toroïdal direction and z the depth in the tile. The 
tile is located in the divertor, which is the bottom of the machine. Tile surface temperatures are measured 
by an infrared camera sensitive in the 3-5µm wavelength range. The IR camera measures the radiative flux 
emitted by the tile surface, the temperature is then deduced with the black-body calibration of the IR 
camera and the knowledge of carbon emissivity (near to 0.83). An example of infrared image is presented 
in Figure 2b. The space resolution is about 8-10 mm per pixel, time resolution for the discharge analysed 
in this tutorial is 15.9 ms between two frames. Two internal temperatures are measured by two type K 
thermocouples (Figure 3). The thermocouple locations are (x = 25 mm, z = 10 mm) and (x = 125 mm, z = 
10 mm) in the tile [2], which means they are located at 10 mm of the tile surface. 
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Figure 2. Vision of the JET Chamber 

a) Visible view of the JET chamber b) Infrared image of the divertor tiles 
 

  
Figure 3. Poloïdal cut of JET divertor showing the 

magnetic field lines and carbon tiles 
Figure 4. Dimensions of the tile n°7 of the 

MKIIGB divertor 
 

8.2.2 Problematic 

The problem consists in estimating the heat flux deposited on several tiles of the divertor. With an IR 
diagnostic measuring the surface temperature, the heat flux computation is not an inverse problem since 
the measurements can be applied as Dirichlet’s conditions in a classical finite element method 
computation or another computation technique. Unfortunately, a very thin carbon layer can be deposited 
on the tile with unknown thermal properties and the using of the IR measurements as Dirichlet’s condition 
becomes impossible. So, we have to find another way to estimate the heat flux. It’s possible to use the 
embedded thermocouples. In this case, the temperature measurement is now embedded in the bulk and the 
heat flux estimation becomes an inverse problem. Moreover, the spatial resolution of the thermocouple is 
insufficient; we use another diagnostic to obtain the spatial shape of the heat flux. 
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8.3 Description of the method application to a 1D Inverse Heat Conduction 

Problem 

8.3.1 Presentation of the direct problem 

Considering a 1D material with constant thermal properties (λ = 240W/mK, ρ=1800kg/m3, 
Cp=780J/kg.K, e=0.04m) submitted to a heat flux step of 1W/m2 between 5 and 10 seconds,  we can 
compute the temperature for several depths in the material (z=0, 1, 2, 3, 4 cm) with a direct calculation 
(FEM, thermal quadrupoles, analytical solution). We assume that the initial temperature distribution in the 
material (at t = 0) is uniform. 
 

 

 
 

Figure 5. Heat flux applied to the bulk of e thickness Figure 6. Bulk heating in K for different 
thicknesses: z=0, z=0.01m, z=0.02m, 

z=0.03m, z=0.04m. 
 
One can note that all the heating have the same values after 15s. It corresponds to the temperature of the 
adiabatic stability. In our case, this value is equal to: 

 5
0
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−×
Δ = − = = =

× ×
  (8.1) 

E is the energy injected in the bulk in J/m².   
A noise is added to the numerical signal in order to obtain more realistic data to inverse, the new signal 
can be written: 

   Y  =  Ynum  + ε   (8.2) 

Y is the new signal. 
Ynum is the numerical signal. 
ε is a centred zero mean, Gaussian noise with a standard deviation of 10% of the maximal heating. 

8.3.2 Deconvolution procedure description 

The carbon tile is modelled by a linear system subjected to a prescribed heat flux Q(z=0,t) having for 
effect the temperature T(z,t). The linear system theory allows to express the temperature T(z,t) by the 
convolution of Q(z=0,t) with the pulse response h(z,t) of the system, (i.e. the tile temperature response 
after a delta function (Dirac function) of power applied to the surface). We assume the temperature 
homogeneity of the tile at t = 0.  
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Figure 7. Linear System. Figure 8. Impulse response of the bulk. 
 
For the temperature T at the time t, the depth z: 

  
0
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The pulse response h(z,t) of the system is the first time derivative of its step response u(z,t). So, we 
approximate (3) by finite differences which leads to the expression of the temperature at each time step F 
in matrix form: where X is a triangular lower square matrix (of order F) assembled with the components 
( , ) ( , ) ( , 1)u z F u z F u z FΔ = − −  [4]:   
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  (8.4) 

   

   ΔT =X.Q   (8.5) 

The deconvolution procedure consists in reversing Eq.(5), i.e. expressing surface heat fluxes with 
measured surface heating:  

   Q =X−1ΔT   (8.6) 

In the case of IR surface temperature deconvolution (z = 0), the problem is inverse but stable and matrix X 
inversion doesn’t cause any problem. On the other hand, in the case of the deconvolution of the 
temperature measured by the thermocouple, the problem becomes inverse and X is ill conditioned (see 
§3.3). Clearly, it means that the matrix X is difficult to inverse because of very low terms in the diagonal.  

8.3.3 Regularization procedure  

The solution vector Q, is very sensitive to measurement errors contained in vector ΔT. In order to obtain a 
stable solution, we use a regularization procedure. For example, we can use the Thikonov regularization 
operator [5]. The regularized solution becomes: 

   Q̂reg =(X
tX + γRtR) -1Xt ΔT   (8.7) 

- regQ̂  is the regularized solution (an estimation of Q)  

- γ is the regularization parameter  
- R is the regularization operator depending on the type of information that we want to obtain. 
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In our case, we want a solution with a minimal norm of the solution (0 order) ˆregQ , so we will take R = 

Id.  An optimal value of the regularization parameter can be found using the “L curve” technique [6]. This 
type of representation allows to choose the best compromise - which is situated at the bending point of the 
‘L-curve’ - between a stable solution, with a low value of ˆ

regRQ  and an accurate solution, with low 

residuals ˆ
regXQ T−Δ . For lower values of γ (Figure 9), the solution is unstable with low residuals, on 

the other and, for strong values of γ (Figure 10), the solution is stable but moves away from the exact 
solution. On figure 11 is presented the heat estimation for a best value of γ. 
 

  

Figure 9. Heat flux estimation with a low γ  Figure 10. Heat flux estimation with a strong γ . 
 
As example, in Figure 12 is presented the L curve and the best γ for flux estimation with the embedded 
measurement. One can note that the value γ depends on the level of the noise, the temporal resolution and 
the depth of the measurement.  
 

  
Figure 11. Heat flux estimation with the best 

compromise of γ . 
Figure 12. L curve and best γ  in the case of an 

embedded thermocouple located at 3cm of the surface. 

8.3.4 Application to experimental data 

This part will be done during the tutorial. We propose to apply the method presented in the precedent 
sections on an experimental signal produced during the tutorial. The principle of the experiment is to heat 
a sample with a lamp and to measure the temperature in the sample on several locations with 
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thermocouples. The obtain signals are then recorded on a computer and can be deconvoluted with a matlab 
code given to the participants.  

8.4 Application to a 2D experimental case: Plasma Facing Components of 

JET 

On the tile of the divertor, the heat flux depends mainly on the x location and it is deposited directly at the 
surface (z = 0). Furthermore the heat flux presents symmetry in the toroïdal direction. This direction is 
neglected. The method described above can also be applied in a 2D case but we need information on the 
spatial shape of the heat flux. Indeed, it’s impossible to estimate simultaneously the value and the spatial 
shape of the heat flux with only one embedded temperature measurement. In our case, it’s possible to 
obtain the normalised spatial shape of the heat flux since this shape is depending on the magnetic 
parameters of the plasma scenario. We assume that the spatial shape is not depending on time. So the heat 
flux function Q(x,t) can be decomposed (Figure 13) on a spatial function f(x) and temporal function g(t). 
The function f(x) is given by a diagnostic of magnetic lines computation, the function g(t) is estimating 
with an inversion of the thermocouple measurement. 
 
Then, the bi-dimensional step response of the tile can be computed, for example, with the quadrupoles [7] 
at the thermocouple location (z = 1 cm) for a specific spatial shape (Figure 14). A regularization procedure 
is also applied in order to inverse the new X matrix.  
 

 
 

 

 
Figure 13. Temporal and spatial decomposition 

of the heat flux function. 
Figure 14. 2D Step response computation. 

 
Using this method, we obtain the following results for the shot 58850 [8], the heat flux estimation is 
presented on figure 17. In this shot, 4 heat flux step between 1 and 6 MW/m2 are imposed on the tile n°7 
of the JET divertor. The heat flux spatial shape is presented on figure 16 and the TC measurement are in 
figure 15. 
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Figure 17. Heat flux estimation for the shot 58850. 
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Figure 15. TC heating measurement (z = 1 cm) Figure 16. Heat flux spatial Shape for the shot 

58850. 

Temporal Profile 

Q(xmax, t) 




